Strategic Attribute Learning

Jean-Michel Benkert¹ Ludmila Matysková² Egor Starkov³

¹University of Bern

²University of Alicante

³University of Copenhagen

EEA-ESEM, Aug 2024

Delegated learning in complex environments

- Decision-maker and researcher
- One decision to be made regarding an uncertain project
- **Project characterized by finitely many independent attributes**
- **Players disagree on the importance of the attributes**
- Agent learns by allocating limited resources across attributes
- **Broad question:** how does misalignment affect learning?

1 Politician decides on a policy, but depends on advisor

- \blacksquare the impact varies across social groups
- politician prioritizes some social groups

1 Politician decides on a policy, but depends on advisor

- \blacksquare the impact varies across social groups
- politician prioritizes some social groups
- **2** Manager chooses firm strategy, but depends on analyst
	- \blacksquare they may disagree on the importance of different factors (e.g., regulatory vs competitive environment) for final strategy

1 Politician decides on a policy, but depends on advisor

- \blacksquare the impact varies across social groups
- politician prioritizes some social groups
- 2 Manager chooses firm strategy, but depends on analyst
	- they may disagree on the importance of different factors (e.g., regulatory vs competitive environment) for final strategy
- **3** Voter influenced by media
	- media may want the voter to pay more or less atention to certain issues
- We characterize the equilibrium learning behavior.
- We show that it coincides with the solution of a modified single-player problem.
- We provide conditions under which the researcher abstains from (free) learning.
- We prove the equivalence to similar yet economically distinct frameworks.

Organization

- Does a manger want to employ like-minded individuals?
- Preference for diversity: employer may prefer a more biased employee

Organization

- Does a manger want to employ like-minded individuals?
- **Preference for diversity: employer may prefer a more biased employee**

Discrimination

- A discriminating policymaker can by tamed by detaching learning from decisions
- **Impartial advisor maximizes welfare and mitigates inequality**
- **Eliminating inequality requires a counter-biased advisor**

Media polarization

- Competition between media outlets can lead to polarization...
- \blacksquare which is beneficial for the voter

Media polarization

- Competition between media outlets can lead to polarization...
- which is beneficial for the voter

Dynamic preferences

- \blacksquare How does time-inconsistency affect learning and welfare?
- A sophisticated agent may engage in strategic ignorance
- Naivete can be beneficial

Outline

[Model](#page-10-0)

[Single-player benchmark](#page-22-0)

[Strategic players](#page-33-0)

[Applications](#page-47-0)

Researcher learns, Decision-maker makes a decision

Researcher learns, Decision-maker makes a decision

 K attributes $\boldsymbol{\theta} = (\theta_1, \dots, \theta_K)' \in \mathbb{R}^K$. This talk: $K = 2$.

Researcher learns, Decision-maker makes a decision

 $\mathcal K$ attributes $\boldsymbol \theta = (\theta_1, \dots, \theta_{\mathcal K})' \in \mathbb R^{\mathcal K}$. This talk: $\mathcal K = 2$.

Bliss points:

$$
v^{R}(\theta) = \alpha_1^{R} \theta_1 + \ldots + \alpha_K^{R} \theta_K
$$

$$
v^{DM}(\theta) = \alpha_1^{DM} \theta_1 + \ldots + \alpha_K^{DM} \theta_K
$$

where weights $\alpha_k^i \geq 0$ are commonly known

Researcher learns, Decision-maker makes a decision

 $\mathcal K$ attributes $\boldsymbol \theta = (\theta_1, \dots, \theta_{\mathcal K})' \in \mathbb R^{\mathcal K}$. This talk: $\mathcal K = 2$.

Bliss points:

$$
v^{R}(\theta) = \alpha_1^{R} \theta_1 + \ldots + \alpha_K^{R} \theta_K
$$

$$
v^{DM}(\theta) = \alpha_1^{DM} \theta_1 + \ldots + \alpha_K^{DM} \theta_K
$$

where weights $\alpha_k^i \geq 0$ are commonly known

DM's decision is $d \in \mathbb{R}$

Researcher learns, Decision-maker makes a decision

 $\mathcal K$ attributes $\boldsymbol \theta = (\theta_1, \dots, \theta_{\mathcal K})' \in \mathbb R^{\mathcal K}$. This talk: $\mathcal K = 2$.

Bliss points:

$$
v^{R}(\theta) = \alpha_1^{R} \theta_1 + \ldots + \alpha_K^{R} \theta_K
$$

$$
v^{DM}(\theta) = \alpha_1^{DM} \theta_1 + \ldots + \alpha_K^{DM} \theta_K
$$

where weights $\alpha_k^i \geq 0$ are commonly known

- DM's decision is $d \in \mathbb{R}$
- Utilities: $u^{i}(d, \theta) = -(d v^{i}(\theta))^{2}$

Attributes and learning

Attributes are independent multivariate normal:

$$
\tilde{\theta}_k \sim \mathcal{N}(\mu_k^0, \Sigma_k^0)
$$

Attributes and learning

Attributes are independent multivariate normal:

$$
\tilde{\theta}_k \sim \mathcal{N}(\mu_k^0, \Sigma_k^0)
$$

Researcher has budget of tests $T > 0$:

Attributes are independent multivariate normal:

$$
\tilde{\theta}_k \sim \mathcal{N}(\mu_k^0, \Sigma_k^0)
$$

Researcher has budget of tests $T > 0$:

- chooses test allocation $\tau_1,\ldots,\tau_K\geq 0$ such that $\sum_k \tau_k\leq \mathcal{T}$ (free disposal)
- Allocate τ_k tests to attribute $\theta_k \implies$ generate signal with precision τ_k :

$$
\tilde{s}_k = \theta_k + \mathcal{N}\left(0, \frac{1}{\tau_k}\right)
$$

Timing

- $\texttt{1}$ R chooses test allocation $\bm{\tau} = (\tau_1, \ldots, \tau_K)'$ s.t. $\sum_k \tau_k \leq \bm{\mathcal{T}}$ (observable)
- 2 Signal realizations $s_k = \theta_k + \varepsilon_k$ publicly observed
- **3** DM updates beliefs
- 4 DM chooses the decision
- **5** Payoffs are realized

Timing

- $\texttt{1}\,$ R chooses test allocation $\bm{\tau} = (\tau_1, \ldots, \tau_{\mathsf{K}})'$ s.t. $\sum_k \tau_k \leq \mathcal{T}$ (observable)
- 2 Signal realizations $s_k = \theta_k + \varepsilon_k$ publicly observed
- **3** DM updates beliefs
- **4** DM chooses the decision
- **5** Payoffs are realized

Assumption: when R is indifferent, doesn't test.

Equilibrium concept: weak PBE

Strategic attribute selection

- Bardhi (2024), Econometrica
	- Different: independence, finite attributes, noisy signals

(Dynamic) non-strategic attribute learning

- Liang, Mu, and Syrgkanis (2022), Econometrica
	- Different: strategic framework, independence, specific utilities

[Model](#page-10-0)

[Single-player benchmark](#page-22-0)

[Strategic players](#page-33-0)

[Applications](#page-47-0)

Start by solving a single-player problem:

$$
\alpha^{DM} = \alpha^R \equiv \alpha.
$$

Start by solving a single-player problem:

$$
\alpha^{DM} = \alpha^R \equiv \alpha.
$$

- **Decision is trivial:** $d = \mathbb{E}[v|s, \tau]$
- At the learning stage, the goal is to minimize residual variance $\hat{\Sigma}_k := \mathbb{V}[\nu | s, \tau]$

WLOG let $\alpha_1 \Sigma_1^0 \geq \alpha_2 \Sigma_2^0$.

WLOG let $\alpha_1 \Sigma_1^0 \geq \alpha_2 \Sigma_2^0$. Define

$$
\bar{\mathcal{T}}=\frac{\alpha_1\Sigma_1^0-\alpha_2\Sigma_2^0}{\alpha_2\Sigma_1^0\Sigma_2^0}.
$$

WLOG let $\alpha_1 \Sigma_1^0 \geq \alpha_2 \Sigma_2^0$. Define

$$
\bar{\mathcal{T}} = \frac{\alpha_1 \Sigma_1^0 - \alpha_2 \Sigma_2^0}{\alpha_2 \Sigma_1^0 \Sigma_2^0}.
$$

The single-player optimal test allocation strategy is as follows:

WLOG let $\alpha_1 \Sigma_1^0 \geq \alpha_2 \Sigma_2^0$. Define

$$
\bar{\mathcal{T}} = \frac{\alpha_1 \Sigma_1^0 - \alpha_2 \Sigma_2^0}{\alpha_2 \Sigma_1^0 \Sigma_2^0}.
$$

The single-player optimal test allocation strategy is as follows: **1** Allocate min $\{T, \bar{T}\}$ tests to attribute 1

WLOG let $\alpha_1 \Sigma_1^0 \geq \alpha_2 \Sigma_2^0$. Define

$$
\bar{\mathcal{T}} = \frac{\alpha_1 \Sigma_1^0 - \alpha_2 \Sigma_2^0}{\alpha_2 \Sigma_1^0 \Sigma_2^0}.
$$

The single-player optimal test allocation strategy is as follows:

1 Allocate min $\{T, \bar{T}\}$ tests to attribute 1

2 Allocate the remaining $T - \bar{T}$ tests (if any) in constant fraction

$$
\left(\underbrace{\frac{\alpha_1}{\alpha_1+\alpha_2}}_{\text{to attribute 1}}, \underbrace{\frac{\alpha_2}{\alpha_1+\alpha_2}}_{\text{to attribute 2}}\right) \cdot (T - \bar{T})
$$

WLOG let $\alpha_1 \Sigma_1^0 \geq \alpha_2 \Sigma_2^0$. Define

$$
\bar{\mathcal{T}} = \frac{\alpha_1 \Sigma_1^0 - \alpha_2 \Sigma_2^0}{\alpha_2 \Sigma_1^0 \Sigma_2^0}.
$$

The single-player optimal test allocation strategy is as follows:

- **1** Allocate min $\{T, \bar{T}\}$ tests to attribute 1
- 2 Allocate the remaining $T \bar{T}$ tests (if any) in constant fraction

$$
\left(\underbrace{\frac{\alpha_1}{\alpha_1+\alpha_2}}_{\text{to attribute 1}}, \underbrace{\frac{\alpha_2}{\alpha_1+\alpha_2}}_{\text{to attribute 2}}\right) \cdot (T - \bar{T})
$$

Step 1 equalizes weighted residual variances $\alpha_k \hat{\Sigma}_k$ \blacksquare

Optimal test allocation depends on weight ratio $\frac{\alpha_1}{\alpha_2}$

[Model](#page-10-0)

[Single-player benchmark](#page-22-0)

[Strategic players](#page-33-0)

[Applications](#page-47-0)

Researcher's expected utility

$$
V^R(\tau) \equiv \mathbb{E}\left[-\left(\tilde{d}^{DM} - \tilde{v}^R\right)^2\right]
$$

Researcher's expected utility

$$
V^{R}(\tau) \equiv \mathbb{E}\left[-\left(\tilde{d}^{DM} - \tilde{v}^{R}\right)^{2}\right] = -\left(v_{0}^{DM} - v_{0}^{R}\right)^{2} - \mathbb{V}\left(\tilde{d}^{DM} - \tilde{v}^{R}\right)
$$
Researcher's expected utility

$$
V^{R}(\tau) \equiv \mathbb{E}\left[-\left(\tilde{d}^{DM} - \tilde{v}^{R}\right)^{2}\right] = -(\nu_{0}^{DM} - \nu_{0}^{R})^{2} - \mathbb{V}\left(\tilde{d}^{DM} - \tilde{v}^{R}\right)
$$

= $V^{A}(\emptyset) + \underbrace{2\text{cov}[\tilde{v}^{R}, \tilde{d}^{DM}] - \mathbb{V}[\tilde{d}^{DM}]}_{\text{added value of learning}}$

Researcher's expected utility

$$
V^{R}(\tau) \equiv \mathbb{E}\left[-\left(\tilde{d}^{DM} - \tilde{v}^{R}\right)^{2}\right] = -(\nu_{0}^{DM} - \nu_{0}^{R})^{2} - \mathbb{V}\left(\tilde{d}^{DM} - \tilde{v}^{R}\right)
$$

= $V^{A}(\emptyset) + \underbrace{2\text{cov}[\tilde{v}^{R}, \tilde{d}^{DM}] - \mathbb{V}[\tilde{d}^{DM}]}_{\text{added value of learning}}$

Researcher considers two factors:

- \blacksquare aligning DM's decision with R's objective: ↑ $cov[\tilde{v}^R, \tilde{d}^{DM}]$
- $_2$ reducing excess variance of DM's decision: $\downarrow \left(\mathbb{V}[\tilde{d}^{DM}] cov(\tilde{v}^R, \tilde{d}^{DM}) \right)$

Theorem 2: Equilibrium Test Allocation

 τ is an equilibrium test allocation iff τ solves the single-player problem with effective weights

$$
\tilde{\alpha}_k := \sqrt{\max\left\{0, \left(\alpha_k^R\right)^2 - \left(\alpha_k^R - \alpha_k^{DM}\right)^2\right\}}
$$

Effective weights $\tilde{\alpha}_k$ as functions of α_k^R (left) and α_k^{DM} (right)

equilibirum test allocation given by single-agent solution with distorted weights.

equilibirum test allocation given by single-agent solution with distorted weights.

2 Monotonicity:

higher $\alpha_k^R \Rightarrow$ higher effective weight $\tilde{\alpha}_k$.

equilibirum test allocation given by single-agent solution with distorted weights.

2 Monotonicity:

higher $\alpha_k^R \Rightarrow$ higher effective weight $\tilde{\alpha}_k$.

³ Ignorance:

if α_k^{DM} too high compared to α_k^R , R thinks DM overreacts and refuses to learn.

equilibirum test allocation given by single-agent solution with distorted weights.

2 Monotonicity:

higher $\alpha_k^R \Rightarrow$ higher effective weight $\tilde{\alpha}_k$.

³ Ignorance:

if α_k^{DM} too high compared to α_k^R , R thinks DM overreacts and refuses to learn.

⁴ Misalignment:

if R is not sensitive enough (small α^R), DM may benefit from distorting R's weight ratio $\frac{\alpha_{1}^{R}}{\alpha_{2}^{R}}$ relative to her own.

Equivalent models

Framework A

DM takes a single decision, $d \in \mathbb{R}$; players' payoffs are

$$
u_A^i(d,\theta)=-\sum_k \alpha_k^i (d-\theta_k)^2,
$$

where $\sum_k \alpha_k^i = 1$ for both players.

Equivalent models

Framework A

DM takes a single decision, $d \in \mathbb{R}$; players' payoffs are

$$
u_A^i(d,\theta)=-\sum_k\alpha_k^i\left(d-\theta_k\right)^2,
$$

where $\sum_k \alpha_k^i = 1$ for both players.

Framework B

DM takes K different decisions $d_1, \ldots, d_K \in \mathbb{R}$; players' payoffs are

$$
u_B^i(d,\theta)=-\sum_k(d_k-\alpha_k^i\theta_k)^2.
$$

The equilibrium test allocation τ in these coincides with our baseline model.

[Model](#page-10-0)

- [Single-player benchmark](#page-22-0)
- [Strategic players](#page-33-0)

[Applications](#page-47-0)

- **Politician, advisor, two social groups**
- Politician decides on policy $d \in \mathbb{R}$
- Two social groups $k \in \{1, 2\}$
	- Unknown optimal policy $\theta_k \in \mathbb{R}$
	- "Group" payoff: $u_k(d, \theta_k) = -(d \theta_k)^2$

Discrimination and inequality – Model 2/2

Politician decides on policy $d \in \mathbb{R}$, has payoff

$$
u^{DM}(d, \theta_1, \theta_2; \delta) = \underbrace{\frac{1}{2}(1+\delta)}_{\alpha_1^{DM}(\delta)} u_1(d, \theta_1) + \underbrace{\frac{1}{2}(1-\delta)}_{\alpha_2^{DM}(\delta)} u_2(d, \theta_2)
$$

where $\delta \in (0,1)$ is the discrimination parameter.

Discrimination and inequality – Model 2/2

Politician decides on policy $d \in \mathbb{R}$, has payoff

$$
u^{DM}(d, \theta_1, \theta_2; \delta) = \underbrace{\frac{1}{2}(1+\delta)}_{\alpha_1^{DM}(\delta)} u_1(d, \theta_1) + \underbrace{\frac{1}{2}(1-\delta)}_{\alpha_2^{DM}(\delta)} u_2(d, \theta_2)
$$

where $\delta \in (0,1)$ is the discrimination parameter.

Advisor chooses test allocation τ , has payoff

$$
u^{R}(d, \theta_{1}, \theta_{2}; p) = \underbrace{\frac{1}{2}(1-p)}_{\alpha_{1}^{R}(p)} u_{1}(d, \theta_{1}) + \underbrace{\frac{1}{2}(1+p)}_{\alpha_{2}^{R}(p)} u_{2}(d, \theta_{2})
$$

where $p \in [0, 1)$ is the partiality parameter.

When the advisor is impartial $(p = 0)$, the equilibrium resource allocation is $\tau^* = \left(\frac{1}{2},\frac{1}{2}\right)$ for any discrimination level δ .

When the advisor is impartial $(p = 0)$, the equilibrium resource allocation is $\tau^* = \left(\frac{1}{2},\frac{1}{2}\right)$ for any discrimination level δ .

When the advisor is impartial $(p = 0)$, the equilibrium resource allocation is $\tau^* = \left(\frac{1}{2},\frac{1}{2}\right)$ for any discrimination level δ .

- larger discrepancy between $\alpha^\textsf{DM}$ and $\alpha^\textsf{R}$
	- \Rightarrow advisor wants to learn more about group 2

When the advisor is impartial $(p = 0)$, the equilibrium resource allocation is $\tau^* = \left(\frac{1}{2},\frac{1}{2}\right)$ for any discrimination level δ .

- larger discrepancy between $\alpha^\textsf{DM}$ and $\alpha^\textsf{R}$ \Rightarrow advisor wants to learn more about group 2
- politician less sensitive to information about group 2 \Rightarrow advisor wants to learn less about group 2

When the advisor is impartial $(p = 0)$, the equilibrium resource allocation is $\tau^* = \left(\frac{1}{2},\frac{1}{2}\right)$ for any discrimination level δ .

- larger discrepancy between $\alpha^\textsf{DM}$ and $\alpha^\textsf{R}$ \Rightarrow advisor wants to learn more about group 2
- politician less sensitive to information about group 2 \Rightarrow advisor wants to learn less about group 2
- \blacksquare impartial advisor: the two effects cancel out

Let
$$
\mu^0 = (0, 0)
$$
, $\Sigma_k^0 = 1$, $T = 1$.

Proposition (Equality)

For every $\delta \in (0,1)$, there exists a unique $\hat{p}(\delta) > 0$ such that $u_1 = u_2$ in equilibrium. Further, $\hat{p}(\delta)$ is continuous and non-monotone in δ .

Let
$$
\mu^0 = (0, 0)
$$
, $\Sigma_k^0 = 1$, $T = 1$.

Proposition (Equality)

For every $\delta \in (0,1)$, there exists a unique $\hat{p}(\delta) > 0$ such that $u_1 = u_2$ in equilibrium. Further, $\hat{p}(\delta)$ is continuous and non-monotone in δ .

- As $\uparrow \delta$, an advisor partial towards group 2 compensates by learning more about group 2.
- When $\delta \to 1$, even an impartial advisor chooses $\tau_1 \approx 0$ and "punishes" the favored group by effectively providing no information.
- But welfare (with equal group weights) is maximized with an impartial advisor, $p = 0$.

Media Polarization – Model

- **T** Two media outlets $m = A$, B aim to influence a decision of (median) voter V.
- The voter's decision d affects two policy issues $k = 1, 2$; each player wants the decision to reflect their preferred platform.
- The utility of player $i = A, B, V$ is (with $\alpha_1^i + \alpha_2^i = 1$)

$$
u^{i}(d,\theta)=-\sum_{k=1}^{2}\alpha_{k}^{i}(d-\theta_{k})^{2}.
$$
 (1)

Media Polarization – Model

- **T** Two media outlets $m = A, B$ aim to influence a decision of (median) voter V.
- The voter's decision d affects two policy issues $k = 1, 2$; each player wants the decision to reflect their preferred platform.
- The utility of player $i = A, B, V$ is (with $\alpha_1^i + \alpha_2^i = 1$)

$$
u^{i}(d,\theta)=-\sum_{k=1}^{2}\alpha_{k}^{i}(d-\theta_{k})^{2}.
$$
 (1)

- Each media outlet chooses coverage $q^m = (q_1^m, q_2^m)' \in \mathbb{R}^2_+$ such that $q_1^m + q_2^m = 1$.
- **The voter has a total budget of attention** $T > 0$ **and chooses how to allocate it between** the two outlets: $t = (t^A, t^B)' \in \mathbb{R}_+^2$ such that $t^A + t^B \leq T$.
- Given q^m and t, the voter observes signals about each issue with precisions $t_k q_k^M$.
- \blacksquare The voter chooses her attention allocation t.
- 2^{I} Media outlets observe t and simultaneously choose coverage q^m .
- **3** Nature draws state realizations θ and signal realizations s
- 4 The voter observes q^m and s, updates her beliefs and takes decision d.
- **5** Payoffs are realized.

Proposition

If $\alpha_1^A > \alpha_1^V > \alpha_1^B$ and T is large enough, then in the unique equilibrium, media is polarized, $\mathcal{q}^A=(1,0)'$ and $\mathcal{q}^B=(0,1)'$, but the voter achieves her optimal aggregate attention allocation τ_V^* .

Proposition

If $\alpha_1^A > \alpha_1^V > \alpha_1^B$ and T is large enough, then in the unique equilibrium, media is polarized, $\mathcal{q}^A=(1,0)'$ and $\mathcal{q}^B=(0,1)'$, but the voter achieves her optimal aggregate attention allocation τ_V^* .

Corollary

If $\alpha_1^{\mathcal{A}}>\alpha_1^{\mathcal{V}}>\alpha_1^{\mathcal{B}}$ and $\mathcal T$ is large enough, then the voter strictly prefers a polarized media duopoly to a (moderate) monopoly.

- A single agent who can acquire information before taking a decision.
- The agent's preferences can change in between.
- The agent can be naive or sophisticated about the potential change.
- Assume $\alpha_1^{DM} = \alpha_1^R$ and

$$
\alpha_2^{DM} = \begin{cases} \alpha_2^R & \text{with probability } p, \\ c\alpha_2^R & \text{with probability } 1 - p, \end{cases}
$$

for some $c > 0$ with $c \neq 1$.

Thus, learning utility reads

$$
uR(d, \theta) = - (d - \alpha_1R \theta_1 - \alpha_2R \theta_2)^2,
$$

and decision utility reads

$$
u^{DM}(d,\theta) = \begin{cases} -\left(d - \alpha_1^R \theta_1 - \alpha_2^R \theta_2\right)^2 & \text{with probability } p, \\ -\left(d - \alpha_1^R \theta_1 - c \alpha_2^R \theta_2\right)^2 & \text{with probability } 1 - p. \end{cases}
$$

Proposition

The sophisticate ignores attribute 2 for all $T > 0$ if and only if

$$
c-1\geq \frac{1}{\sqrt{1-\rho}}.
$$

Proposition

The sophisticate ignores attribute 2 for all $T > 0$ if and only if

$$
c-1\geq \frac{1}{\sqrt{1-\rho}}.
$$

Proposition (informal)

Depending on parameters and the choice of the welfare criterion, either the naif or the sophisticate may be better off.

Conclusion

- We contribute to the literature on strategic multi-attribute learning problems (Bardhi, 2024) by providing a tractable model to analyze preference misalignment.
- More broadly, we contribute to the literature on delegated expertise, which is typically considering only single-dimensional problems.
- \blacksquare In the context of strategic communication, our approach corresponds to a form of "constrained Bayesian persuasion".
- Our model builds on Liang et al. (2022), who show that a "greedy" learning strategy is optimal with correlated attributes while we show it is optimal with strategic motives.

Several applications

- **1** Diversity in Organizations
- 2 Discrimination and Inequality
- **3** Media Polarization
- **4** Dynamic Preferences

Example 1

$$
\begin{pmatrix} \tilde{\theta}_1 \\ \tilde{\theta}_2 \end{pmatrix} \sim N\left(\begin{pmatrix} \mu_1^0 \\ \mu_2^0 \end{pmatrix}, \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix} \right)
$$

Bliss action is $v = \theta_1 + \theta_2$ (i.e., $\alpha_1 = \alpha_2 = 1$)

Test budget $T = 2$

Example 1

$$
\begin{pmatrix} \tilde{\theta}_1 \\ \tilde{\theta}_2 \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} \mu_1^0 \\ \mu_2^0 \end{pmatrix}, \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix} \right)
$$

Bliss action is $v = \theta_1 + \theta_2$ (i.e., $\alpha_1 = \alpha_2 = 1$)

Test budget $T = 2$

Optimal test allocation:

allocate $\bar{\mathcal{T}}=\frac{7}{8}$ tests to attribute $1\Rightarrow$ the posterior covariance matrix is $\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$

Example 1

$$
\begin{pmatrix} \tilde{\theta}_1 \\ \tilde{\theta}_2 \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} \mu_1^0 \\ \mu_2^0 \end{pmatrix}, \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix} \right)
$$

Bliss action is $v = \theta_1 + \theta_2$ (i.e., $\alpha_1 = \alpha_2 = 1$)

Test budget $T = 2$

Optimal test allocation:

allocate $\bar{\mathcal{T}}=\frac{7}{8}$ tests to attribute $1\Rightarrow$ the posterior covariance matrix is $\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$

allocate the remaining $\mathcal{T}-\bar{\mathcal{T}}=\frac{9}{8}$ tests equally

optimal test allocation: $\tau_1^* = \frac{25}{16}, \tau_2^* = \frac{9}{16}$

$$
\begin{pmatrix} \tilde{\theta}_1 \\ \tilde{\theta}_2 \end{pmatrix} \sim N\left(\begin{pmatrix} \mu_1^0 \\ \mu_2^0 \end{pmatrix}, \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix} \right)
$$

Bliss action is $v = \theta_1 + 2\theta_2$ (i.e., $\alpha_1 = 1$ and $\alpha_2 = 2$)

Test budget $T = 2$

$$
\begin{pmatrix} \tilde{\theta}_1 \\ \tilde{\theta}_2 \end{pmatrix} \sim N\left(\begin{pmatrix} \mu_1^0 \\ \mu_2^0 \end{pmatrix}, \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix} \right)
$$

Bliss action is $v = \theta_1 + 2\theta_2$ (i.e., $\alpha_1 = 1$ and $\alpha_2 = 2$)

Test budget $T = 2$

Optimal test allocation:

allocate $\bar{\mathcal{T}}_1=\frac{3}{8}$ tests to attribute $1\Rightarrow$ the posterior covariance matrix is $\begin{pmatrix} 2 & 0 \ 0 & 1 \end{pmatrix}$

$$
\begin{pmatrix} \tilde{\theta}_1 \\ \tilde{\theta}_2 \end{pmatrix} \sim N\left(\begin{pmatrix} \mu_1^0 \\ \mu_2^0 \end{pmatrix}, \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix} \right)
$$

Bliss action is $v = \theta_1 + 2\theta_2$ (i.e., $\alpha_1 = 1$ and $\alpha_2 = 2$)

Test budget $T = 2$

Optimal test allocation:

allocate $\bar{\mathcal{T}}_1=\frac{3}{8}$ tests to attribute $1\Rightarrow$ the posterior covariance matrix is $\begin{pmatrix} 2 & 0 \ 0 & 1 \end{pmatrix}$

allocate the remaining $\mathcal{T} - \bar{\mathcal{T}}_1 = \frac{13}{8}$ tests in fractions $\left(\frac{1}{3}, \frac{2}{3}\right)$

optimal test allocation: $\tau_1^* = \frac{22}{24}$, $\tau_2^* = \frac{26}{24}$

Decomposition, $K = 2$

Decompose the agent's weights as

$$
\alpha^R(\beta, \gamma) \equiv \beta \alpha^{DM} + \gamma \hat{\alpha}^P
$$

where $\hat{\alpha}^P \equiv (-\alpha_2^{DM}, \alpha_1^{DM})$ is an orthogonal vector to α^{DM} .

Engagement β:

 $\blacksquare \uparrow \beta \iff \text{agent more engaged}$

Distortion γ :

- $\gamma = 0$: agent is undistorted
- $\blacksquare \uparrow |\gamma|$: agent becomes more distorted

Proposition: Undistorted agent

Suppose the agent is undistorted ($\gamma = 0$). Then **1** If β < 1/2 (agent is disengaged), then the agent does no testing in equilibrium.

2 If $\beta > 1/2$ (agent is sufficiently engaged), then the agent chooses the principal's optimum

Intuition:

i if β < 1/2: the principal's decision is too sensitive to new information, so the agent prefers to stick with status quo

Proposition: Undistorted agent

Suppose the agent is undistorted ($\gamma = 0$). Then

- **1** If β < 1/2 (agent is disengaged), then the agent does no testing in equilibrium.
- 2 If $\beta > 1/2$ (agent is sufficiently engaged), then the agent chooses the principal's optimum in equilibrium.

Intuition:

- \blacksquare the principal's optimum depends on the ratio of his weights
- $\gamma = 0$: the weight ratio is the same for the principal and the agent

Proposition: preference over distortion

- **1** Fix sensitivity $\beta \le 1/2$ (agent is disengaged). Then the principal's equilibrium payoff weakly increases in distortion $|\gamma|$.
- **2** Fix sensitivity $\beta > 1/2$ (agent is sufficiently engaged), then the principal's equilibrium

Intuition:

- When β < 1/2, an undistorted agent does no testing
	- distorted agent learns about one attribute
	- \blacksquare any info is better for the principal than no info

Preference for diversity

Preference for diversity

Preference for diversity

Proposition: preference over distortion

- **1** Fix sensitivity $\beta \leq 1/2$ (agent is disengaged). Then the principal's equilibrium payoff
- **2** Fix sensitivity $\beta > 1/2$ (agent is sufficiently engaged), then the principal's equilibrium payoff weakly decreases in distortion $|\gamma|$.

Intuition:

- When $\beta > 1/2$, an undistorted agent chooses the principal's optimum
	- distorted agent distorts the test allocation

Preference for no diversity

Preference for no diversity

Preference for no diversity

Preference for engagement

Proposition: preference for engagement

Fix distortion $\gamma \in \mathbb{R}$. Then:

- **the principal's equilibrium payoff weakly increases in the agent's sensitivity** β ;
- as $\beta \to \infty$, the agent chooses the principal's optimum.

Preference for sensitivity

