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Delegated learning in complex environments

Decision-maker and researcher

One decision to be made regarding an uncertain project

Project characterized by finitely many independent attributes

Players disagree on the importance of the attributes

Agent learns by allocating limited resources across attributes

Broad question: how does misalignment affect learning?
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Examples

1 Politician decides on a policy, but depends on advisor

the impact varies across social groups

politician prioritizes some social groups

2 Manager chooses firm strategy, but depends on analyst

they may disagree on the importance of different factors (e.g., regulatory vs competitive
environment) for final strategy

3 Voter influenced by media

media may want the voter to pay more or less atention to certain issues
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Preview of Results – Main results

We characterize the equilibrium learning behavior.

We show that it coincides with the solution of a modified single-player problem.

We provide conditions under which the researcher abstains from (free) learning.

We prove the equivalence to similar yet economically distinct frameworks.
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Preview of Results – Applications 1

Organization

Does a manger want to employ like-minded individuals?

Preference for diversity: employer may prefer a more biased employee

Discrimination

A discriminating policymaker can by tamed by detaching learning from decisions

Impartial advisor maximizes welfare and mitigates inequality

Eliminating inequality requires a counter-biased advisor
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Preview of Results – Applications 2

Media polarization

Competition between media outlets can lead to polarization...

...which is beneficial for the voter

Dynamic preferences

How does time-inconsistency affect learning and welfare?

A sophisticated agent may engage in strategic ignorance

Naivete can be beneficial
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Outline

1 Model

2 Single-player benchmark

3 Strategic players

4 Applications
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Framework

Researcher learns, Decision-maker makes a decision

K attributes θ = (θ1, . . . , θK )
′ ∈ RK . This talk: K = 2.

Bliss points:

vR(θ) = αR
1 θ1 + . . .+ αR

KθK

vDM(θ) = αDM
1 θ1 + . . .+ αDM

K θK

where weights αi
k ≥ 0 are commonly known

DM’s decision is d ∈ R

Utilities: ui (d ,θ) = −(d − v i (θ))2
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Attributes and learning

Attributes are independent multivariate normal:

θ̃k ∼ N (µ0
k ,Σ

0
k)

Researcher has budget of tests T > 0:

chooses test allocation τ1, . . . , τK ≥ 0 such that
∑

k τk ≤ T (free disposal)

Allocate τk tests to attribute θk =⇒ generate signal with precision τk :

s̃k = θk +N
(
0,

1

τk

)
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Timing

1 R chooses test allocation τ = (τ1, . . . , τK )
′ s.t.

∑
k τk ≤ T (observable)

2 Signal realizations sk = θk + εk publicly observed

3 DM updates beliefs

4 DM chooses the decision

5 Payoffs are realized

Assumption: when R is indifferent, doesn’t test.

Equilibrium concept: weak PBE
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Related Literature

Strategic attribute selection

Bardhi (2024), Econometrica

Different: independence, finite attributes, noisy signals

(Dynamic) non-strategic attribute learning

Liang, Mu, and Syrgkanis (2022), Econometrica

Different: strategic framework, independence, specific utilities
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1 Model

2 Single-player benchmark

3 Strategic players

4 Applications
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Single player

Start by solving a single-player problem:

αDM = αR ≡ α.

Decision is trivial: d = E[v |s, τ ]

At the learning stage, the goal is to minimize residual variance Σ̂k := V[v |s, τ ]
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Theorem 1: Optimal test allocation (K = 2)

WLOG let α1Σ
0
1 ≥ α2Σ

0
2.

Define

T̄ =
α1Σ

0
1 − α2Σ

0
2

α2Σ0
1Σ

0
2

.

The single-player optimal test allocation strategy is as follows:
1 Allocate min{T , T̄} tests to attribute 1
2 Allocate the remaining T − T̄ tests (if any) in constant fraction α1

α1 + α2︸ ︷︷ ︸
to attribute 1

,
α2

α1 + α2︸ ︷︷ ︸
to attribute 2

 · (T − T̄ )

Step 1 equalizes weighted residual variances αkΣ̂k example

Optimal test allocation depends on weight ratio α1

α2
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T

τ τ∗1 + τ∗2 = T

τ∗1 (T )

τ∗2 (T )

T̄1
τ1

τ2

0 0.5

0.5

1

1

1.5

1.5

τ∗(T )
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α2

α1

T̄ (α) = T

T̄ (α) = T α1Σ
0
1 = α2Σ

0
2

L1

L2

L12
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Outline

1 Model

2 Single-player benchmark

3 Strategic players

4 Applications

17



Strategic problem

Researcher’s expected utility

V R(τ) ≡ E
[
−
(
d̃DM − ṽR

)2
]

= −(vDM
0 − vR

0 )
2 − V

(
d̃DM − ṽR

)
= V A(∅) + 2cov [ṽR , d̃DM ]− V[d̃DM ]︸ ︷︷ ︸

added value of learning

Researcher considers two factors:

1 aligning DM’s decision with R’s objective: ↑ cov [ṽR , d̃DM ]

2 reducing excess variance of DM’s decision: ↓
(
V[d̃DM ]− cov(ṽR , d̃DM)

)
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Main result

Theorem 2: Equilibrium Test Allocation

τ is an equilibrium test allocation iff τ solves the single-player problem with effective weights

α̃k :=

√
max

{
0,
(
αR
k

)2 − (
αR
k − αDM

k

)2}

19



0

α̃k

αR
k

αDM
k

2
αDM
k

45◦

0

α̃k

αDM
kαR

k

45◦

Effective weights α̃k as functions of αR
k (left) and αDM

k (right)

20



αR
2

αR
1

αDM
1

2

αDM
2

2

T̄ (α̃) = T

T̄ (α̃) = T α̃1Σ
0
1 = α̃2Σ

0
2

L1

L2

L12

L0

αDM

more on optimal misalignment
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Takeaways

1 Tractability:
equilibirum test allocation given by single-agent solution with distorted weights.

2 Monotonicity:
higher αR

k ⇒ higher effective weight α̃k .

3 Ignorance:
if αDM

k too high compared to αR
k , R thinks DM overreacts and refuses to learn.

4 Misalignment:
if R is not sensitive enough (small αR), DM may benefit from distorting R’s weight ratio
αR

1

αR
2
relative to her own.
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Equivalent models

Framework A

DM takes a single decision, d ∈ R; players’ payoffs are

uiA(d , θ) = −
∑
k

αi
k (d − θk)

2
,

where
∑

k α
i
k = 1 for both players.

Framework B

DM takes K different decisions d1, . . . , dK ∈ R; players’ payoffs are

uiB(d , θ) = −
∑
k

(dk − αi
kθk)

2.

The equilibrium test allocation τ in these coincides with our baseline model.
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Outline

1 Model

2 Single-player benchmark

3 Strategic players

4 Applications
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Discrimination and inequality – Model 1/2

Politician, advisor, two social groups

Politician decides on policy d ∈ R
Two social groups k ∈ {1, 2}

Unknown optimal policy θk ∈ R

“Group” payoff: uk (d , θk ) = −(d − θk )
2

25



Discrimination and inequality – Model 2/2

Politician decides on policy d ∈ R, has payoff

uDM(d , θ1, θ2; δ) =
1

2
(1+δ)︸ ︷︷ ︸
αDM

1 (δ)

u1(d , θ1) +
1

2
(1−δ)︸ ︷︷ ︸
αDM

2 (δ)

u2(d , θ2)

where δ ∈ (0, 1) is the discrimination parameter.

Advisor chooses test allocation τ , has payoff

uR(d , θ1, θ2; p) =
1

2
(1−p)︸ ︷︷ ︸
αR

1 (p)

u1(d , θ1) +
1

2
(1+p)︸ ︷︷ ︸
αR

2 (p)

u2(d , θ2)

where p ∈ [0, 1) is the partiality parameter.
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Discrimination and inequality – Impartial Advisor

Proposition (Impartial advisor)

When the advisor is impartial (p = 0), the equilibrium resource allocation is τ∗ =
(
1
2 ,

1
2

)
for

any discrimination level δ.

Intuition: ↑ discrimination δ has two opposing effects

larger discrepancy between αDM and αR

⇒ advisor wants to learn more about group 2

politician less sensitive to information about group 2
⇒ advisor wants to learn less about group 2

impartial advisor: the two effects cancel out

27
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Discrimination and inequality – Eliminating Inequality

Let µ0 = (0, 0), Σ0
k = 1, T = 1.

Proposition (Equality)

For every δ ∈ (0, 1), there exists a unique p̂(δ) > 0 such that u1 = u2 in equilibrium. Further,
p̂(δ) is continuous and non-monotone in δ.

As ↑ δ, an advisor partial towards group 2 compensates by learning more about group 2.

When δ → 1, even an impartial advisor chooses τ1 ≈ 0 and “punishes” the favored group
by effectively providing no information.

But welfare (with equal group weights) is maximized with an impartial advisor, p = 0.
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Media Polarization – Model

Two media outlets m = A,B aim to influence a decision of (median) voter V .

The voter’s decision d affects two policy issues k = 1, 2; each player wants the decision to
reflect their preferred platform.

The utility of player i = A,B,V is (with αi
1 + αi

2 = 1)

ui (d , θ) = −
2∑

k=1

αi
k (d − θk)

2
. (1)

Each media outlet chooses coverage qm = (qm1 , q
m
2 )

′ ∈ R2
+ such that qm1 + qm2 = 1.

The voter has a total budget of attention T > 0 and chooses how to allocate it between
the two outlets: t = (tA, tB)′ ∈ R2

+ such that tA + tB ≤ T .

Given qm and t, the voter observes signals about each issue with precisions tkq
M
k .

29
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The utility of player i = A,B,V is (with αi
1 + αi

2 = 1)

ui (d , θ) = −
2∑

k=1

αi
k (d − θk)

2
. (1)

Each media outlet chooses coverage qm = (qm1 , q
m
2 )

′ ∈ R2
+ such that qm1 + qm2 = 1.

The voter has a total budget of attention T > 0 and chooses how to allocate it between
the two outlets: t = (tA, tB)′ ∈ R2

+ such that tA + tB ≤ T .

Given qm and t, the voter observes signals about each issue with precisions tkq
M
k .
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Media Polarization – Timing

1 The voter chooses her attention allocation t.

2 Media outlets observe t and simultaneously choose coverage qm.

3 Nature draws state realizations θ and signal realizations s

4 The voter observes qm and s, updates her beliefs and takes decision d .

5 Payoffs are realized.
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Media Polarization – Results

Proposition

If αA
1 > αV

1 > αB
1 and T is large enough, then in the unique equilibrium, media is polarized,

qA = (1, 0)′ and qB = (0, 1)′, but the voter achieves her optimal aggregate attention allocation
τ∗V .

Corollary

If αA
1 > αV

1 > αB
1 and T is large enough, then the voter strictly prefers a polarized media

duopoly to a (moderate) monopoly.
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Dynamic Preferences – Model 1/2

A single agent who can acquire information before taking a decision.

The agent’s preferences can change in between.

The agent can be naive or sophisticated about the potential change.

Assume αDM
1 = αR

1 and

αDM
2 =

{
αR
2 with probability p,

cαR
2 with probability 1− p,

for some c ≥ 0 with c ̸= 1.
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Dynamic Preferences – Model 2/2

Thus, learning utility reads

uR(d , θ) = −
(
d − αR

1 θ1 − αR
2 θ2

)2
,

and decision utility reads

uDM(d , θ) =

{
−
(
d − αR

1 θ1 − αR
2 θ2

)2
with probability p,

−
(
d − αR

1 θ1 − cαR
2 θ2

)2
with probability 1− p.
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Dynamic Preferences – Results

Proposition

The sophisticate ignores attribute 2 for all T > 0 if and only if

c − 1 ≥ 1√
1− p

.

Proposition (informal)

Depending on parameters and the choice of the welfare criterion, either the naif or the
sophisticate may be better off.
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Conclusion

We contribute to the literature on strategic multi-attribute learning problems (Bardhi,
2024) by providing a tractable model to analyze preference misalignment.

More broadly, we contribute to the literature on delegated expertise, which is typically
considering only single-dimensional problems.

In the context of strategic communication, our approach corresponds to a form of
“constrained Bayesian persuasion”.

Our model builds on Liang et al. (2022), who show that a “greedy” learning strategy is
optimal with correlated attributes while we show it is optimal with strategic motives.

Several applications

1 Diversity in Organizations

2 Discrimination and Inequality

3 Media Polarization

4 Dynamic Preferences
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Example 1

(
θ̃1
θ̃2

)
∼ N

((
µ0
1

µ0
2

)
,

(
8 0
0 1

))
Bliss action is v = θ1 + θ2 (i.e., α1 = α2 = 1)

Test budget T = 2

Optimal test allocation:

allocate T̄ = 7
8 tests to attribute 1 ⇒ the posterior covariance matrix is

(
1 0
0 1

)
allocate the remaining T − T̄ = 9

8 tests equally

optimal test allocation: τ∗1 = 25
16 , τ

∗
2 = 9

16
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Example 2

(
θ̃1
θ̃2

)
∼ N

((
µ0
1

µ0
2

)
,

(
8 0
0 1

))
Bliss action is v = θ1 + 2θ2 (i.e., α1 = 1 and α2 = 2)

Test budget T = 2

Optimal test allocation:

allocate T̄1 =
3
8 tests to attribute 1 ⇒ the posterior covariance matrix is

(
2 0
0 1

)
allocate the remaining T − T̄1 =

13
8 tests in fractions

(
1
3 ,

2
3

)
optimal test allocation: τ∗1 = 22

24 , τ
∗
2 = 26

24

back
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Decomposition, K = 2

Decompose the agent’s weights as

αR(β, γ) ≡ βαDM + γα̂P

where α̂P ≡ (−αDM
2 , αDM

1 ) is an orthogonal vector to αDM .

Engagement β:

↑ β ⇐⇒ agent more engaged

Distortion γ:

γ = 0: agent is undistorted

↑ |γ|: agent becomes more distorted



αR
2

αR
1

αDM
1

2

αDM
2

2

β

γ

γ > 0

αDM

L1

L2

L12

L0



Proposition: Undistorted agent

Suppose the agent is undistorted (γ = 0). Then
1 If β ≤ 1/2 (agent is disengaged), then the agent does no testing in equilibrium.

2 If β > 1/2 (agent is sufficiently engaged), then the agent chooses the principal’s optimum
in equilibrium.

Intuition:

if β ≤ 1/2: the principal’s decision is too sensitive to new information, so the agent
prefers to stick with status quo



Proposition: Undistorted agent

Suppose the agent is undistorted (γ = 0). Then
1 If β ≤ 1/2 (agent is disengaged), then the agent does no testing in equilibrium.

2 If β > 1/2 (agent is sufficiently engaged), then the agent chooses the principal’s optimum
in equilibrium.

Intuition:

the principal’s optimum depends on the ratio of his weights

γ = 0: the weight ratio is the same for the principal and the agent



Undistorted agent

αR
2

αR
1αDM

1 /2

αDM
2 /2

β

αDM



Undistorted agent

αR
2

αR
1αDM

1 /2

αDM
2 /2

β

αDM

β = 1/2



Undistorted agent

αR
2

αR
1αDM

1 /2

αDM
2 /2

β

αDM

β = 1/2no testing



Undistorted agent

αR
2

αR
1αDM

1 /2

αDM
2 /2

β

αDM

β = 1/2no testing

principal’s
optimum



Preference for diversity

Proposition: preference over distortion

1 Fix sensitivity β ≤ 1/2 (agent is disengaged). Then the principal’s equilibrium payoff
weakly increases in distortion |γ|.

2 Fix sensitivity β > 1/2 (agent is sufficiently engaged), then the principal’s equilibrium
payoff weakly decreases in distortion |γ|.

Intuition:

When β ≤ 1/2, an undistorted agent does no testing

distorted agent learns about one attribute

any info is better for the principal than no info
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Preference for no diversity

Proposition: preference over distortion

1 Fix sensitivity β ≤ 1/2 (agent is disengaged). Then the principal’s equilibrium payoff
weakly increases in distortion |γ|.

2 Fix sensitivity β > 1/2 (agent is sufficiently engaged), then the principal’s equilibrium
payoff weakly decreases in distortion |γ|.

Intuition:

When β > 1/2, an undistorted agent chooses the principal’s optimum

distorted agent distorts the test allocation
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Preference for engagement

Proposition: preference for engagement

Fix distortion γ ∈ R. Then:
the principal’s equilibrium payoff weakly increases in the agent’s sensitivity β;
as β → ∞, the agent chooses the principal’s optimum.
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