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Banerjee et. al (2015) evaluate a poverty alleviation program

 -  Assignment to treatment

  -  Pretreatment covariates

  -  Consumption three years after implementation


Collect the data  into 


Wi

Xi

Yi

Di = (Yi, Wi, Xi) D = (Di)n
i=1
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Augmented Inverse Propensity Score Weighting (Robbins et. al, 1994)

• Split the sample into  and , where  partition 

• Compute


 


    

     where  collects nuisance estimates constructed with 

D𝗌 D𝗌̃ (𝗌, 𝗌̃) [n] = {1,…, n}

T(𝗌, D) =
1

|𝗌 | ∑
i∈𝗌

ψ(Di, ̂η(D𝗌̃))

ψ(Di, ̂η(D𝗌̃)) = ̂μ1(Xi) − ̂μ0(Xi) +
Wi(Yi − ̂μ1(Xi)

̂π(Xi)
−

(1 − Wi)(Yi − ̂μ0(Xi))
1 − ̂π(Xi)

̂η(D𝗌̃) = ( ̂π, ̂μw) D𝗌̃
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               Single-Split: T(𝗌, D)

2

0.0

0.2

0.4

0.6

−5 0 5 10 15
Estimate

D
en
si
ty

Single Split

Ritzwoller and Romano

Let  be a random subset of  of size  𝗌 [n] n/2



               Single-Split: T(𝗌, D)

              Double-Split: 
1
2 (T(𝗌, D) + T(𝗌′￼, D))
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Let  and  be random subsets of  of size 𝗌 𝗌′￼ [n] n/2



               Single-Split: T(𝗌, D)

              Double-Split: 
1
2 (T(𝗌, D) + T(𝗌′￼, D))

Two-Fold Cross-Split: 
1
2 (T(𝗌, D) + T(𝗌̃, D))
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Let  and  be random subsets of  of size 𝗌 𝗌′￼ [n] n/2



A moderate increase in the number of sample-splits 
does not do away with the problem


Consider the -fold cross-split estimator 





where   is some -fold partition of 


The associated critical value is given by





Take  


k

a(𝗋k, D) =
1
k

k

∑
j=1

T(𝗌j, D) ,

𝗋k = (𝗌i)k
i=1 k [n]

𝖢𝖵α =
z1−α

n

k

∑
j=1

∑
i∈𝗌j

(ψ(Di, ̂η(D𝗌̃j
)) − a(𝗋k, D))2

1/2

k = 10
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Estimate = Critical Value
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If anything, the problem appears more severe in an application to risk estimation

Here, we consider the sample-split risk estimate





where  is the Lasso coefficient estimated on the sample  with the penalization parameter  


Cross-Validation: Aggregate with -fold cross-splitting in the same way. Select  minimizing estimated risk.


T(𝗌, D) =
1

∑i∈𝗌 𝕀{Wi = 1} ∑
i∈𝗌

𝕀{Wi = 1}(Yi − ̂β1(λ)⊤Xi)2

̂β1(λ) Ds̃ λ

k λ
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If anything, the problem appears more severe in an application to risk estimation

Here, we consider the sample-split risk estimate





where  is the Lasso coefficient estimated on the sample  with the penalization parameter  


Cross-Validation: Aggregate with -fold cross-splitting in the same way. Select  minimizing estimated risk.


T(𝗌, D) =
1

∑i∈𝗌 𝕀{Wi = 1} ∑
i∈𝗌
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k λ
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This Paper
1. Methodology


  Algorithm: Propose a simple procedure for sequentially aggregating sample-split statistics             


         Input: User chooses a bound and an error rate 


  Objective: Probability that residual randomness is smaller than the bound is less than error rate


2. Theory

1.  Establish validity of procedure, in particular asymptotic sense


2. Concentration result, characterizing difference between cross-splitting and independent splitting


3. Berry-Esseen bound, illustrating trade-off between computational efficiency and accuracy
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Outline
1. Proposal and Generic Validity


2. Non-Asymptotic Theory


(i) Concentration and Normal Approximation


(ii) Reproducibility


3. Performance



Notation

• The set  contains all subsets of  of size 


• The set  is the collection partitions of  into sets of size 
𝒮n,b [n] b
ℛn,b [n] b
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Proposal and Generic Validity Non-Asymptotic Theory Performance

Problem

Consider a sample . We are interested in reporting a real-valued sample-split statistic 





where  is an estimator of an unknown nuisance parameter and  is in 


We study aggregate statistics of the form





where  collects  elements of  and we write 

D = (Di)n
i=1

T(𝗌, D) = Ψ(D𝗌, ̂η(D𝗌̃))

̂η( ⋅ ) 𝗌 𝒮n,b

a(𝖱g,k, D) =
1
g

1
k

g

∑
i=1

k

∑
j=1

T(𝗌i,j, D)

𝖱g,k = (𝗋i)g
i=1 g ℛn,k,b 𝗋i = (𝗌i,j)k

j=1



Reproducibility
Our task is to choose the number of collections of mutually exclusive splits  to ensure that the residual 
variability in the aggregate statistic  is small

g
a(𝖱g,k, D)
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Definition: Reproducibility

Suppose that the integers  and  and the collections  and  are independent and identically 
distributed, conditional on the data  


We say that  is -reproducible if 





almost surely

̂g ̂g′￼ 𝖱 ̂g,k 𝖱′￼ ̂g′￼,k
D

a(𝖱 ̂g,k, D) (ξ, β)

P { |a(𝖱 ̂g,k, D) − a(𝖱′￼ ̂g′￼,k, D) | ≤ ξ ∣ D} ≥ 1 − β

Proposal and Generic Validity Non-Asymptotic Theory Performance



Anscombe-Chow-Robbins Aggregation
We propose a sequential method for constructing a reproducible statistic 


Define the variance estimator


 


where we recall that 


a(𝖱 ̂g,k, D)

̂v(𝖱g,k, D) =
1

g(g − 1)

g

∑
j=1

(a(𝗋j, D) − a(𝖱g,k, D))2

𝖱g,k = (𝗋j)g
j=1
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Algorithm: Anscombe-Chow-Robbins Aggregation

Let  be the smallest value of  greater than or equal to   such that the condition





is satisfied. Return .

̂g g g𝗂𝗇𝗂𝗍

̂v(𝖱g,k, D) ≤ 𝖼𝗏ξ,β =
1
2 ( ξ

z1−β/2 )
2

a(𝖱 ̂g,k, D)

Proposal and Generic Validity Non-Asymptotic Theory Performance



Generic Validity

Proof Sketch: Define . We show that  a.s. as , where





A central limit theorem holds for . The discrepancy  can be bounded.                    

vg,k(D) = Var(a(𝖱g,k, D) ∣ D) ̂g/g⋆ → 1 ξ → 0

g⋆ = min
g

Var(a(𝖱g,k, D) ∣ D) ≤
1
2 ( ξ

z1−β/2 )
2

, i.e., ξ ≈ z1−β/2 2 ⋅ vg⋆,k(D)) .

a(𝖱g⋆,k, D) |a(𝖱 ̂g,k, D) − a(𝖱g⋆,k, D) |

10Ritzwoller and Romano

Theorem: Generic Validity

If the collections  and  are independently computed with the Anscombe-Chow-Robbins procedure, then 





as 

𝖱 ̂g,k 𝖱′￼̂g′￼,k

P { |a(𝖱 ̂g,k, D) − a(𝖱′￼ ̂g′￼,k, D) | ≥ ξ ∣ D} → β

ξ → 0

Proposal and Generic Validity Non-Asymptotic Theory Performance



Taking Stock
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Proposal and Generic Validity Non-Asymptotic Theory Performance

To this point, we have made no assumptions. But have we gained a real statistical 
understanding of the problem? At least two questions arise:
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Proposal and Generic Validity Non-Asymptotic Theory Performance

To this point, we have made no assumptions. But have we gained a real statistical 
understanding of the problem? At least two questions arise:

1. Have we said anything about cross-splitting?


• On inspection, the proof only uses the independence of the  collections  in 
g 𝗋i 𝖱g,k
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Proposal and Generic Validity Non-Asymptotic Theory Performance

To this point, we have made no assumptions. But have we gained a real statistical 
understanding of the problem? At least two questions arise:

1. Have we said anything about cross-splitting?


2. How should we interpret the approximation with ?


• This asymptotic is somewhat nebulous, or at least, unfamiliar


• How does the associated approximation depend on parameters like  or ?


ξ → 0

k g⋆
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Proposal and Generic Validity Non-Asymptotic Theory Performance

To this point, we have made no assumptions. But have we gained a real statistical 
understanding of the problem? At least two questions arise:

1. Have we said anything about cross-splitting?


2. How should we interpret the approximation with ?


• This asymptotic is somewhat nebulous, or at least, unfamiliar


• How does the associated approximation depend on parameters like  or ?


ξ → 0

k g⋆

Objective: Quantify the accuracy of the nominal error rate  in a way that accounts for and 
compares the concentration in  with both  and 

β
a(𝖱g,k, D) g k
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Symmetry and Linearity
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Proposal and Generic Validity Non-Asymptotic Theory Performance

We impose two simplifying restrictions on the statistic of interest
Assumption: Symmetry and Determinism

For all sets  and data , the statistic  is deterministic and invariant to permutations of the data 
with indices in  and of the data with indices in , respectively. 

𝗌 ⊆ [n] D T(𝗌, D)
𝗌 𝗌̃

Intention: Restrict randomness under consideration to randomness induced by sample-splitting
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We impose two simplifying restrictions on the statistic of interest
Assumption: Symmetry and Determinism

For all sets  and data , the statistic  is deterministic and invariant to permutations of the data 
with indices in  and of the data with indices in , respectively. 

𝗌 ⊆ [n] D T(𝗌, D)
𝗌 𝗌̃

Intention: Restrict randomness under consideration to randomness induced by sample-splitting

Assumption: Linearity

For all sets  and data , the statistic  can be written





for some function  

𝗌 ⊆ [n] D T(𝗌, D)

T(𝗌, D) = Ψ(D𝗌, ̂η(D𝗌̃)) =
1

|𝗌 | ∑
i∈𝗌

ψ(Di, ̂η(D𝗌̃))

ψ( ⋅ , ⋅ )

Note: Easily relaxed to bounded differences, component-wise Lipschitz, etc.



Stability
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Proposal and Generic Validity Performance

Our results are expressed in terms of the following objects


• Let  denote an independent copy of the data 


• For each set , let  be constructed by swapping  with   for each  in 

D′￼ D

𝗊 ⊆ [n] D̃(q) Di D′￼i i 𝗊

Non-Asymptotic Theory

Definition: Stability

Fix a set . Let  be a randomly selected subset of  of cardinality . We refer to the quantity





as the th-order training stability.

𝗌 ∈ 𝒮n,b 𝗊 𝗌̃ q

σ(r,q) = 𝔼 [ |ψ(Di, ̂η(D𝗌̃)) − ψ(Di, ̂η(D̃(𝗊)
𝗌̃ )) |r ]

(r, q)



Stability
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Proposal and Generic Validity PerformanceNon-Asymptotic Theory

Definition: Stability

A statistic  is stable if 





for all positive even integers 

T(𝗌, D)

σ(r,q) ≲ ( q
n − b )

r

r

At times, we restrict attention to statistics satisfying the following bound

• Holds (and is tight) if  is an empirical risk minimizer of a strictly convex loss


• Widely studied in the statistical learning literature, e.g.,


- Subsampled regression (Chen, Syrgkanis, and Austern, 2022, Ritzwoller and Syrgkanis, 2024)


- Stochastic gradient descent (Hardt, Recht, and Singer, 2016)

̂η



Concentration
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Proposal and Generic Validity PerformanceNon-Asymptotic Theory

The following result characterizes the concentration of  around a(𝖱g,k, D) ā(D) = 𝔼[a(𝖱g,k, D) ∣ D]

Theorem: Large Deviation Bound

Let . Under the stated assumptions, the inequality





holds with probability greater than  as  varies

φ = b/n

P |a(𝖱g,k, D) − ā(D) | ≲ (1 − φ)
σ(2,b−1)

g
log(ε−1)

δ
∣ D ≥ 1 − ε

1 − δ D

Challenge: Handling dependence in summands of  across cross-splits

Approach: Use a coupling argument to construct an exchangeable pair, apply Stein’s method (Chatterjee, 2005, 2007)

a(𝖱g,k, D)

Suppose that  is stable. The rate reduces to





T(𝗌, D)

σ(2,b−1)

g
≲

Stability

1
g

1
k
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Proposal and Generic Validity PerformanceNon-Asymptotic Theory

The Anscombe-Chow-Robbins procedure depends on a normal approximation

Theorem: Berry-Esseen Bound 
Define the normalized statistic 





Under the stated assumptions, if  is standard normal, then the inequality





holds with probability greater than  as  varies

U(𝖱g,k, D) =
a(𝖱g,k, D) − ā(D)

(vg,k(D))1/2

Z

sup
z∈ℝ

(P{U(𝖱g,k, D) ≤ z ∣ D} − P{Z ≤ z}) ≲
1
δ

(1 − φ)3

g ( (σ(4,b−1))1/2

v1,k(D) )
3/2

1 − δ D



Normal Approximation
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Proposal and Generic Validity PerformanceNon-Asymptotic Theory

Consider the error in the normal approximation

(1 − φ)3

g ( (σ(4,b−1)
𝗍𝗋𝖺𝗂𝗇 )1/2

v1,k(D) )
3/2

By stability and an upper bound on  derived from the concentration inequality, we can show that


 

v1,k(D)

(1 − φ)3

g ( (σ(4,b−1)
𝗍𝗋𝖺𝗂𝗇 )1/2

v1,k(D) )
3/2

≳
Stability

1
g
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Consider the error in the normal approximation

(1 − φ)3

g ( (σ(4,b−1)
𝗍𝗋𝖺𝗂𝗇 )1/2

v1,k(D) )
3/2

By stability and an upper bound on  derived from the concentration inequality, we can show that


 

v1,k(D)

(1 − φ)3

g ( (σ(4,b−1)
𝗍𝗋𝖺𝗂𝗇 )1/2

v1,k(D) )
3/2

≳
Stability

1
g
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Reproducibility
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Proposal and Generic Validity PerformanceNon-Asymptotic Theory

We’re now equipped to re-consider the Anscombe-Chow-Robbins procedure
Theorem: Berry-Esseen Bound 

If the collections  and  are independently computed with the Anscombe-Chow-Robbins procedure, then





holds with probability greater than  as  varies, where


𝖱 ̂g,k 𝖱′￼̂g′￼,k

P { |a(𝖱 ̂g,k, D) − a(𝖱′￼ ̂g′￼,k, D) | ≤ ξ ∣ D} − (1 − β) ≤ 𝖠 + 𝖡

1 − δ D

𝖠 =
1
δ

ξ
z1−β/2

(1 − φ)3(σ(4,b−1))3/4

(v1,k(D))2
and 𝖡 = ( 1

δ3/2

ξ
z1−β/2

(1 − φ)4σ(2,b−1)(σ(4,b−1))1/2

(v1,k(D))5/2 )
1/2

•  results from a normal approximation to 


•  results from the difference 


• The dependence on  is optimal (Landers and Rogge, 1976)

𝖠 a(𝖱g⋆,k, D) − a(𝖱′￼g⋆,k, D)
𝖡 a(𝖱 ̂g,k, D) − a(𝖱g⋆,k, D)

ξ



Computation and Accuracy
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Computation

• The oracle stopping time  is proportional to


 


• The total number of splits used by the oracle procedure  is proportional to 

g⋆

g⋆ ≈
Stability

2
k2 ( z1−β/2

ξ )
m⋆ = kg⋆ k−1
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Computation

• The oracle stopping time  is proportional to


 


• The total number of splits used by the oracle procedure  is proportional to 

g⋆

g⋆ ≈
Stability

2
k2 ( z1−β/2

ξ )
m⋆ = kg⋆ k−1

Accuracy

• The leading term in the accuracy of the nominal error rate is proportional to 


 ( ξ
z1−β/2

(1 − φ)4σ(4,b−1)
𝗍𝗋𝖺𝗂𝗇 (σ(4,b−1)

𝗍𝗋𝖺𝗂𝗇 )1/2

(v1,k(D))5/2 )
1/2

≈
Stability ( ξk

z1−β/2 )
1/2

≈ (g⋆)−1/4
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Computation

• The oracle stopping time  is proportional to


 


• The total number of splits used by the oracle procedure  is proportional to 

g⋆

g⋆ ≈
Stability

2
k2 ( z1−β/2

ξ )
m⋆ = kg⋆ k−1

Accuracy

• The leading term in the accuracy of the nominal error rate is proportional to 


 ( ξ
z1−β/2

(1 − φ)4σ(4,b−1)
𝗍𝗋𝖺𝗂𝗇 (σ(4,b−1)

𝗍𝗋𝖺𝗂𝗇 )1/2

(v1,k(D))5/2 )
1/2

≈
Stability ( ξk

z1−β/2 )
1/2

≈ (g⋆)−1/4

Upshot

• There is a fundamental tradeoff between computation and accuracy

• The rate  is slower than for non-sequential problems (i.e., usually coverage error is order )(g⋆)−1/4 n−1/2
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Conclusion
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• We propose a method for sequentially aggregating sample-split statistics to ensure that 
residual randomness is small


• We give two main results:


• Cross-splitting reduces randomness more quickly than independent splitting


• But does not necessary improve the quality of the nominal error rate


• Consequence: Users navigate tradeoff between computation and accuracy


