Strategic Attribute Learning

Jean-Michel Benkert ¹ Ludmila Matysková ² Egor Starkov ³

¹University of Bern

²University of Alicante

³University of Copenhagen

EEA-ESEM, Aug 2024

Delegated learning in complex environments

- Decision-maker and researcher
- One decision to be made regarding an uncertain project
- Project characterized by finitely many independent attributes
- Players disagree on the importance of the attributes
- Agent learns by allocating limited resources across attributes
- Broad question: how does misalignment affect learning?

I Politician decides on a policy, but depends on advisor

- the impact varies across social groups
- politician prioritizes some social groups

Politician decides on a policy, but depends on advisor

- the impact varies across social groups
- politician prioritizes some social groups
- 2 Manager chooses firm strategy, but depends on analyst
 - they may disagree on the importance of different factors (e.g., regulatory vs competitive environment) for final strategy

Politician decides on a policy, but depends on advisor

- the impact varies across social groups
- politician prioritizes some social groups
- 2 Manager chooses firm strategy, but depends on analyst
 - they may disagree on the importance of different factors (e.g., regulatory vs competitive environment) for final strategy
- **3** Voter influenced by media
 - media may want the voter to pay more or less atention to certain issues

- We characterize the equilibrium learning behavior.
- We show that it coincides with the solution of a modified single-player problem.
- We provide conditions under which the researcher abstains from (free) learning.
- We prove the equivalence to similar yet economically distinct frameworks.

Organization

- Does a manger want to employ like-minded individuals?
- Preference for diversity: employer may prefer a more biased employee

Organization

- Does a manger want to employ like-minded individuals?
- Preference for diversity: employer may prefer a more biased employee

Discrimination

- A discriminating policymaker can by tamed by detaching learning from decisions
- Impartial advisor maximizes welfare and mitigates inequality
- Eliminating inequality requires a counter-biased advisor

Media polarization

- Competition between media outlets can lead to polarization...
- ...which is beneficial for the voter

Media polarization

- Competition between media outlets can lead to polarization...
- ...which is beneficial for the voter

Dynamic preferences

- How does time-inconsistency affect learning and welfare?
- A sophisticated agent may engage in strategic ignorance
- Naivete can be beneficial

Outline

1 Model

- 2 Single-player benchmark
- 3 Strategic players
- 4 Applications

Researcher learns, Decision-maker makes a decision

Researcher learns, Decision-maker makes a decision

• K attributes $\theta = (\theta_1, \dots, \theta_K)' \in \mathbb{R}^K$. This talk: K = 2.

Researcher learns, Decision-maker makes a decision

• *K* attributes $\theta = (\theta_1, \dots, \theta_K)' \in \mathbb{R}^K$. This talk: K = 2.

Bliss points:

$$v^{R}(\boldsymbol{\theta}) = \alpha_{1}^{R}\theta_{1} + \ldots + \alpha_{K}^{R}\theta_{K} v^{DM}(\boldsymbol{\theta}) = \alpha_{1}^{DM}\theta_{1} + \ldots + \alpha_{K}^{DM}\theta_{K}$$

where weights $\alpha_k^i \ge 0$ are commonly known

Researcher learns, Decision-maker makes a decision

• *K* attributes $\theta = (\theta_1, \dots, \theta_K)' \in \mathbb{R}^K$. This talk: K = 2.

Bliss points:

where weights $\alpha_k^i \ge 0$ are commonly known

• DM's decision is $d \in \mathbb{R}$

Researcher learns, Decision-maker makes a decision

• K attributes $\theta = (\theta_1, \dots, \theta_K)' \in \mathbb{R}^K$. This talk: K = 2.

Bliss points:

where weights $\alpha_k^i \ge 0$ are commonly known

- DM's decision is $d \in \mathbb{R}$
- Utilities: $u^i(d, \theta) = -(d v^i(\theta))^2$

Attributes and learning

Attributes are independent multivariate normal:

$$ilde{ heta}_k \sim \mathcal{N}(\mu_k^0, \Sigma_k^0)$$

Attributes and learning

Attributes are independent multivariate normal:

$$ilde{ heta}_k \sim \mathcal{N}(\mu_k^0, \Sigma_k^0)$$

Researcher has budget of tests T > 0:

Attributes are independent multivariate normal:

$$ilde{ heta}_k \sim \mathcal{N}(\mu_k^0, \Sigma_k^0)$$

Researcher has budget of tests T > 0:

- chooses test allocation $\tau_1, \ldots, \tau_K \ge 0$ such that $\sum_k \tau_k \le T$ (free disposal)
- Allocate τ_k tests to attribute $\theta_k \Longrightarrow$ generate signal with precision τ_k :

$$ilde{s}_k = heta_k + \mathcal{N}\left(0, rac{1}{ au_k}
ight)$$

- **I** R chooses test allocation $\boldsymbol{\tau} = (\tau_1, \dots, \tau_K)'$ s.t. $\sum_k \tau_k \leq T$ (observable)
- **2** Signal realizations $s_k = \theta_k + \varepsilon_k$ publicly observed
- **3** DM updates beliefs
- **4** DM chooses the decision
- 5 Payoffs are realized

- **1** R chooses test allocation $\boldsymbol{\tau} = (\tau_1, \ldots, \tau_K)'$ s.t. $\sum_k \tau_k \leq T$ (observable)
- **2** Signal realizations $s_k = \theta_k + \varepsilon_k$ publicly observed
- **3** DM updates beliefs
- 4 DM chooses the decision
- 5 Payoffs are realized

Assumption: when R is indifferent, doesn't test.

Equilibrium concept: weak PBE

Strategic attribute selection

- Bardhi (2024), Econometrica
 - Different: independence, finite attributes, noisy signals

(Dynamic) non-strategic attribute learning

- Liang, Mu, and Syrgkanis (2022), Econometrica
 - Different: strategic framework, independence, specific utilities

1 Model

2 Single-player benchmark

3 Strategic players

4 Applications

Start by solving a single-player problem:

$$\alpha^{DM} = \alpha^R \equiv \alpha.$$

Start by solving a single-player problem:

$$\alpha^{DM} = \alpha^R \equiv \alpha.$$

- Decision is trivial: $d = \mathbb{E}[v|s, \tau]$
- At the learning stage, the goal is to minimize residual variance $\hat{\Sigma}_k := \mathbb{V}[v|s,\tau]$

WLOG let $\alpha_1 \Sigma_1^0 \ge \alpha_2 \Sigma_2^0$.

WLOG let $\alpha_1 \Sigma_1^0 \ge \alpha_2 \Sigma_2^0$. Define

$$\bar{\mathcal{T}} = \frac{\alpha_1 \Sigma_1^0 - \alpha_2 \Sigma_2^0}{\alpha_2 \Sigma_1^0 \Sigma_2^0}.$$

WLOG let $\alpha_1 \Sigma_1^0 \ge \alpha_2 \Sigma_2^0$. Define

$$\bar{\mathcal{T}} = \frac{\alpha_1 \Sigma_1^0 - \alpha_2 \Sigma_2^0}{\alpha_2 \Sigma_1^0 \Sigma_2^0}.$$

The single-player optimal test allocation strategy is as follows:

WLOG let $\alpha_1 \Sigma_1^0 \ge \alpha_2 \Sigma_2^0$. Define

$$\bar{\mathcal{T}} = \frac{\alpha_1 \Sigma_1^0 - \alpha_2 \Sigma_2^0}{\alpha_2 \Sigma_1^0 \Sigma_2^0}.$$

The single-player optimal test allocation strategy is as follows: 1 Allocate min $\{T, \overline{T}\}$ tests to attribute 1

WLOG let $\alpha_1 \Sigma_1^0 \ge \alpha_2 \Sigma_2^0$. Define

$$\bar{\mathcal{T}} = \frac{\alpha_1 \Sigma_1^0 - \alpha_2 \Sigma_2^0}{\alpha_2 \Sigma_1^0 \Sigma_2^0}.$$

The single-player optimal test allocation strategy is as follows:

1 Allocate min $\{T, \overline{T}\}$ tests to attribute 1

2 Allocate the remaining $T - \overline{T}$ tests (if any) in constant fraction

$$\left(\underbrace{\frac{\alpha_1}{\alpha_1 + \alpha_2}}_{\text{to attribute 1}}, \underbrace{\frac{\alpha_2}{\alpha_1 + \alpha_2}}_{\text{to attribute 2}}\right) \cdot (T - \bar{T})$$

WLOG let $\alpha_1 \Sigma_1^0 \ge \alpha_2 \Sigma_2^0$. Define

$$\bar{\mathcal{T}} = \frac{\alpha_1 \Sigma_1^0 - \alpha_2 \Sigma_2^0}{\alpha_2 \Sigma_1^0 \Sigma_2^0}.$$

The single-player optimal test allocation strategy is as follows:

- **1** Allocate min $\{T, \overline{T}\}$ tests to attribute 1
- **2** Allocate the remaining $T \overline{T}$ tests (if any) in constant fraction

$$\left(\underbrace{\frac{\alpha_1}{\alpha_1 + \alpha_2}}_{\text{to attribute 1}}, \underbrace{\frac{\alpha_2}{\alpha_1 + \alpha_2}}_{\text{to attribute 2}}\right) \cdot (T - \bar{T})$$

Step 1 equalizes weighted residual variances $\alpha_k \hat{\Sigma}_k$ example

• Optimal test allocation depends on weight ratio $\frac{\alpha_1}{\alpha_2}$

1 Model

2 Single-player benchmark

3 Strategic players

4 Applications

Researcher's expected utility

$$V^R(au) \equiv \mathbb{E}\left[-\left(ilde{d}^{DM}- ilde{v}^R
ight)^2
ight]$$

Researcher's expected utility

$$V^R(au) \equiv \mathbb{E}\left[-\left(ilde{d}^{DM} - ilde{v}^R
ight)^2
ight] = -(v_0^{DM} - v_0^R)^2 - \mathbb{V}\left(ilde{d}^{DM} - ilde{v}^R
ight)$$
Researcher's expected utility

$$V^{R}(\tau) \equiv \mathbb{E}\left[-\left(\tilde{d}^{DM} - \tilde{v}^{R}\right)^{2}\right] = -(v_{0}^{DM} - v_{0}^{R})^{2} - \mathbb{V}\left(\tilde{d}^{DM} - \tilde{v}^{R}\right)$$
$$= V^{A}(\emptyset) + \underbrace{2cov[\tilde{v}^{R}, \tilde{d}^{DM}] - \mathbb{V}[\tilde{d}^{DM}]}_{\text{odded using of learning}}$$

added value of learning

Researcher's expected utility

$$V^{R}(\tau) \equiv \mathbb{E}\left[-\left(\tilde{d}^{DM} - \tilde{v}^{R}\right)^{2}\right] = -(v_{0}^{DM} - v_{0}^{R})^{2} - \mathbb{V}\left(\tilde{d}^{DM} - \tilde{v}^{R}\right)$$
$$= V^{A}(\emptyset) + \underbrace{2cov[\tilde{v}^{R}, \tilde{d}^{DM}] - \mathbb{V}[\tilde{d}^{DM}]}_{\text{added value of learning}}$$

Researcher considers two factors:

- I aligning DM's decision with R's objective: $\uparrow cov[\tilde{v}^R, \tilde{d}^{DM}]$
- 2 reducing excess variance of DM's decision: $\downarrow \left(\mathbb{V}[\tilde{d}^{DM}] cov(\tilde{v}^{R}, \tilde{d}^{DM}) \right)$

Theorem 2: Equilibrium Test Allocation

 τ is an equilibrium test allocation iff τ solves the single-player problem with effective weights

$$\tilde{\alpha}_{k} := \sqrt{\max\left\{0, \left(\alpha_{k}^{R}\right)^{2} - \left(\alpha_{k}^{R} - \alpha_{k}^{DM}\right)^{2}\right\}}$$

Effective weights $\tilde{\alpha}_k$ as functions of α_k^R (left) and α_k^{DM} (right)

more on optimal misalignment

equilibirum test allocation given by single-agent solution with distorted weights.

equilibirum test allocation given by single-agent solution with distorted weights.

2 Monotonicity:

higher $\alpha_k^R \Rightarrow$ higher effective weight $\tilde{\alpha}_k$.

equilibirum test allocation given by single-agent solution with distorted weights.

2 Monotonicity:

higher $\alpha_k^R \Rightarrow$ higher effective weight $\tilde{\alpha}_k$.

3 Ignorance:

if α_k^{DM} too high compared to α_k^R , R thinks DM overreacts and refuses to learn.

equilibirum test allocation given by single-agent solution with distorted weights.

2 Monotonicity:

higher $\alpha_k^R \Rightarrow$ higher effective weight $\tilde{\alpha}_k$.

3 Ignorance:

if α_k^{DM} too high compared to α_k^R , R thinks DM overreacts and refuses to learn.

4 Misalignment:

if R is not sensitive enough (small α^R), DM may benefit from distorting R's weight ratio $\frac{\alpha_1^R}{\alpha_2^R}$ relative to her own.

Equivalent models

Framework A

DM takes a single decision, $d \in \mathbb{R}$; players' payoffs are

$$u_A^i(d, heta) = -\sum_k \alpha_k^i \left(d - heta_k\right)^2,$$

where $\sum_{k} \alpha_{k}^{i} = 1$ for both players.

Equivalent models

Framework A

DM takes a single decision, $d \in \mathbb{R}$; players' payoffs are

$$u_A^i(d, heta) = -\sum_k lpha_k^i \left(d - heta_k
ight)^2,$$

where $\sum_k \alpha_k^i = 1$ for both players.

Framework B

DM takes K different decisions $d_1, \ldots, d_K \in \mathbb{R}$; players' payoffs are

$$u^i_B(d, heta) = -\sum_k (d_k - lpha^i_k heta_k)^2.$$

The equilibrium test allocation τ in these coincides with our baseline model.

1 Model

- 2 Single-player benchmark
- 3 Strategic players

4 Applications

Discrimination and inequality – Model 1/2

- Politician, advisor, two social groups
- Politician decides on policy $d \in \mathbb{R}$
- Two social groups $k \in \{1, 2\}$
 - Unknown optimal policy $\theta_k \in \mathbb{R}$
 - "Group" payoff: $u_k(d, \theta_k) = -(d \theta_k)^2$

Discrimination and inequality – Model 2/2

Politician decides on policy $d \in \mathbb{R}$, has payoff

$$u^{DM}(d,\theta_1,\theta_2;\delta) = \underbrace{\frac{1}{2}(1+\delta)}_{\alpha_1^{DM}(\delta)} u_1(d,\theta_1) + \underbrace{\frac{1}{2}(1-\delta)}_{\alpha_2^{DM}(\delta)} u_2(d,\theta_2)$$

where $\delta \in (0, 1)$ is the discrimination parameter.

Discrimination and inequality – Model 2/2

Politician decides on policy $d \in \mathbb{R}$, has payoff

$$u^{DM}(d,\theta_1,\theta_2;\delta) = \underbrace{\frac{1}{2}(1+\delta)}_{\alpha_1^{DM}(\delta)} u_1(d,\theta_1) + \underbrace{\frac{1}{2}(1-\delta)}_{\alpha_2^{DM}(\delta)} u_2(d,\theta_2)$$

where $\delta \in (0, 1)$ is the discrimination parameter.

• Advisor chooses test allocation τ , has payoff

$$u^{R}(d, \theta_{1}, \theta_{2}; p) = \underbrace{\frac{1}{2}(1-p)}_{\alpha_{1}^{R}(p)} u_{1}(d, \theta_{1}) + \underbrace{\frac{1}{2}(1+p)}_{\alpha_{2}^{R}(p)} u_{2}(d, \theta_{2})$$

where $p \in [0, 1)$ is the partiality parameter.

When the advisor is impartial (p = 0), the equilibrium resource allocation is $\tau^* = (\frac{1}{2}, \frac{1}{2})$ for any discrimination level δ .

When the advisor is impartial (p = 0), the equilibrium resource allocation is $\tau^* = (\frac{1}{2}, \frac{1}{2})$ for any discrimination level δ .

When the advisor is impartial (p = 0), the equilibrium resource allocation is $\tau^* = (\frac{1}{2}, \frac{1}{2})$ for any discrimination level δ .

- \blacksquare larger discrepancy between α^{DM} and α^{R}
 - \Rightarrow advisor wants to learn more about group 2

When the advisor is impartial (p = 0), the equilibrium resource allocation is $\tau^* = (\frac{1}{2}, \frac{1}{2})$ for any discrimination level δ .

- larger discrepancy between α^{DM} and α^{R} ⇒ advisor wants to learn more about group 2
- politician less sensitive to information about group 2
 ⇒ advisor wants to learn less about group 2

When the advisor is impartial (p = 0), the equilibrium resource allocation is $\tau^* = (\frac{1}{2}, \frac{1}{2})$ for any discrimination level δ .

- larger discrepancy between α^{DM} and α^{R} ⇒ advisor wants to learn more about group 2
- politician less sensitive to information about group 2 ⇒ advisor wants to learn less about group 2
- impartial advisor: the two effects cancel out

Let
$$\mu^0 = (0,0)$$
, $\Sigma_k^0 = 1$, $T = 1$.

Proposition (Equality)

For every $\delta \in (0,1)$, there exists a unique $\hat{\rho}(\delta) > 0$ such that $u_1 = u_2$ in equilibrium. Further, $\hat{\rho}(\delta)$ is continuous and non-monotone in δ .

Let
$$\mu^0 = (0,0)$$
, $\Sigma^0_k = 1$, $T = 1$.

Proposition (Equality)

For every $\delta \in (0,1)$, there exists a unique $\hat{\rho}(\delta) > 0$ such that $u_1 = u_2$ in equilibrium. Further, $\hat{\rho}(\delta)$ is continuous and non-monotone in δ .

- As $\uparrow \delta$, an advisor partial towards group 2 compensates by learning more about group 2.
- When $\delta \to 1$, even an impartial advisor chooses $\tau_1 \approx 0$ and "punishes" the favored group by effectively providing no information.
- But welfare (with equal group weights) is maximized with an impartial advisor, p = 0.

Media Polarization – Model

- Two media outlets m = A, B aim to influence a decision of (median) voter V.
- The voter's decision d affects two policy issues k = 1, 2; each player wants the decision to reflect their preferred platform.
- The utility of player i = A, B, V is (with $\alpha_1^i + \alpha_2^i = 1$)

$$u^{i}(d,\theta) = -\sum_{k=1}^{2} \alpha_{k}^{i} \left(d - \theta_{k}\right)^{2}.$$
(1)

Media Polarization – Model

- Two media outlets m = A, B aim to influence a decision of (median) voter V.
- The voter's decision d affects two policy issues k = 1, 2; each player wants the decision to reflect their preferred platform.
- The utility of player i = A, B, V is (with $\alpha_1^i + \alpha_2^i = 1$)

$$u^{i}(d,\theta) = -\sum_{k=1}^{2} \alpha_{k}^{i} \left(d - \theta_{k}\right)^{2}.$$

$$\tag{1}$$

- Each media outlet chooses coverage $q^m = (q_1^m, q_2^m)' \in \mathbb{R}^2_+$ such that $q_1^m + q_2^m = 1$.
- The voter has a total budget of attention T > 0 and chooses how to allocate it between the two outlets: t = (t^A, t^B)' ∈ ℝ²₊ such that t^A + t^B ≤ T.
- Given q^m and t, the voter observes signals about each issue with precisions $t_k q_k^M$.

- **1** The voter chooses her attention allocation t.
- **2** Media outlets observe t and simultaneously choose coverage q^m .
- **3** Nature draws state realizations θ and signal realizations s
- **4** The voter observes q^m and s, updates her beliefs and takes decision d.
- 5 Payoffs are realized.

Proposition

If $\alpha_1^A > \alpha_1^V > \alpha_1^B$ and T is large enough, then in the unique equilibrium, media is polarized, $q^A = (1,0)'$ and $q^B = (0,1)'$, but the voter achieves her optimal aggregate attention allocation τ_V^* .

Proposition

If $\alpha_1^A > \alpha_1^V > \alpha_1^B$ and T is large enough, then in the unique equilibrium, media is polarized, $q^A = (1,0)'$ and $q^B = (0,1)'$, but the voter achieves her optimal aggregate attention allocation τ_V^* .

Corollary

If $\alpha_1^A > \alpha_1^V > \alpha_1^B$ and T is large enough, then the voter strictly prefers a polarized media duopoly to a (moderate) monopoly.

- A single agent who can acquire information before taking a decision.
- The agent's preferences can change in between.
- The agent can be naive or sophisticated about the potential change.
- Assume $\alpha_1^{DM} = \alpha_1^R$ and

$$\alpha_2^{DM} = \begin{cases} \alpha_2^R & \text{with probability } p, \\ c\alpha_2^R & \text{with probability } 1 - p, \end{cases}$$

for some $c \ge 0$ with $c \ne 1$.

Thus, learning utility reads

$$u^{R}(d,\theta) = -\left(d - \alpha_{1}^{R}\theta_{1} - \alpha_{2}^{R}\theta_{2}\right)^{2},$$

and decision utility reads

$$u^{DM}(d, heta) = egin{cases} -\left(d-lpha_1^R heta_1-lpha_2^R heta_2
ight)^2 & ext{with probability } p, \ -\left(d-lpha_1^R heta_1-clpha_2^R heta_2
ight)^2 & ext{with probability } 1-p. \end{cases}$$

Proposition

The sophisticate ignores attribute 2 for all T > 0 if and only if

$$c-1 \geq rac{1}{\sqrt{1-p}}.$$

Proposition

The sophisticate ignores attribute 2 for all T > 0 if and only if

$$c-1 \geq rac{1}{\sqrt{1-p}}.$$

Proposition (informal)

Depending on parameters and the choice of the welfare criterion, either the naif or the sophisticate may be better off.

Conclusion

- We contribute to the literature on strategic multi-attribute learning problems (Bardhi, 2024) by providing a tractable model to analyze preference misalignment.
- More broadly, we contribute to the literature on delegated expertise, which is typically considering only single-dimensional problems.
- In the context of strategic communication, our approach corresponds to a form of "constrained Bayesian persuasion".
- Our model builds on Liang et al. (2022), who show that a "greedy" learning strategy is optimal with correlated attributes while we show it is optimal with strategic motives.

Several applications

- **1** Diversity in Organizations
- 2 Discrimination and Inequality
- 3 Media Polarization
- **4** Dynamic Preferences

Example 1

$$\begin{pmatrix} \tilde{\theta}_1 \\ \tilde{\theta}_2 \end{pmatrix} \sim \textit{N} \left(\begin{pmatrix} \mu_1^0 \\ \mu_2^0 \end{pmatrix}, \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

Bliss action is $v = \theta_1 + \theta_2$ (i.e., $\alpha_1 = \alpha_2 = 1$)

Test budget T = 2

Example 1

$$\begin{pmatrix} \tilde{\theta}_1 \\ \tilde{\theta}_2 \end{pmatrix} \sim \textit{N} \left(\begin{pmatrix} \mu_1^0 \\ \mu_2^0 \end{pmatrix}, \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

Bliss action is $v = \theta_1 + \theta_2$ (i.e., $\alpha_1 = \alpha_2 = 1$)

Test budget T = 2

Optimal test allocation:

• allocate $\bar{T} = \frac{7}{8}$ tests to attribute $1 \Rightarrow$ the posterior covariance matrix is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Example 1

$$\begin{pmatrix} \tilde{\theta}_1 \\ \tilde{\theta}_2 \end{pmatrix} \sim \textit{N} \left(\begin{pmatrix} \mu_1^0 \\ \mu_2^0 \end{pmatrix}, \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

Bliss action is $v = \theta_1 + \theta_2$ (i.e., $\alpha_1 = \alpha_2 = 1$)

Test budget T = 2

Optimal test allocation:

allocate $\overline{T} = \frac{7}{8}$ tests to attribute $1 \Rightarrow$ the posterior covariance matrix is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

• allocate the remaining
$$T - ar{T} = rac{9}{8}$$
 tests equally

• optimal test allocation: $\tau_1^* = \frac{25}{16}$, $\tau_2^* = \frac{9}{16}$

$$\begin{pmatrix} \tilde{\theta}_1 \\ \tilde{\theta}_2 \end{pmatrix} \sim \textit{N} \left(\begin{pmatrix} \mu_1^0 \\ \mu_2^0 \end{pmatrix}, \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

Bliss action is $v = \theta_1 + 2\theta_2$ (i.e., $\alpha_1 = 1$ and $\alpha_2 = 2$)

Test budget T = 2

$$\begin{pmatrix} \tilde{\theta}_1 \\ \tilde{\theta}_2 \end{pmatrix} \sim \textit{N} \left(\begin{pmatrix} \mu_1^0 \\ \mu_2^0 \end{pmatrix}, \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

Bliss action is $v = \theta_1 + 2\theta_2$ (i.e., $\alpha_1 = 1$ and $\alpha_2 = 2$)

Test budget T = 2

Optimal test allocation:

• allocate $\bar{T}_1 = \frac{3}{8}$ tests to attribute $1 \Rightarrow$ the posterior covariance matrix is $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$

$$\begin{pmatrix} \tilde{\theta}_1 \\ \tilde{\theta}_2 \end{pmatrix} \sim \textit{N} \left(\begin{pmatrix} \mu_1^0 \\ \mu_2^0 \end{pmatrix}, \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix} \right)$$

Bliss action is $v = \theta_1 + 2\theta_2$ (i.e., $\alpha_1 = 1$ and $\alpha_2 = 2$)

Test budget T = 2

Optimal test allocation:

• allocate $\bar{T}_1 = \frac{3}{8}$ tests to attribute $1 \Rightarrow$ the posterior covariance matrix is $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$

• allocate the remaining $T - \bar{T}_1 = \frac{13}{8}$ tests in fractions $(\frac{1}{3}, \frac{2}{3})$

• optimal test allocation: $\tau_1^* = \frac{22}{24}$, $\tau_2^* = \frac{26}{24}$

Decomposition, K = 2

Decompose the agent's weights as

$$\alpha^{R}(\beta,\gamma) \equiv \beta \alpha^{DM} + \gamma \hat{\alpha}^{P}$$

where $\hat{\alpha}^{P} \equiv (-\alpha_{2}^{DM}, \alpha_{1}^{DM})$ is an orthogonal vector to α^{DM} .

Engagement β :

 $\blacksquare \uparrow \beta \iff \mathsf{agent} \ \mathsf{more} \ \mathsf{engaged}$

Distortion γ :

- $\gamma = 0$: agent is undistorted
- $\blacksquare \uparrow |\gamma|:$ agent becomes more distorted

Proposition: Undistorted agent

Suppose the agent is undistorted ($\gamma = 0$). Then I If $\beta \le 1/2$ (agent is disengaged), then the agent does no testing in equilibrium.

2 If $\beta > 1/2$ (agent is sufficiently engaged), then the agent chooses the principal's optimum in equilibrium.

Intuition:

• if $\beta \le 1/2$: the principal's decision is too sensitive to new information, so the agent prefers to stick with status quo

Proposition: Undistorted agent

Suppose the agent is undistorted ($\gamma=$ 0). Then

- **1** If $\beta \leq 1/2$ (agent is disengaged), then the agent does no testing in equilibrium.
- **2** If $\beta > 1/2$ (agent is sufficiently engaged), then the agent chooses the principal's optimum in equilibrium.

Intuition:

- the principal's optimum depends on the ratio of his weights
- $\gamma = 0$: the weight ratio is the same for the principal and the agent

Proposition: preference over distortion

- **I** Fix sensitivity $\beta \leq 1/2$ (agent is disengaged). Then the principal's equilibrium payoff weakly increases in distortion $|\gamma|$.
- 2 Fix sensitivity $\beta > 1/2$ (agent is sufficiently engaged), then the principal's equilibrium payoff weakly decreases in distortion $|\gamma|$.

Intuition:

- \blacksquare When $\beta \leq 1/2,$ an undistorted agent does no testing
 - distorted agent learns about one attribute
 - any info is better for the principal than no info

Preference for diversity

Preference for diversity

Preference for diversity

Proposition: preference over distortion

- **I** Fix sensitivity $\beta \leq 1/2$ (agent is disengaged). Then the principal's equilibrium payoff weakly increases in distortion $|\gamma|$.
- 2 Fix sensitivity $\beta > 1/2$ (agent is sufficiently engaged), then the principal's equilibrium payoff weakly decreases in distortion $|\gamma|$.

Intuition:

- \blacksquare When $\beta>1/2,$ an undistorted agent chooses the principal's optimum
 - distorted agent distorts the test allocation

Preference for no diversity

Preference for no diversity

Preference for no diversity

Preference for engagement

Proposition: preference for engagement

Fix distortion $\gamma \in \mathbb{R}$. Then:

- the principal's equilibrium payoff weakly increases in the agent's sensitivity β ;
- as $\beta \to \infty$, the agent chooses the principal's optimum.

Preference for sensitivity

