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Motivation I

Given the increasing threat of climate change, energy transitions from traditional sources
to greener and renewable ones have become a major global need and goal.

However, energy transitions are costly and require time:
· Renewables still represent less than 30 per cent of all global electricity generation

and only around 11 per cent of global primary energy.
· Wind electricity generation has shown one of the highest increases among all renewable

power technologies but represents only around 7 per cent of electricity generation
worldwide.

· At this pace of transition, we are far from meeting the goal of global Net Zero Emissions
by 2050 (International Energy Association, 2023)
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Motivation II

Energy transitions are occurring at different speeds across world regions and sectors:
· Some countries doing really well, while others show no progress, with important

technological and economic obstacles to be overcome.
· Within countries, the adoption and spread of renewable energy sources is very

uneven in space.
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Aim

1 To empirically study the spatial spread of green energy transitions at the local level.

2 Focusing on Japan and exploring the nuclear-to-wind energy transitions triggered by
the Fukushima Nuclear Incident (FNI) in 2011.

3 Building a novel dataset combining detailed gridded data on the location of wind farms
and nuclear plants, for 1742 municipalities for the 2001-2020 period.

4 Using panel-data econometric techniques, to explore the connection between the
proximity to nuclear power plants and the spread of the adoption of Wind Energy
Technology (WET).

5 and modelling and simulating the diffusion of WET through a network approach.
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Why Japan

1. FNI works as a natural experiment, enabling us to identify the causal effects of phasing
out nuclear technology on WET diffusion:

· After FNI, more than 90% of nuclear power plants in Japan were shut down.

2. In Japan different energy sources coexist:
· Including fossil fuels, nuclear, and renewables, all having been extensively adopted with

leading global technologies.

3. Availability of rich, fine-grained geo-located data of WET adoption along with other
factors for Japan for over 20 years.
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Energy Production in Japan

Energy Production in Japan

Note: Figures created with data on power production from IEA
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Related Literature

Energy transitions, especially to those papers analyzing local adoption of greener
technologies:

· Hall and Helmers (2013), Popp et al. (2011), Rode and Weber (2016).
Network diffusion of new technologies:

· Acemoglu et al., 2011; Beaman et al., 2021
· especially in the energy sector (Halleck-Vega et al. (2018)).

Energy consequences of exogenous shocks:
· in particular, the Fukushima event in Japan in 2011 (Kawashima and Takeda (2012),

Rehdanz et al. (2017) Okubo et al. (2020)).
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Data

Variable Available Years Data Type Source
Ozone concentration 1995, 2000, 2005, 2010-13. average Goodman et al. (2019)
PM2.5 Concentration 1990, 1995, 2000, 2005, 2010-12 average Goodman et al. (2019)

Population GHSL 1990, 2000, 2015 count Goodman et al. (2019)
NDVI 1990-2020 average Goodman et al. (2019)
Lights 1992-2020 count Li et al. (2020)

Wind farms 1985-2022 count Wind Power database (2022)

Note: We construct a balanced panel for 1992-2020. Missing data are replaced with linear
interpolation estimates.
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The expansion of WET over time

Source: created with data from the Wind Power database and GeoQuery Goodman et al.
(2019)
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Nuclear power plants in Japan

Source: created with data from the Global Power Plant Database v1.3.0 and Goodman et al.
(2019)
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Summary Statistics 2001, 2011 & 2020

2001 2011 2020

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

wind_farms 0.061 0.36 0.11 0.54 0.14 0.6
ozone 58 3.1 59 3.7 60 3.9
pm2.5 15 4.8 14 3.7 14 4
pop 72401 178056 72731 182222 72864 183986
lights_pc 0.21 0.36 0.18 0.29 0.18 0.29
ndvi_mean 5351 1425 5232 1410 4407 1256
log_lights 8 1.1 7.9 1.1 7.7 1.1
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Summary Statistics 2001-2020

Unique (#) Missing (%) Mean SD Min Median Max

unit 1711 0 868 503 0 869 1741
year 20 0 2010 5.8 2001 2010 2020
wind_farms 8 0 0.1 0.51 0 0 7
ozone 21862 0 59 3.6 44 60 65
pm2.5 21948 0 14 4.1 5.2 14 37
pop 25665 0 72 690 181 684 22 25 641 3 665 297
lights_pc 33961 0 0.2 0.33 0 0.1 8.2
ndvi_mean 34200 0 5237 1406 122 5605 7661
log_lights 10955 0 7.9 1.1 0 7.9 11
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The post-Fukushima adoption of wind energy: a Difference-in-Differences
approach

To assess to what extent the 2011 Fukushima incident translated into an increase in the
adoption WET in areas surrounding nuclear power plants, we estimate the following
difference-in-differences specification:

log(WF )rt = αr + αt + βTrt + δXrt + εrt ,

· WF is the number of wind farms in municipality r at time t
· αr are municipality fixed effects and αt year fixed effects
· T is a treatment dummy which takes the value of 1 if municipality r is at a distance lower

than 120 kilometers from any nuclear reactor for all years after 2011
· Xrt is a vector of controls
· εrt is an idiosyncratic error term

And the following event-study design:

log(WF )rt = αr + αt +
−2∑

τ=−q

γτD
τ
rt +

m∑
τ=0

δτD
τ
rt + δXrt + εrt
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DiD regression estimates

Table: Regression estimates of the
Difference-in-Differences model

Dependent Variable: log(wind_farms+1)
Model: (1) (2) (3)

Variables
treatment 0.0214∗∗∗ 0.0104∗∗ 0.0119∗∗

(0.0031) (0.0049) (0.0050)

Fixed-effects
municipality Yes Yes Yes
year Yes Yes
Controls Yes
Fit statistics
R2 0.90594 0.90673 0.90719

Notes: Clustered (municipality) standard-errors in paren-
theses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. This
table reports the regressions estimates based on Equation
(1). When specified in the model, we control for ozone
concentration, PM2.5 concentration, population, the nor-
malized difference vegetation index, and night-time lights.
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Event study plot - controls included in regression
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Heterogeneity analysis - distance

Dependent Variables: log(total_power+1) log(wind_farms+1)
Model: (1) (2) (3) (4)

Variables
treatment 0.1089∗∗ 0.4702∗∗∗ 0.0119∗∗ 0.0513∗∗∗

(0.0543) (0.1293) (0.0050) (0.0138)
treatment × min -0.0049∗∗∗ -0.0005∗∗∗

(0.0014) (0.0002)

Fixed-effects
unit Yes Yes Yes Yes
year Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Fit statistics
Observations 34,220 34,220 34,220 34,220
R2 0.84844 0.84946 0.90719 0.90805

Clustered (unit) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Robustness checks

Our main results are robust to:
Excluding Tokyo’s 23 wards
Excluding municipaities close to Fukushima Daiichi nuclear power plant
Permutation tests
Using alternative wind outcomes (extensive and intensive margines and total power)

We also find higher point estimates as we use smaller distance thresholds:
Different treatment assignment for distance <= 120
ES estimation for treatment assignment for distances <= 150

But smaller (and mostly insignificant) as we use larger distance thresholds:
Different treatment assignment for distances >= 120
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WET adoption: the role of neighbors

Dep Variable: log(wind_farms+1)
Model: (1) (2) (3) (4) (5) (6)

Variables
treat 0.0125∗∗ 0.0107∗∗ 0.0124∗∗ 0.0072 0.0119∗∗ 0.0015

(0.0050) (0.0051) (0.0051) (0.0052) (0.0050) (0.0051)
WET in 20km 0.0278∗∗ 0.0245∗∗

(0.0116) (0.0110)
treat × WET in 20km 0.0079

(0.0072)
WET in 30km 0.0225∗∗ 0.0181∗

(0.0093) (0.0093)
treat × WET in 30km 0.0123∗∗

(0.0062)
WET in 40km -0.0014 -0.0064

(0.0060) (0.0065)
treat × WET in 40km 0.0174∗∗∗

(0.0058)

Fixed-effects
asdf_id Yes Yes Yes Yes Yes Yes
year Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
Fit statistics
Observations 34,220 34,220 34,220 34,220 34,220 34,220
R2 0.90742 0.90745 0.90742 0.90753 0.90719 0.90742

Notes: Clustered (municipality) standard-errors in parentheses. Signif. Codes: ***: 0.01,
**: 0.05, *: 0.1. Regression estimates including a neighbor dummy and interaction. n
10km dummy is one if any neighbor at a distance lower or equal to 10km has adopted the
technology, other variables defined in a similar manner. We control for ozone concentration,
PM2.5 concentration, population, the normalized difference vegetation index, and night-time
lights.
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Network analysis: the underlying network of municiplaities as nuclear plants
shutdown
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Network analysis: subnetworks

From the definition of the network we identify 3 subnetworks:
· The first with 798 municipalities (mostly central Japan), the second with 109 (north), and

the third one with 259 (south).

To simulate diffusion, we set thresholds as follows:
· Find a qi (i.e., proportion of neighbours that adopted for a given municipality to consider

adoption) such that if we add ϵ to it, there is no diffusion.
· Multiply qi by 0.25, 0.5, and 0.75 and obtain its Q1, Q2, Q3 & Q4.
· We use these four threshold values in simulating the diffusion process though different

targeting strategies.
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Early adopters ("Seeds first period")

Initial seeds vs Optimal seeding:
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Seeds in the first network (Central Japan - 798 municipalities)
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Cumulative adoption rate for the first subnetwork
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Network analysis: takeaway

Policymakers could accelerate WET adoption by targeting central connectors that link densely
populated areas.

· By focusing resources and generating incentives at these key nodes, they can enhance the
geographical diffusion of WET.

· In this particular case, the "Betweenness" approach (i.e., targeting municiplaities that are
in the shortests paths in the network between other municipalities) shows faster capacity
for geographical diffusion.
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Conclusions

Using novel panel data, we have shown how the exogenous shock of Fukushima incident of
2011 led to an increase in the adoption of wind farms.

This happened unevenly in space, with municipalities close to i) nuclear plants, and ii)
adopting neighbours, being more likely to transit to WET.

Using a network diffusion model, we have analysed this geographical spread of WET,
identifying policy interventions with the potential to foster the pace of adoption.
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Thank You!
Link or QR code to the working paper

https://tud.link/z8wypx

https://tud.link/z8wypx
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Sample without Tokyo’s wards

Table: Sample without Tokyo’s wards

Dependent Variable: log(wind_farms+1)
Model: (1) (2)

Variables
treatment 0.0106∗∗ 0.0115∗∗

(0.0050) (0.0050)

Fixed-effects
municipality Yes Yes
year Yes Yes
Controls Yes
Fit statistics
Observations 33,760 33,760
R2 0.90689 0.90739

Notes: Clustered (municipality) standard-
errors in parentheses. Signif. Codes: ***:
0.01, **: 0.05, *: 0.1. Estimates for the sam-
ple of all municipalities except the Tokyo’s 23
special wards.

Back to robustness checks



Subsample: distance to Fukushima Daiichi nuclear power plant

Dependent Variable: log(wind_farms+1)
Model: baseline 50 km 150 km 229 km
Variables
treatment 0.0119∗∗ 0.0107∗∗ 0.0120∗∗ 0.0146∗∗∗

(0.0050) (0.0049) (0.0051) (0.0056)

Fixed-effects
municipality Yes Yes Yes Yes
year Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Fit statistics
Observations 34,220 33,740 30,900 25,640
R2 0.90719 0.91292 0.91445 0.91029

Notes: Clustered (municipality) standard-errors in parentheses. Sig-
nif. Codes: ***: 0.01, **: 0.05, *: 0.1. Regression estimates for the
sample in which municipalities are at a distance larger than a given
threshold from the Fukushima Daiichi nuclear power plant. 229 km
represents the distance at which 25% of municipalities are removed
from the sample.

Back to robustness checks



Treatment assignment for distances <= 120

Dependent Variable: log(wind_farms+1)
Model: 30 km 60 km 90 km 120 km (baseline)

Variables
treatment 0.0653∗∗∗ 0.0267∗∗∗ 0.0189∗∗∗ 0.0119∗∗

(0.0202) (0.0082) (0.0051) (0.0050)

Fixed-effects
municipality Yes Yes Yes Yes
year Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Fit statistics
Observations 34,220 34,220 34,220 34,220
R2 0.90841 0.90762 0.90746 0.90719

Notes: Clustered (municipality) standard-errors in parentheses. Signif. Codes:
***: 0.01, **: 0.05, *: 0.1. Regression estimates for samples in which the
treatment varies according to the distance from any nuclear power plant.

Back to robustness checks



Treatment assignment for distances >= 120

Dependent Variable: log(wind_farms+1)
Model: 120 km (baseline) 150 km 180 km 210 km

Variables
treatment 0.0119∗∗ 0.0097 0.0152∗ 0.0144

(0.0050) (0.0074) (0.0078) (0.0093)

Fixed-effects
municipality Yes Yes Yes Yes
year Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Fit statistics
Observations 34,220 34,220 34,220 34,220
R2 0.90719 0.90711 0.90714 0.90712

Notes: Clustered (municipality) standard-errors in parentheses. Signif.
Codes: ***: 0.01, **: 0.05, *: 0.1. Regression estimates for samples in
which the treatment varies according to the distance from any nuclear power
plant. We control for ozone concentration, PM2.5 concentration, popula-
tion, the normalized difference vegetation index, and night-time lights.

Back to robustness checks



Permutation test

Note: this figure shows the distribution of the point estimates for the DiD treatment effect based on equation (1).
The treatment status is assigned randomly to 1263 municipalities based on 999 draws. The black line represents
our baseline estimate. Once the 1000 estimates, 999 from the draws and our baseline, are ranked, the baseline
estimate ranks 982 which may be interpreted as a p-value with a significance level below 5%.

Back to robustness checks



Event study plot - with controls

Back to robustness checks



Event study plot - with controls

Back to robustness checks



Alternative wind farm outcomes

Back to robustness checks
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Alternative wind farm outcomes

Back to robustness checks



The Model I

Set of agents N = {1, ..., n} in a network, represented through a graph G = (N,E ).

E is the set of edges connecting different agents, with no self-loops.

We say that an edge ij ∈ E connects i to j, and the network is undirected, thus ij = ji .

The set of neighbors of agent i ∈ N is defined as i ∈ N as Ni (G ) = {j | ij ∈ E}.

We assume that at iteration k = 0, a subset of individuals Ψ(0) ⊆ N is selected as seeds.

At the next iteration, an individual i ∈ N \Ψ(0) will consider adopting the innovation if at
least qi ∈ (0, 1] fraction of neighbors are in seed set:

|Ψ(0) ∩ Ni (G )|
|Ni (G )|

≥ qi ⇒ i ∈ Ψ(1). (1)



The Model II

For k ≥ 0 we generalize this as:

A node i ∈ N \
⋃k−1

t=0 Ψ(t) will consider adoption of a new technology at k if

|{
⋃k−1

t=0 Ψ(t)} ∩ Ni (G )|
|Ni (G )|

≥ qi ⇒ i ∈ Ψ(k). (2)

We define a subset H ⊆ N to be cohesive if

|H ∩ Ni (G )|
|Ni (G )|

> 1 − qi , ∀i ∈ H. (3)

A set of agents make a cohesive set if, for each member of the set, the proportion of neighbors
in the set is strictly greater than the individual specific threshold.
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An example

· Assume qi is 0.5 − ϵ for nodes 1, 2, and 0.5 + ϵ for
the rest, with 0 < ϵ ≪ 1.

· H = {{3, 4, 5, 6}, {4, 5, 6}, {1, 2, 3, 4, 5}} and more!

Case 1:

· Assume qi is 0.5 − ϵ for all nodes, with 0 < ϵ ≪ 1.
· If we strategically target nodes 3, 5, or 6, we can

obtain a complete diffusion.
· This shows the importance of targeting specific

nodes in the network.

Case 2:
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Equilibrium I

We say that for a given graph and threshold values, a nonempty set Ψ∗ will be a fixed point of
the threshold model if

Ψ(0) = Ψ∗ ⇒ Ψ(k) = ∅, ∀k > 0. (4)

Equation 4 says that a nonempty set is a fixed point if an innovation initiated at that particular
set can not propagate through the rest of the network.

We say that for a graph G with thresholds {qi}i∈N an adopter set Ψ∗ is a fixed point
⇔ (Ψ∗)c = N \Ψ∗ is a cohesive set.

Lemma 1 (Acemoglu et al. 2011):

For a given graph G and threshold values {qi}i∈N , an adopter set Ψ∗ is a fixed point ⇔
(Ψ∗)c = N \Ψ∗ is a cohesive set.
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Equilibrium II

This proof is based on Morris [Proposition 1]: Members of a cohesive set H cannot satisfy Eq.
(2) unless there exists an individual inside H who has previously adopted the innovation.

Therefore, if one initializes an innovation from a set Ψ∗ whose complement is a cohesive set,
the innovation will not be adopted by the members of the complement set.

In the previous examples, we observe several fixed points:

· Ψ∗ = {{1, 2}, {1, 2, 3}, {6}} for case 1.
· Ψ∗ = {{1, 2}, {4}, {1, 2, 4}} for case 2.

Additionally, the universal set {1, 2, 3, 4, 5, 6} is also a fixed point.

Eq



Equilibrium III

Lemma 2 (Acemoglu et al. 2011):

For a given graph G , threshold values {qi}i∈N and seed set Ψ(0), denote {Ψ∗
t }Kt=1, K ≥ 1 as

the set of fixed points for which Ψ(0) ⊆ Ψ∗
t holds. Then,

Ψ∗ =
K⋂
t=1

Ψ∗
t (5)

is the set of final adopters.



Equilibrium IV

Corollary 1:

Given a graph G , with threshold values {qi}i∈N and seed set Ψ(0), denote {Ht}Kt=1, K ≥ 1 as
the set of cohesive subsets of N for which Ψ(0) ∩Ht = ∅ holds. Then,

Ψ∗ =

(
K⋃
t=1

Ht

)c

(6)

is the set of final adopters.



Number of adoptions for the first subnetwork
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