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Abstract

Given the increasing threat of climate change, energy transitions from
traditional sources to greener and renewable ones has become a major
need and goal worldwide. However, energy transitions are costly and
usually slow. In this paper, we empirically study the adoption and
spatial spread of energy transitions from nuclear to wind triggered by
the Fukushima incident in Japan in 2011. We build a novel panel
dataset for 1741 municipalities combining detailed gridded data on
the location of wind farms and nuclear plants, merged with data on
lights, population, vegetation greenness, and pollution, from 2001 to
2020. Using panel-data econometric techniques (including difference-
in-differences and event study estimates), we explore the connection
between the proximity to nuclear power plants and the adoption of
Wind Energy Technology (WET). We then simulate through a net-
work diffusion model the possible speed and order in which municipal-
ities adopted WET after 2011. Finally, we perform a counterfactual
analysis by targeting key spreaders to alter the diffusion process, al-
lowing policymakers to propose policies to accelerate said diffusion in
optimal scenarios.
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1 Introduction

Given the increasing threat of climate change, energy transitions from tra-
ditional sources to greener and renewable ones have become a major global
need and goal. The need for more sustainable energy is recognized by the
Sustainable Development Goals 7, on affordable and clean energy, and 11, on
sustainable cities and communities. However, energy transitions are costly
and require time. While the capacity of renewable energy sources has in-
creased substantially in recent years, renewables still represent less than 30%
of all global electricity generation and only around 11% of global primary en-
ergy. Wind electricity generation, in particular, has shown one of the highest
increases among all renewable power technologies but represents only around
7% of electricity generation worldwide. At this pace of transition, we are
still far from meeting the goal of global Net Zero Emissions by 2050, with
only 3 of 50 components evaluated as fully on track (International Energy
Association, 2023).1 Furthermore, energy transitions are occurring at dif-
ferent speeds across world regions and sectors, with some countries showing
no progress and with important technological and economic obstacles to be
overcome. In this regard, a better understanding of the local pace and dif-
fusion in the adoption of renewable energy sources can be of great value to
improve policy design that fosters and accelerates needed energy transitions
worldwide.

This paper empirically studies the spatial spread of green energy tran-
sitions at the local level. We focus on Japan and explore nuclear-to-wind
energy transitions triggered by the Fukushima Nuclear Incident (FNI) in
2011. To do so, we build a novel dataset combining detailed gridded data on
the location of wind farms and nuclear plants, merged with data on lights,
population, vegetation greenness, and pollution. Our dataset includes 1742
municipalities with observations from 2001 to 2020. Using panel-data econo-
metric techniques, we explore the connection between the proximity to nu-
clear power plants and the spread of the adoption of Wind Energy Technology
(WET). We then model and simulate the diffusion of WET through a net-
work, taking into account how adoption coordination at the local (municipal)
level may impact at a higher level (i.e., regional or national). By explicitly

1Solar, electric vehicles, and lighting are the only components evaluated as on track. By
country, poorer regions of the globe are clearly lagging behind. See the full report on
https://www.iea.org/topics/tracking-clean-energy-progress.
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considering the network structure, we are able to identify nodes that may
hinder the diffusion process and thus inform policy design.

We look at post-Fukushima Japan for various reasons. First, because the
FNI works as a natural experiment, enabling us to identify the causal effects
of phasing out nuclear technology on WET diffusion. Second, due to the
relevance of the Japanese case, where different energy sources, including fossil
fuels, nuclear, and renewables, have been extensively adopted with leading
global technologies. Finally, due to the availability of rich, fine-grained geo-
located data of WET adoption along with other factors for Japan for over
20 years.

We argue that proximity matters in the adoption and diffusion of greener
technologies. In this line, first we find that, on average, municipalities closer
to a nuclear power plant adopted wind technology at a higher rate than those
further away. Second, we show that diffusion also depends on proximity to
other municipalities that have adopted wind technology.

Our paper relates to several strands in the literature. First, we relate to
the increasing literature on energy transitions, especially to those papers an-
alyzing local adoption of greener technologies (Hall and Helmers, 2013; Popp
et al., 2011; Rode and Weber, 2016). Second, we relate to the literature
studying network diffusion of new technologies (Acemoglu et al., 2011; Bea-
man et al., 2021), especially in the energy sector (Halleck-Vega et al., 2018).
Finally, we relate to papers studying the energy consequences of exogenous
shocks, in particular, the Fukushima event in Japan in 2011 (Okubo et al.,
2020; Rehdanz et al., 2017; Kawashima and Takeda, 2012).

We contribute to the literature through diverse avenues. First, by empir-
ically analyzing a specific energy transition (nuclear to wind), exploiting rich
fine-grained data in Japan, and benefiting from the natural experiment that
the Fukushima incident provided. Differently from other papers analyzing
this incident, we employ causal inference methods to study the effect of this
incident on the adoption of wind energy technology. Second, we benefit from
our detailed data by integrating two complementary methodologies, namely
Difference-in-Differences (Diff-in-Diff) and network analysis. This allows us
to first capture the effect of an exogenous shock (i.e., the FNI) on the adop-
tion of wind energy to then study the subsequent diffusion mechanism. Fi-
nally, by better understanding the structure of progressive adoption of newer
technologies, we provide insights that might improve policy design in the al-
location of resources to foster the diffusion of these technologies. Therefore,
we speak to the local and global policy agenda on carbon neutrality.2

2For instance, according to the Ministry of Economy, Trade and Industry of Japan (METI):
“In October 2020, Japan declared that it aims to achieve carbon neutrality by 2050.
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The rest of the paper is structured as follows. In Section 2, we review the
literature. In Section 3, we provide some insights about the Japanese con-
text, describe our data, and derive stylized facts. In Section 4, we perform
regression analysis to estimate the causal impact of the FNI on WET adop-
tion. In Section 5, we implement a network model to explain the diffusion of
WET in Japan. Finally, section 6 concludes and derives policy implications.

2 The spatial diffusion of energy transitions:

conceptual framework and literature review

□ Energy transitions: pace and determinants
One key dimension of climate change mitigation is that of energy transition.
In this regard, there is an increasing branch of the literature focusing on
the pace and determinants of energy transitions (see for instance Hall and
Helmers (2013); Popp et al. (2011); Rode and Weber (2016); Halleck-Vega
et al. (2018)). While some papers have taken a country-level perspective,
others have delved into subnational dynamics, analyzing energy transitions
at a more local level (see for instance Blanchet (2015), for Berlin; Bayulgen
(2020), for the US; Oudes and Stremke (2018), for Italy; Balta-Ozkan et al.
(2021), for the UK). This literature has highlighted the relevance of several
contextual factors, including civil preferences and demands, as well as policy
designs to foster the spread of greener energy sources.

Regarding the type of energy transition, earlier studies tended to focus on
solar energy. But, in contrast to solar, wind energy is not on track to meet
the Net Zero Emissions target by 2050; productivity has to rise, costs have
to go down, and the average annual generation growth rate needs to increase
to about 17% (International Energy Association, 2023). Some studies have
focused on the deployment of wind sources at the local level (see for instance,
Frantál and Nováková (2019), for the Czech Republic; Kiunke et al. (2022),
for Germany).

Most of the studies mentioned above have implicitly analyzed energy
transitions by analyzing the deployment of renewable sources but have not
explicitly looked at actual transitions from one energy source to another (i.e.,
fossil to nuclear, fossil to renewables, nuclear to renewables, including solar
and/or wind). And few papers have actually focused on nuclear-to-wind

Carbon neutrality by 2050 cannot be realized through ordinary efforts. It is necessary
to significantly accelerate efforts toward structural changes in the energy and indus-
trial sectors and undertake bold investment for innovation.” https://www.meti.go.jp/

english/policy/energy_environment/global_warming/ggs2050/ (Accessed Septem-
ber 20, 2023).
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transitions (Hong et al. (2018), for Sweden; Cherp et al. (2017), comparing
Germany and Japan).

Finally, a fundamental aspect of energy transition is not only the adop-
tion of greener technologies but also their diffusion in space. Agglomeration
economies due to proximity have for long been shown to be fundamental
in the diffusion of new technologies and ideas; labor market pooling, input
sharing, and knowledge spillovers have been identified as three main sources
of these external economies of scale (Rosenthal and Strange, 2004). In this
regard, recent papers in regional science have put the focus on the spatial
process of energy transitions, where spatial distances and proximities play a
pivotal rol. As highlighted by (Caragliu and Graziano, 2022), the complex-
ity of scattered local energy initiatives cannot ignore the subtle and intricate
network of commonalities that may on the one hand enhance cooperative
behavior and the successful adoption of energy efficient technologies, while,
on the other hand, cause the failure of technologically superior options.

□ Networks in the spatial diffusion of green technologies
One way to study the spatial diffusion of energy transitions, especially at
local levels, is by analyzing the role of networks. Networks allow us to model
the structure of relations or interactions through which certain behaviors
spread. In this regard, we can study diffusion processes by modeling how
agents, through their interplay and decisions, propagate a particular action
in a network (e.g., green energy usage). In our case, this allows us to learn
how local interconnections and coordination among municipalities can create
agglomeration effects and thus have a more global impact on the adoption
and spread of renewable energies.

The classical work of Morris (2000) formalizes how, through a network,
two alternative actions can be played in equilibrium. Our model builds upon
some of Morris’s definitions and expands on them to analyze other ques-
tions. Other authors, such as Acemoglu et al. (2011), study the adoption of
technologies using a similar model. In our case, we do so, too, but consider-
ing weights on the network’s links to capture spatial influence from players’
proximity to each other. Cabrales et al. (2011) present a model that simul-
taneously explores network formation and productive efforts. Paired agents
create spillovers, which are multiplicative in both agents’ efforts. This differs
from our study since we do not consider paired players resulting from a net-
work formation process as a condition for diffusion to take place. Instead,
we work with a fixed network where diffusion occurs from the coordination
of actions due to the incentives that agents derive from neighboring agents’
actions.

A related but different strand of the literature studies how such diffusion
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may be altered/maximized through the proper “targeting” of influential or
important nodes, given their relative position in the network. Works such
as Kempe et al. (2003), Banerjee et al. (2013), Tsakas (2017), Galeotti et al.
(2020), Beaman et al. (2021), Alexander et al. (2022), and Jackson and
Storms (2023) study this issue and propose various alternatives for targeting
such agents. In this work, we employ a different targeting method, and focus
on nodes that may prevent the spread of a technology. Galeotti and Rogers
(2013) investigate the dynamics of a harmful state in a population split in
two. Their study derives conditions under which a planner can suppress this
state contingent on the level of group interaction. In contrast, we consider
a unified population and seek ways a planner can propagate green energy
adoption within it.

□ Evidence of energy transitions in Japan
Japan is a good case study to analyze energy transitions. As mentioned
already, Japan is a leading country in terms of energy technologies, where
several energy sources, from fossil-fuel-based to nuclear to renewables, have
been extensively deployed. Thus, several papers have empirically analyzed
the Japanese case (Fraser, 2019). Some studies have already analyzed the
impact of the FNI on Japan’s energy markets and energy transition (Okubo
et al., 2020; Rehdanz et al., 2017; Kawashima and Takeda, 2012). Some of
these studies consider the role of spatial factors, such as the distance to the
Fukushima nuclear power plant and other plants has also been taken into
account. For instance, Okubo et al. (2020) report that individuals living up
to 30 km from a Nuclear power plant run by Tokyo Electric Power Company
(TEPCO ) have a higher preference for renewables in the energy mix. Ad-
ditionally, Rehdanz et al. (2017) report that the willingness to pay (WTP)
for renewables increases with the proximity to Fukushima, while for the nu-
clear share, the WTP decreases for municipalities close to Fukushima. Close
to what we do, Mochizuki and Chang (2017) have empirically shown how
the Fukushima nuclear accident was an opportunity for the diffusion of solar
energy across Japanese communities.

However, compared to previous studies, we empirically analyze the inten-
sity and geographical extent of energy transitions given the exogenous shock
of the FNI. We also study why some municipalities transit and others do not.
And by doing so, relying on network analysis, we provide insights on how to
better design policy interventions that optimize and accelerate the adoption
and diffusion of renewable energy sources.
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3 Energy production and transition in Japan:

context and data

In Japan, coal and oil have been used to produce over 65% of its energy needs
for over 30 years. Although there had been a decreasing trend in the usage
of fossil fuels, this was reversed after the 2011 Fukushima Nuclear Incident
(FNI). Before the incident, the government projected that about 40% of the
energy mix would come from nuclear sources by 2030. Nevertheless, as of
2020, projections stand at about 20% and thus show a 20% decline in pre-
disaster planning (Hughes, 2021).

In terms of renewable energy, there has been a recent rise in its share
in Japan’s electricity mix. Such a rise has been mainly dominated by the
installation of solar photovoltaic (PV) units. The deployment of solar PVs
at higher rates than other renewable energy sources may be explained by
technical and nontechnical components (Hughes, 2021), and is in line with
a lower global adoption of wind vs solar. In Japan, technical components
are related to the high capital and maintenance costs associated with WET
deployment in a country with such a mountainous geography. Non-technical
reasons can be associated with the lobbying power of the PV industry, as
suggested by Li et al. (2019). Despite the growth of the installed capacity
of renewables, fossil fuels continue to have the largest importance in energy
generation. In fact, from 2010 to 2015, the share of electricity generated from
thermal coal increased from 21 to 31 percent (Hughes, 2021).

To explore the effect of the FNI on the expansion of adoption of wind
farms, we build a detailed panel dataset combining gridded data on night-
time lights, population, normalized difference vegetation index, and pollu-
tion, matched with the location of nuclear plants and wind farms. Our
dataset includes information for 1742 Japanese municipalities from 2001 to
2020.

For energy production data, we rely on the “Wind Power” database for
Japan3. This dataset contains information on the geolocation of wind farms.
It also includes other information, such as the year the wind farms were
commissioned and the number of turbines in each farm. Using this data, we
calculate the number of wind farms per municipality from 2001 to 2020. For
nuclear, we rely on the Global Power Plant Database (2018). This database
includes the geolocation (longitude-latitude) of each plant. Appendix A pro-
vides more information on the construction of energy variables.

We match our data on wind farms and nuclear plants with other data
aggregated at the municipal level. For air pollution, we obtain data for

3Data available from http://www.thewindpower.net/ .
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ozone concentration and PM2.5 concentration. This data comes from Brauer
et al. (2016) and was obtained via GeoQuery (Goodman et al., 2019). For
population, we rely on GHS population grid multitemporal estimates, and
for green cover, we use the normalized difference vegetation index, both from
GeoQuery (Goodman et al., 2019). We also use data on night-time lights
from Li et al. (2020). This dataset provides a harmonization between the
DSMP and VIIRS time series, allowing us to have data from 1992 to 2020.

Table A1 in the Appendix provides definitions and sources from the differ-
ent variables considered, while Tables A2 and A3 provide descriptive statis-
tics for our main variables of interest. In the rest of this section, we highlight
stylized facts for our key variables.

3.1 Wind energy production and diffusion

Figure 1 shows a map with the location of all wind farms in the database
for which both commission year and geolocation are available. The figure
shows that wind farms are mostly located in coastal areas and in the four
largest islands of Hokkaido, Honshu, Shikoku, and Kyushu. Coastal areas
seem the most appropriate for the development of onshore wind farms, given
the mountainous geography of the largest islands. Figure 2 provides a barplot
showing the evolution in the total number of wind farms over time. This plot
shows how the adoption of wind farm technology followed a rapid growth up
to the year 2000, slowing down afterward until the early 2010s and then rising
again rapidly.

Figure 1: Location of wind farms and commission years

Note: Maps were created using data from the “Wind Power” database for Japan. Only
wind farms for which geolocation and commissioned years are available are considered.
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Figure 2: Evolution in the number of wind farms

Note: The figure was created with data from the “Wind Power” database for Japan. Only
wind farms for which geolocation and commissioned years are available are considered.

3.2 Nuclear power plants

Figure 3 shows the location of the sixteen nuclear power plants located in
Japan. As we are interested in spatial patterns of substitution of energy
sources, the figure also shows buffers of a 100 km radius surrounding all
plants. In Appendix A, we show the timeline of oppening and closure of all
these 16 nuclear plants.
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Figure 3: Location of nuclear plants in Japan

Note: Location of 16 Japanese nuclear power plants. Geolocation data was taken from the
Global Power Plant Database. The circles represent 100 km radius buffers surrounding
each nuclear power plant.

4 The post-Fukushima adoption of wind en-

ergy: a Difference-in-Differences approach

In this section, we use our panel data set to explore the connection between
the proximity to nuclear power plants and the spread of adoption of Wind
Energy Technology (WET). We do this relying on econometric analysis and
benefiting from the exogenous shock that the Fukushima incident in 2011
represented. Figure A1 presents a timeline of the operation of nuclear power
reactors in Japan. It is shown that the shock affected all 16 power plants,
and all reactors were shut down after the incident, with the last reactor being
shut in may 2012.

4.1 Did Fukushima increase the adoption of greener
energy sources?

We begin by assessing to what extent the 2011 Fukushima incident trans-
lated into an increase in the adoption of green technologies (namely wind) in
areas surrounding nuclear power plants. To do so, we rely on Difference-in-
Differences (Diff-in-Diff) approach, as specified in equation 1:

log(WF )rt = βTrt + δXrt + γt + θr + εrt, (1)
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where (WF )rt is the number of wind farms in municipality r at time t,
and Trt is our treatment dummy, which takes a value of 1 if municipality r
is at a distance below a given threshold (i.e., 60, 90 or 120 km) from any
nuclear reactor for all years after 2011 (the year of the Fukushima incident).
Xrt is a vector of controls. γt are time-specific fixed effects, while θt are
municipality-specific fixed effects. As we include unit-specific fixed effects,
our panel-data specification exploits the within-municipality evolution over
time, controlling for time-specific fixed effects.

Our identification of β rests on the natural experiment that the Fukushima
accident represented. The assumption is that after the Fukushima incident,
municipalities closer to nuclear power plants had higher incentives for energy
transition away from nuclear sources. Public confidence in nuclear energy
generation plummeted after the Fukushima incident, and the authorities re-
sponded by shutting down most of the country’s 50 operational power re-
actors. We also expect that as reactors have slowly resumed operation, the
effect that we measure may also show a decreasing trend. In any case, our
ability to identify a causal effect depends on whether the parallel trends
assumption holds for the trend of wind farm development in treated and
non-treated municipalities. We argue that such an assumption holds as we
conduct event study analysis and compare pre-treatment trends for treat-
ment and control groups.

Table 1 presents the results of the Diff-in-Diff specification based on Equa-
tion 1. Column (1) shows the estimates for a model in which only the treat-
ment dummy is considered and controlling for municipality-fixed effects. The
coefficient estimate suggests that treated municipalities have, on average, a
2% higher number of wind farms. To control for yearly shocks that affect
all municipalities, time-fixed effects are included in column (2). The point
estimate in (2) with the full set of two-way fixed effects is halved from the
value in (1) to 1%. Lastly, in column (3) we include a several controls,
yieling a point estimate that remains statistically significant with a value of
approximately 1.2%.

In Appendix B we present a set of robustness checks for the differennce-
in-differences regression estimates. We first show that the point estimate
remains statistically significant at around 1.2% even excluding the 23 special
wards in Tokyo (Table B1). Second, the coefficient also holds when we remove
municipalities that are closer than three cut-off distances from the Fukushima
Daichii nuclear power plant: 50, 150, and 229 km, which removes 25% of all
municipalities (Table B2). This shows that the effect is not only driven by the
municipalities close to the Fukushima Daichii nuclear power plant. Third,
we estimate our model for samples in which the treatment assignment varies
for radii from 30 to 210 km (Tables B3 and B4). It is of particular interest
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Table 1: Regression estimates of the Difference-in-Differences model

Dependent Variable: log(wind farms+1)
Model: (1) (2) (3)

Variables
treatment 0.0214∗∗∗ 0.0104∗∗ 0.0119∗∗

(0.0031) (0.0049) (0.0050)

Fixed-effects
municipality Yes Yes Yes
year Yes Yes
Controls Yes

Fit statistics
R2 0.90594 0.90673 0.90719

Notes: Clustered (municipality) standard-errors in paren-
theses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. this ta-
ble reports the regressions estimates based on Equation (1).
When specified in the model, we control for ozone concen-
tration, PM2.5 concentration, population, the normalized
difference vegetation index, and night-time lights.

that the point estimates for treatment assignments increase as the threshold
distances decrease, as shown in Table B3. For instance, for a threshold
of 30 km the treatment coefficient is about 6.5%, which represents a five-
fold increase from the baseline estimate of 1.2% for 120 km, suggesting the
relevance of proximity to nuclear reactors in the adoption of wind energy post-
Fukushima incident. Finally, we also show that after running a permutation
test our baseline estimate of 0.0119 remains significant at a 5% confidence
level (Figure B1).

4.2 Heterogeneity Analysis

As explained before, we assign treatment to municipalities based on the dis-
tance to any nuclear power plant. In this subsection, we present heterogeneity
results in which we include an interaction term in Equation 1. Results are
presented in Table 2. We further consider an additional outcome variable,
total power, measuring the power generated in kW using wind turbines. As
shown in column (1), treated units have, on average, 11 percent higher gen-
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erated power. Including the interaction term with the minimum distance
increases considerably the point estimate for the treatment variable. The
coefficients sugget that for municipalities where a nuclear power plant was lo-
cated (min=0km), we see 47% higher wind-power generation post-Fukushima
(see column 2). As the distance to any nuclear plant increases by one kilo-
meter, the power generated by wind farms post Fukushima is 0.5 percentage
points lower. Similar results, although at a different scale, are also shown in
columns (3) and (4) when using the number of wind farms as the outcome
variable. These results in Table 2 reinforce the idea that municipalities in
the vicinity of nuclear reactors had, on average, a higher post-Fukushima
adoption of WET.

Table 2: Distance heterogeneity estimates

Dependent Variables: log(total power+1) log(wind farms+1)
Model: (1) (2) (3) (4)

Variables
treatment 0.1089∗∗ 0.4702∗∗∗ 0.0119∗∗ 0.0513∗∗∗

(0.0543) (0.1293) (0.0050) (0.0138)
treatment × min -0.0049∗∗∗ -0.0005∗∗∗

(0.0014) (0.0002)

Fixed-effects
unit Yes Yes Yes Yes
year Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Fit statistics
Observations 34,220 34,220 34,220 34,220
R2 0.84844 0.84946 0.90719 0.90805

Notes: Clustered (municipality) standard-errors in parentheses. Signif.
Codes: ***: 0.01, **: 0.05, *: 0.1. this table reports the regressions
estimates based on Equation (1). When specified in the model, we control
for ozone concentration, PM2.5 concentration, population, the normalized
difference vegetation index, and night-time lights. The variable min is the
minimum distance to a nuclear power plant.
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4.3 Event study

The Difference-in-Difference estimation provides the average treatment effect.
Nevertheless, it is possible that the effect becomes less or more pronounced
over time, or that it takes some time for the effect to kick in. For these
reasons, we perform a simple event study to capture dynamic treatment
effects. This is done using the model in Equation 2:

log(WF )rt =
−2∑

τ=−q

γτD
τ
rt +

m∑
τ=0

δτD
τ
rt + δXrt + γt + θr + ϵrt (2)

Where γτ are the coefficients for the years before treatment, also known
as leads, and δτ are the after-treatment coefficients, also known as lags. The
coefficient for one year before treatment is omitted, which makes it the ref-
erence year. Xrt is a vector of controls, γt are time-specific fixed effects, and
θr are municipality-specific fixed effects.

The estimates of the coefficients for the leads and lags for municipalities
treated in a radius of 120 km are shown in Figure 4. Figures B2 and B3
in the Appendix show the estimates for treatment groups defined by 90 and
150 km radius around all nuclear power plants. All the pre-treatment coeffi-
cients shown in Figure 2 are not statistically different from zero, suggesting
that control and treatment groups exhibit parallel trends before the FNI.
In contrast, during the treatment period, municipalities in the vicinity of
nuclear reactors had, on average, a higher number of wind farms for most
post-treatment years; point estimates are close to the 1% reported using the
diff-in-diff estimator. Nevertheless, the coefficient estimates for 9 and 10
years after the FNI are not statistically different from zero at conventional
significance levels. The insignificant levels for later years suggest that, as nu-
clear reactors have been reactivated, municipalities in proximity to nuclear
plants have not developed more wind farms compared to control municipal-
ities. This change in later years may also reflect that not only incentives to
build turbines have spread through the country in line with national-level
policies aimed at reaching carbon neutrality but also that larger investments
may be flowing to offshore turbines in line with the underlying higher capac-
ity in offshore areas in Japan.

In addition to our baseline event-study results for the number of wind
farms, we also show robustness to the selection of alternative measures of
WET adoption. In Figure B4, the outcome variable is a dummy variable that
takes the value of one if the technology is present in a given municipality,
while Figure B5 shows the estimates when total generated wind power is
used as outcome variables. Lastly, Figure B6 considers as outcome variable
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the number of wind turbines.
As an extra robustness check we also provide an event study estimation

of a staggered treatment design in Figure B7. For this design, the time of
treatment is not necessarily the year of Fukushima nuclear accident (2011),
but the year in which for a given treated municipality the last reactor of the
closest nuclear power plant was temporarily shut down. In most cases, such
year continues to be 2011 but for the municipalities closer to name the plants
and years the year is 2012.

Figure 4: Event study estimates

Note: this figure shows the point estimates for the leads and lags based on equation
(2). The treatment status is based on the distance from the centroid of a municipality
to the closest nuclear power plant. Municipalities at distances lower than 120 km are
assigned to the treatment group. We control for ozone concentration, PM2.5 concentration,
population, the normalized difference vegetation index, and night-time lights.

4.4 WET adoption: the role of neighbors

So far we have shown that municipalities near nuclear reactors had, on av-
erage, a higher post-Fukushima adoption of WET. But not only the vicinity
to closing nuclear plants could trigger WET adoption. As discussed in Sec-
tion 2, spatial distances and proximity in adoption play a crucial role in the
diffusion of greener technologies. In this regard, it is expected that adoption
of WET will be higher when nearby municipalities also adopt WET. We test
this in Table 3. First, we find that having WET in a neighbouring munici-
pality (i.e., in a radius below 20 or 30km) significantly increases the number
of wind farms. Second, we find that it is indeed the interaction between
being close to a (closing) nuclear plant and having a neighbouring munic-
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ipality with WET which significantly increases the number of wind farms
post-Fukushima at the municipality level.

Table 3: Regression estimates including neighbor effect

Dep Variable: log(wind farms+1)
Model: (1) (2) (3) (4) (5) (6)

Variables
treat 0.0125∗∗ 0.0107∗∗ 0.0124∗∗ 0.0072 0.0119∗∗ 0.0015

(0.0050) (0.0051) (0.0051) (0.0052) (0.0050) (0.0051)
n 20km 0.0278∗∗ 0.0245∗∗

(0.0116) (0.0110)
treat × n 20km 0.0079

(0.0072)
n 30km 0.0225∗∗ 0.0181∗

(0.0093) (0.0093)
treat × n 30km 0.0123∗∗

(0.0062)
n 40km -0.0014 -0.0064

(0.0060) (0.0065)
treat × n 40km 0.0174∗∗∗

(0.0058)

Fixed-effects
asdf id Yes Yes Yes Yes Yes Yes
year Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 34,220 34,220 34,220 34,220 34,220 34,220
R2 0.90742 0.90745 0.90742 0.90753 0.90719 0.90742

Notes: Clustered (municipality) standard-errors in parentheses. Signif. Codes: ***:
0.01, **: 0.05, *: 0.1. Regression estimates including a neighbor dummy and inter-
action. n 10km dummy is one if any neighbor at a distance lower or equal to 10km
has adopted the technology, other variables defined in a similar manner. We control for
ozone concentration, PM2.5 concentration, population, the normalized difference vege-
tation index, and night-time lights.

All our results so far point towards the relevance of proximity in the
diffusion of WET. Higher adoption seems to depend on the location of phas-
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ing technologies (i.e., nuclear) as well as on neighbours also adopting WET.
Clearly, the increase and spread of wind farms is not random in space. In
the next section we rely on network analysis to study the spatial patterns of
WET adoption.

5 Network diffusion of wind energy adoption

in Japan

5.1 Network inference

To model the diffusion of adoptions of energy generation technologies within
the network where municipalities are interconnected, we first need to estab-
lish its structure. Since we lack prior knowledge of the network topology,
we use the following approach to infer it. First, we define a radius of 120
kilometers from a given nuclear power plant. Any municipality within this
distance is considered connected to the respective power plant. If two or more
municipalities are connected to the same power plant, they are also linked to
one another in the network. We show these connections in the first graph of
Figure 5, where power plants are depicted as red nodes and municipalities as
black nodes.4 Similarly, if a municipality is positioned within 120 kilometers
of two or more power plants, it is connected to all of them.

Subsequently, we remove the red nodes from the network, which represent
the nuclear power plants, since the diffusion occurs only through municipal-
ities. The remaining graph then becomes the central focus of our analysis.
This approach allows us to account for the shutdown of nuclear power plants
and concentrate exclusively on the underlying network of interactions be-
tween municipalities, which is critical for our simulations.

4The links do not necessarily represent functional or operational connections between
municipalities and power plants, but rather the spatial proximity or influence of the
power plant on the nearby municipalities in a geographical context.
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Figure 5: Inference of the Network

In Appendix C, we detail the network model we use to study the diffusion
process of energy adoption. Intuitively, the model describes the technology
diffusion process within a network, represented as a graph, where nodes sym-
bolize municipalities connected by weighted links indicating distance. The
diffusion starts with a subset of nodes serving as seeds, representing the
initial adopters (e.g., the municipalities with wind turbines in the initial pe-
riod). In subsequent iterations, each node has a 50% probability of adopting
the technology based on a threshold related to the proportion of adopting
neighbors in the seed set. This decision-making process reflects the influence
of interconnected agents and their likelihood to adopt based on neighbor
behavior. Equilibrium is achieved when the initial seed set fails to propa-
gate the innovation further through the network. Another potential obstacle
to diffusion arises when non-adopting agents are interconnected in a way
that hinders spread, characterized by a weighted proportion of neighbors ex-
ceeding a threshold, depicting a collective resistance to technology adoption,
particularly in cohesive groups.

Moreover, the diffusion dynamics are tied to coordinated efforts among
municipal governments at the local level, yielding a global impact. This phe-
nomenon is linked to the network’s defining factor – geographical proximity
to nuclear power plants. The presence of these plants potentially contributes
to the clustering of economic and social activities in their vicinity, driven by
factors like job opportunities and infrastructure associated with the presence
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of power plants. This clustering effect underscores the global repercussions of
localized decisions within the network, highlighting the interconnected nature
of technology diffusion and its broader socioeconomic implications.

5.2 Results

Relying on the definition to infer networks from subsection 5.1, we obtain
three subnetworks: the first with 798 municipalities, the second with 109,
and the third with 259. The first subnetwork contains mostly municipalities
from central Japan (Honshu), the second from the north (Hokkaido), and
the third from the south (Kyushu). The network structure is influenced by
the geographic positions of nuclear power plants within these islands. Due to
the significant distances between islands, often separated by large bodies of
water, diffusion of influence through local interaction is highly unlikely. All
this, coupled with the fact that power plants are located at distances above
120 km from others in different islands, results in subnetworks that do not
have connections between them.

Consequently, we focus our analysis on the first subnetwork, which is
not only the largest and most representative but also contains the majority
of municipalities. Moreover, the first subnetwork presents a more complex
and interconnected structure, making it ideal for studying diffusion processes.
Additionally, we remove the red nodes representing the nuclear power plants,
as diffusion occurs exclusively through municipalities.

To run the simulations, we need to obtain threshold values, q, where
higher values imply a more stringent condition for diffusion. We find a high
enough q such that if we add ϵ > 0 to it, no diffusion occurs (i.e., the
maximum value at which diffusion still happens, with any slight increase
preventing further diffusion). We then multiply this q by 0.25, 0.5, and 0.75
to obtain three additional thresholds, resulting in four thresholds in total:
Thresholds 1, 2, 3, and 4. These values allow us to assess the speed and
extent of diffusion at different stringency levels.

Additionally, we may ask how to maximize the spread of an event of inter-
est (in our case, the adoption of green technologies). To achieve this, different
methods of ”targeting” have been proposed. Some of the most common ones
involve allocating the initial seeds based on various centrality measures such
as closeness, betweenness, and eigenvector centrality. By using these cen-
trality measures, the central planner can identify the best positions in the
network to maximize diffusion. This is illustrated in Figure C1 in Appendix
C, where we see the connection between initial seeds in an “optimal” alloca-
tion. Given the network structure, we redistribute the same number of seeds
to positions that enhance their potential to diffuse the technology effectively.
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We proceed to run simulations using the criteria for thresholds mentioned
above. Also, we run these simulations using the original seeds (i.e., the munic-
ipalities that first adopted the technologies in the real world) and alternative
ones given by seeds allocated through different centrality measures.5 Figure
6 below presents the results after 100 runs. The “normal” seeds correspond
to the original adopters in these graphs. We can see that as we move from
the first threshold to the third one, the runs take, on average, more time to
end. Further, each curve shifts to the right and fluctuates more. With the
first threshold, the number of adoptions peaks almost at the beginning, but
higher values of q delay (and even reduce) the number of adoptions at each
simulation step. Finally, in the fourth threshold, each curve declines almost
immediately due to the stringency of the conditions for diffusion.

Figure 6: Number of Adopters for Each Threshold

In Figure 7, we observe the cumulative mean adoption of the technologies
for the first component. For the lowest values of q (threshold 1), regardless of
the seeding type, we reach approximately 50% technology adoption (although
at different speeds/number of steps). This outcome is due to the stochastic
nature of the adoption process, with each node considering whether to adopt

5The idea of using these other seeds is to analyze alternative “if” or “counterfactual”
scenarios to the real one.
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the technology being modeled as a Bernoulli trial with a 50% probability.
Running the simulations 100 times results in convergence to this percentage.
When we increase the value of q to that of threshold 2, we see that the
normal and betweenness seedings are the only ones that, once again, reach
approximately 50% of adoption. The other seeding strategies do not cross
the 30% of adoption.

When we raise q up to threshold 3, the normal seeding strategy performs
decisively worse than before. Instead, the betweenness seeding strategy con-
tinues performing better than the others. Meanwhile, the eigenvector one
proves to be resilient, attaining a similar percentage of adoption as in the
previous threshold. Lastly, for the maximum value that q can attain before
no more diffusion occurs (threshold 4), all seeding strategies take a big hit.
Betweenness still remains the decidedly better seeding strategy, while normal
performs the worst. Meanwhile eigenvector and closeness attain between a 5
and 7% of adoption.

Figure 7: Cumulative Mean Adoptions of Technology

Why does the betweenness seeding strategy, on average, outperform oth-
ers? This can be attributed to the network structure, particularly in munic-
ipalities located between two or more nuclear power stations. These munic-
ipalities act as “gatekeepers” in the diffusion process—nodes that connect
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or lie between tightly knit groups on either side. As illustrated by the two
central nodes in each graph depicted in Figure C1 in the Appendix, com-
munication between different parts of the network must pass through these
central nodes, which can complicate diffusion if these municipalities disrupt
the propagation of technologies. Betweenness centrality accounts for this
dynamic, leading to better performance.

Figure C2 illustrates the positioning of seeds in both the normal and
betweenness cases. In the normal case, seeds are spread out, which can
hinder diffusion by failing to meet threshold values, potentially slowing or
halting the process. In contrast, the betweenness strategy places seeds more
strategically, concentrating them in key areas. This concentration helps to
“push over” threshold values, allowing higher levels of propagation to be
achieved.

Based on this analysis, policymakers can accelerate WET adoption in
different regions or parts of a country represented by networks by targeting
central connectors that link densely populated areas. By focusing resources
and generating incentives at these key nodes, they can enhance the diffusion
of WET, facilitate quicker adoption, and overcome potential barriers that
might otherwise impede progress. This approach leverages the network’s
structure to ensure that WET adoption policies are effective and that WET
spreads efficiently throughout the regions or parts of the country in question.

6 Conclusions and policy implications

In this paper, we have empirically explored the adoption and spatial diffusion
of wind energy. To do so, we have focused on Japan, building a dataset
combining detailed gridded data on the location of wind farms and nuclear
plants, merged with data on lights, population, vegetation greenness, and
pollution, all aggregated for more than 1711 municipalities. Using panel-
data econometric techniques, we have shown how the exogenous shock that
the Fukushima incident of 2011 represented led to an increase in the adoption
of wind farms, especially in municipalities close to nuclear plants.

Through simulations using a network diffusion model, we have demon-
strated how coordination in adopting green technologies among municipali-
ties can impact the national level. These simulations revealed various paths
and timelines for adoption within the network. Utilizing betweenness central-
ity as a targeting strategy enables faster and broader diffusion compared to
other methods, as it identifies potential gatekeepers—municipalities strate-
gically positioned in the network that may hinder diffusion. This approach
provides policymakers with a valuable tool to maximize green technology
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adoption while minimizing costs.
Overall, our findings highlight the role of proximity and networks. Poli-

cymakers can achieve desired outcomes more efficiently by targeting specific
municipalities based on their relative position in the network. In our case,
this translates into better and faster adoption of greener technologies such
as WET.

Finally, given the increasing threat of climate change and the global need
for mitigation, a better understand on how to foster and accelerate energy
transitions is needed. We have provided some insights from nuclear-to-wind
transitions in Japan. Further research on other transitions in different con-
texts could be of great value.
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A Data overview

Table A1: Variables and data sources

Variable Available Years Data Type Source

Ozone concentration 1995, 2000,05,10-13 average Goodman et al. (2019)
PM2.5 Concentration 1990,95, 2000,05,10-12 average Goodman et al. (2019)
Population GHSL 1990, 2000,15 count Goodman et al. (2019)

NDVI 1990-2020 average Goodman et al. (2019)
Lights 1992-2020 count Li et al. (2020)

Wind farms 1985-2022 count Wind Power database (2022)

Table A2: Summary statistics for the years 2001,2011 and 2020

2001 2011 2020

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

wind farms 0.061 0.36 0.11 0.54 0.14 0.6
ozone 58 3.1 59 3.7 60 3.9
pm2.5 15 4.8 14 3.7 14 4
pop 72401 178056 72731 182222 72864 183986
lights pc 0.21 0.36 0.18 0.29 0.18 0.29
ndvi mean 5351 1425 5232 1410 4407 1256
log lights 8 1.1 7.9 1.1 7.7 1.1

We construct a balanced panel for 1992-2020 with data collected from the
sources shown in Table A1. Missing data are replaced with linear interpola-
tion estimates. The data used for the table are only for years 2001 to 2020.
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Figure A1: Japan’s nuclear power reactors Timeline

Note: figure taken from Nuclear power in Japan (2023)
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Table A3: Summary statistics for the DiD panel

Unique (#) Mean SD Min Median Max

asdf id 1711 868 503 0 869 1741
year 20 2010 5.8 2001 2010 2020
wind farms 8 0.1 0.51 0 0 7
ozone 21862 59 3.6 44 60 65
pm2.5 21948 14 4.1 5.2 14 37
pop 25665 72690 181684 22 25641 3665297
lights pc 33961 0.2 0.33 0 0.1 8.2
ndvi mean 34200 5237 1406 122 5605 7661
log lights 10955 7.9 1.1 0 7.9 11

We construct a balanced panel for 1992-2020 with data collected from the
sources shown in Table A1. Missing data are replaced with linear interpolation
estimates. The data used for the table are only for years 2001 to 2020.
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B Additional results to Section 4

Table B1: Sample without Tokyo’s wards

Dependent Variable: log(wind farms+1)
Model: (1) (2)

Variables
treatment 0.0106∗∗ 0.0115∗∗

(0.0050) (0.0050)

Fixed-effects
municipality Yes Yes
year Yes Yes
Controls Yes

Fit statistics
Observations 33,760 33,760
R2 0.90689 0.90739
Within R2 0.00104 0.00641

Notes: Clustered (municipality) standard-
errors in parentheses. Signif. Codes: ***: 0.01,
**: 0.05, *: 0.1. Estimates for the sample of
all municipalities except the Tokyo’s 23 special
wards. When specified in the model, we con-
trol for ozone concentration, PM2.5 concentra-
tion, population, the normalized difference veg-
etation index, and night-time lights..
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Table B2: Subsample: distance to Fukushima Daiichi nuclear power plant

Dependent Variable: log(wind farms+1)
Model: baseline 50 km 150 km 229 km

Variables
treatment 0.0119∗∗ 0.0107∗∗ 0.0120∗∗ 0.0146∗∗∗

(0.0050) (0.0049) (0.0051) (0.0056)

Fixed-effects
municipality Yes Yes Yes Yes
year Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Fit statistics
Observations 34,220 33,740 30,900 25,640
R2 0.90719 0.91292 0.91445 0.91029
Within R2 0.00594 0.00652 0.00771 0.01160

Notes: Clustered (municipality) standard-errors in parentheses. Sig-
nif. Codes: ***: 0.01, **: 0.05, *: 0.1. Regression estimates for the
sample in which municipalities are at a distance larger than a given
threshold from the Fukushima Daiichi nuclear power plant. 229 km
represents the distance at which 25% of municipalities are removed
from the sample. We control for ozone concentration, PM2.5 concen-
tration, population, the normalized difference vegetation index, and
night-time lights.
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Table B3: Treatment assignment for distances <= 120

Dependent Variable: log(wind farms+1)
Model: 30 km 60 km 90 km 120 km (baseline)

Variables
treatment 0.0653∗∗∗ 0.0267∗∗∗ 0.0189∗∗∗ 0.0119∗∗

(0.0202) (0.0082) (0.0051) (0.0050)

Fixed-effects
municipality Yes Yes Yes Yes
year Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Fit statistics
Observations 34,220 34,220 34,220 34,220
R2 0.90841 0.90762 0.90746 0.90719
Within R2 0.01901 0.01053 0.00883 0.00594

Notes: Clustered (municipality) standard-errors in parentheses. Signif. Codes:
***: 0.01, **: 0.05, *: 0.1. Regression estimates for samples in which the treatment
varies according to the distance from any nuclear power plant. We control for
ozone concentration, PM2.5 concentration, population, the normalized difference
vegetation index, and night-time lights.
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Table B4: Treatment assignment for distances >= 120

Dependent Variable: log(wind farms+1)
Model: 120 km (baseline) 150 km 180 km 210 km

Variables
treatment 0.0119∗∗ 0.0097 0.0152∗ 0.0144

(0.0050) (0.0074) (0.0078) (0.0093)

Fixed-effects
municipality Yes Yes Yes Yes
year Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Fit statistics
Observations 34,220 34,220 34,220 34,220
R2 0.90719 0.90711 0.90714 0.90712
Within R2 0.00594 0.00512 0.00545 0.00517

Notes: Clustered (municipality) standard-errors in parentheses. Signif. Codes:
***: 0.01, **: 0.05, *: 0.1. Regression estimates for samples in which the treat-
ment varies according to the distance from any nuclear power plant. We control
for ozone concentration, PM2.5 concentration, population, the normalized differ-
ence vegetation index, and night-time lights.
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Figure B1: Permutation test

Note: this figure shows the distribution of the point estimates for the DiD treatment effect
based on equation (1). The treatment status is assigned randomly to 1263 municipalities
based on 999 draws. The black line represents our baseline estimate. Once the 1000
estimates, 999 from the draws and our baseline, are ranked, the baseline estimate ranks
982 which may be interpreted as a p-value with a significance level below 5%.

Figure B2: Event study estimates

Note: this figure shows the point estimates for the leads and lags based on equation
(2). The treatment status is based on the distance from the centroid of a municipality
to the closest nuclear power plant. Municipalities at distances lower than 90 km are
assigned to the treatment group. We control for ozone concentration, PM2.5 concentration,
population, the normalized difference vegetation index, and night-time lights.
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Figure B3: Event study estimates

Note: this figure shows the point estimates for the leads and lags based on equation
(2). The treatment status is based on the distance from the centroid of a municipality
to the closest nuclear power plant. Municipalities at distances lower than 150 km are
assigned to the treatment group. We control for ozone concentration, PM2.5 concentration,
population, the normalized difference vegetation index, and night-time lights.

Figure B4: Event study estimates

Note: this figure shows the point estimates for the leads and lags based on equation
(2). The treatment status is based on the distance from the centroid of a municipality
to the closest nuclear power plant. Municipalities at distances lower than 120 km are
assigned to the treatment group. We control for ozone concentration, PM2.5 concentration,
population, the normalized difference vegetation index, and night-time lights.
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Figure B5: Event study estimates

Note: this figure shows the point estimates for the leads and lags based on equation
(2). The treatment status is based on the distance from the centroid of a municipality
to the closest nuclear power plant. Municipalities at distances lower than 120 km are
assigned to the treatment group. We control for ozone concentration, PM2.5 concentration,
population, the normalized difference vegetation index, and night-time lights.

Figure B6: Event study estimates

Note: this figure shows the point estimates for the leads and lags based on equation
(2). The treatment status is based on the distance from the centroid of a municipality
to the closest nuclear power plant. Municipalities at distances lower than 120 km are
assigned to the treatment group. We control for ozone concentration, PM2.5 concentration,
population, the normalized difference vegetation index, and night-time lights.
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Figure B7: Event study estimates

Note: this figure shows the point estimates for the leads and lags based on equation (2).
The treatment status is based on the distance from the centroid of a municipality to the
closest nuclear power plant. Municipalities at distances lower than 120 km are assigned to
the treatment group. For a municipality in the treatment group, the time of treatment is
the year in which the last reactor was stopped at the closest nuclear power plant after the
Fukushima nuclear accident. We control for ozone concentration, PM2.5 concentration,
population, the normalized difference vegetation index, and night-time lights.
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C Additional info to Section 5

In this section we explain in more detail the network diffusion model used in
this paper. Aditionally, we present some of the results obtained in section
5.2.

C.1 The Model

We consider a weighted network represented as a graphG = (N,E,w), where:

• N = {1, 2, . . . , n} is the set of agents or nodes in the network.6

• E is the set of edges connecting different agents, with no self-loops.
More specifically, we denote ij ∈ E as the existence of an edge or link
between nodes i and j. Additionally, the network is undirected, i.e.,
ij = ji, ∀ij ∈ E.

• w is a function that assigns weights to the edges, w : E → R+∪{0}. In
other words, w assigns a non-negative real number to each edge ij ∈ E.

We define the set of neighbors of agent i ∈ N as Ni(G) = {j | ij ∈ E}.
Additionally, we say that the total geographic distance from node i to its
neighbors is given by:

Si =
∑

j∈Ni(G)

wij

where wij represents the distance between nodes i and j in the network. A
weight of 0 indicates the absence of a connection or distance between nodes.
Also, let S̄i =

Si

|Ni(G)| denote the average geographic distance of node i, where

|Ni(G)| represents the degree or number of (unweighted) connections of node
i.7 Finally, let Dij(G) = 1

wij
· S̄i represent the spatial influence of node i’s

neighborhood, so that closer neighbors, captured through 1
wij

, will have a

stronger influence than those farther away.

C.2 Seed Set & Thresholds

At the initial iteration (k = 0), a subset of individuals Ψ(0) ⊆ N is selected
as the seeds. These represent the set of agents initially activated (i.e. those
who adopted the green technology) at this time.

6In this paper we refer to agents, nodes, and municipal governments interchangeably.
7While Si and |Ni(G)| may both represent the weighted degree of a node, we distinguish
them to represent the weighted and unweighted versions of degree, respectively.
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At the next iteration, a node i ∈ N will consider, with equal probability,
the adoption of a new technology (i.e., determined through a 50% Bernoulli
trial) if at least a fraction q ∈ (0, 1] of her neighbors is in the seed set:∑

j∈Ψ(0)Dij(G)∑
j∈Ni(G) Dij(G)

≥ q (3)

If this condition is met, there is a 50% probability that agent i will adopt
the technology and join Ψ(1). If instead an agent rejects, we move on to
the next agent. An agent who rejected, never considers adopting again and,
thus, does not join the seed set.

Following Morris (2000), we can interpret this model as agents playing
a coordination game. Their payoffs come from whether or not they match
behavior with each of their neighbors:

Consider Not Consider

Consider a, a b, c

Not Consider c, b d, d

Agent j

Agent i

with a > c and d > b, thus coordinating is better than not doing so. In this
game, a specific threshold exists, such that if at least a proportion q = d−b

a−c+d−b

of an agent’s neighbors present a behavior, then the agent’s best response is
to also replicate it. At this precise threshold, the agent remains indifferent,
while in all other cases, it has a clearly defined best response. Usually,
it is unlikely for the threshold to be precisely met. Nevertheless, certain
rational thresholds, say q = 1/2, are discussed in the literature. For example,
individuals might tend to conform to most of their friends’ actions, making
room for these rational thresholds. Unless specified otherwise, when there is
a tie, we will assume that an agent imitates a behavior if exactly q of their
neighbors follow it.

For k ≥ 0, we generalize equation 3 as:∑
j∈

⋃k−1
t=0 Ψ(t) Dij(G)∑

j∈Ni(G) Dij(G)
≥ q (4)

This general condition ensures that for any period k, agent i will consider
adopting the new technology if the weighted proportion of neighbors within
the union of seed sets up to that period exceeds or equals q for that agent.
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Additionally, we define a subset H ⊆ N to be cohesive if:∑
j∈H Dij(G)∑

j∈Ni(G) Dij(G)
> 1− q. (5)

Equation 5 says that a set of agents makes a cohesive set H if, for each
member of the set, the weighted proportion of neighbors in H is strictly
greater than threshold 1− q.

C.3 Equilibrium

A non-empty seed set Ψ∗ is considered a fixed point (an equilibrium) of the
threshold model if:

Ψ(0) = Ψ∗ ⇒ Ψ(k) = ∅, ∀k > 0. (6)

Equation 6 states that if the initial seed set Ψ(0) is equal to Ψ∗, then
the set of activated agents will become empty (Ψ(k) = ∅) for all subsequent
iterations (k > 0). In other words, an innovation initiated at Ψ∗ cannot
propagate further through the network.

For a graph G with threshold value q, an adopter set Ψ∗ is considered a
fixed point if and only if its complement, (Ψ∗)c = N \ Ψ∗, forms a cohesive
set:

Fixed Point: Ψ∗ ⇔ (Ψ∗)c is cohesive.

This means that a set Ψ∗ is a fixed point if, when it adopts the innovation,
its complement (Ψ∗)c (the non-adopting agents) forms a cohesive set. In other
words, the non-adopting agents are interconnected in a way that prevents
further adoption of the innovation (think of a closed village or a tightly-knit
community not accepting anything coming from “the outside”). Therefore,
if (Ψ∗)c forms a cohesive set, then further adoption beyond Ψ∗ cannot occur
because the influence from outside the cohesive set is insufficient.
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C.4 Network Figures

Figure C1: Seeding in a Network

Figure C2: Seeding in First Subnetwork
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