Reproducible Aggregation of Sample-Split Statistics

David M. Ritzwoller, Stanford University Joint with Joseph P. Romano arXiv:2311.14204

ESMES August 27th, 2024

Banerjee et. al (2015) evaluate a poverty alleviation program

- W_i Assignment to treatment
- X_i Pretreatment covariates
- Y_i Consumption three years after implementation

Collect the data $D_i = (Y_i, W_i, X_i)$ into $D = (D_i)_{i=1}^n$

Banerjee et. al (2015) evaluate a poverty alleviation program

- W_i Assignment to treatment
- X_i Pretreatment covariates
- Y_i Consumption three years after implementation

Collect the data $D_i = (Y_i, W_i, X_i)$ into $D = (D_i)_{i=1}^n$

Augmented Inverse Propensity Score Weighting (Robbins et. al, 1994)

- Split the sample into D_s and $D_{\tilde{s}}$, where (s, \tilde{s}) partition $[n] = \{1, ..., n\}$
- Compute

$$T(\mathbf{s}, D) = \frac{1}{|\mathbf{s}|} \sum_{i \in \mathbf{s}} \psi(D_i, \hat{\eta}(D_{\tilde{\mathbf{s}}}))$$

$$\psi(D_i, \hat{\eta}(D_{\tilde{\mathbf{s}}})) = \hat{\mu}_1(X_i) - \hat{\mu}_0(X_i) + \frac{W_i(Y_i - \hat{\mu}_1(X_i))}{\hat{\pi}(X_i)} - \frac{(1 - W_i)(Y_i - \hat{\mu}_0(X_i))}{1 - \hat{\pi}(X_i)}$$

where $\hat{\eta}(D_{\tilde{s}}) = (\hat{\pi}, \hat{\mu}_w)$ collects nuisance estimates constructed with $D_{\tilde{s}}$

Let s be a random subset of [n] of size n/2Single-Split: T(s, D)

Let s and s' be random subsets of [n] of size n/2Single-Split: T(s, D)Double-Split: $\frac{1}{2}(T(s, D) + T(s', D))$

Let s and s' be random subsets of [n] of size n/2Single-Split: T(s, D)Double-Split: $\frac{1}{2}(T(s, D) + T(s', D))$ Two-Fold Cross-Split: $\frac{1}{2}(T(s, D) + T(\tilde{s}, D))$

A moderate increase in the number of sample-splits does not do away with the problem

Consider the *k*-fold cross-split estimator

$$a(\mathbf{r}_k, D) = \frac{1}{k} \sum_{j=1}^k T(\mathbf{s}_j, D) ,$$

where $\mathbf{r}_k = (\mathbf{s}_i)_{i=1}^k$ is some *k*-fold partition of [n]

The associated critical value is given by

$$CV_{\alpha} = \frac{z_{1-\alpha}}{n} \left(\sum_{j=1}^{k} \sum_{i \in s_{j}} (\psi(D_{i}, \hat{\eta}(D_{\tilde{s}_{j}})) - a(\mathbf{r}_{k}, D))^{2} \right)$$

Take k = 10

A moderate increase in the number of sample-splits does not do away with the problem

Consider the *k*-fold cross-split estimator

$$a(\mathbf{r}_k, D) = \frac{1}{k} \sum_{j=1}^k T(\mathbf{s}_j, D) ,$$

where $r_k = (s_i)_{i=1}^k$ is some k-fold partition of [n]

The associated critical value is given by

$$CV_{\alpha} = \frac{z_{1-\alpha}}{n} \left(\sum_{j=1}^{k} \sum_{i \in s_{j}} (\psi(D_{i}, \hat{\eta}(D_{\tilde{s}_{j}})) - a(\mathbf{r}_{k}, D))^{2} \right)$$

Take k = 10

If anything, the problem appears more severe in an application to risk estimation Here, we consider the sample-split risk estimate

$$T(\mathbf{s}, D) = \frac{1}{\sum_{i \in \mathbf{s}} \mathbb{I}\{W_i = 1\}} \sum_{i \in \mathbf{s}} \mathbb{I}\{W_i = 1\} (Y_i - \hat{\beta}_1(\lambda)^{\mathsf{T}})$$

where $\hat{\beta}_1(\lambda)$ is the Lasso coefficient estimated on the sample $D_{\tilde{s}}$ with the penalization parameter λ

 $(X_i)^2$

Cross-Validation: Aggregate with k-fold cross-splitting in the same way. Select λ minimizing estimated risk.

If anything, the problem appears more severe in an application to risk estimation Here, we consider the sample-split risk estimate

$$T(\mathbf{s}, D) = \frac{1}{\sum_{i \in \mathbf{s}} \mathbb{I}\{W_i = 1\}} \sum_{i \in \mathbf{s}} \mathbb{I}\{W_i = 1\} (Y_i - \hat{\beta}_1(\lambda)^{\mathsf{T}})$$

where $\hat{\beta}_1(\lambda)$ is the Lasso coefficient estimated on the sample $D_{\tilde{s}}$ with the penalization parameter λ

Ritzwoller and Romano

$$(X_i)^2$$

Cross-Validation: Aggregate with k-fold cross-splitting in the same way. Select λ minimizing estimated risk.

This Paper

- 1. Methodology
 - Algorithm: Propose a simple procedure for sequentially aggregating sample-split statistics
 - Input: User chooses a bound and an error rate

Objective: Probability that residual randomness is smaller than the bound is less than error rate

- 2. Theory
 - Establish validity of procedure, in particular asymptotic sense
 - 2.
 - 3.

Concentration result, characterizing difference between cross-splitting and independent splitting

Berry-Esseen bound, illustrating trade-off between computational efficiency and accuracy

Related Literature

- Sequential Statistics
 - Classical Methods: Anscombe (1952), Chow and Robbins (1965) (İ)
- 2. Cross-Validation and Cross Splitting
 - (İ)
 - (ii) Vattani (2013), Chen, Syrgkanis, and Austern (2022), Ritzwoller and Syrgkanis (2024)
 - Balakrishnan (2020), Ramdas and Manole (2023)
- 3. Stein's Method
 - Exchangeable Pairs: Chatterjee (2005, 2007), Paulin, Mackey, and Tropp (2013, 2016) (I)

Inference for Generalization Error: Bayle, Bayle, Janson, and Mackey (2020), Austern and Zhou (2020)

Algorithmic Stability: Kale, Kumar, and Vassilvitskii (2011), Kumar, Lokshtanov, Vassilvitskii, and

(iii) Additional Applications: DiCiccio, DiCiccio, and Romano (2020), Wasserman, Ramdas, and

Outline

- **1.** Proposal and Generic Validity
- 2. Non-Asymptotic Theory
 - (i) Concentration and Normal Approximation
 - (ii) Reproducibility
- 3. Performance

Notation

- The set $S_{n,b}$ contains all subsets of [n] of size b
- The set $\mathscr{R}_{n,b}$ is the collection partitions of [n] into sets of size b

Notation

- The set $S_{n,b}$ contains all subsets of [n] of size b
- The set $\mathscr{R}_{n,b}$ is the collection partitions of [n] into sets of size b

Problem

Consider a sample $D = (D_i)_{i=1}^n$. We are interested in reporting a real-valued sample-split statistic $T(\mathbf{s}, D) = \Psi(D_{\mathbf{s}}, \hat{\eta}(D_{\tilde{\mathbf{s}}}))$

where $\hat{\eta}(\cdot)$ is an estimator of an unknown nuisance parameter and s is in $\mathcal{S}_{n,b}$ We study aggregate statistics of the form

$$a(\mathsf{R}_{g,k}, D) = \frac{1}{g} \frac{1}{k} \sum_{i=1}^{g} \sum_{j=1}^{k} T(\mathsf{s}_{i,j}, D)$$

where $R_{g,k} = (r_i)_{i=1}^g$ collects g elements of $\mathscr{R}_{n,k,b}$ and we write $r_i = (s_{i,j})_{j=1}^k$

Reproducibility

Our task is to choose the number of collections of mutually exclusive splits g to ensure that the residual variability in the aggregate statistic $a(R_{g,k}, D)$ is small

Definition: Reproducibility

Suppose that the integers \hat{g} and \hat{g}' and the collections $R_{\hat{g},k}$ and $R'_{\hat{g}',k}$ are independent and identically distributed, conditional on the data D

We say that $a(R_{\hat{g},k}, D)$ is (ξ, β) -reproducible if

$$P\left\{\left|a(\mathsf{R}_{\hat{g},k},D)-a(\mathsf{R}'_{\hat{g}',k},D)\right| \leq \xi \mid D\right\} \geq 1-\beta$$

almost surely

Anscombe-Chow-Robbins Aggregation

We propose a sequential method for constructing a reproducible statistic $a(R_{\hat{g},k}, D)$

Define the variance estimator

$$\hat{v}(\mathsf{R}_{g,k}, D) = \frac{1}{g(g-1)} \sum_{j=1}^{g} (a(\mathsf{r}_j, D) - a(\mathsf{R}_{g,k}, D))^2$$

where we recall that $R_{g,k} = (r_j)_{i=1}^g$

Algorithm: Anscombe-Chow-Robbins Aggregation

Let \hat{g} be the smallest value of g greater than or equal to g_{init} such that the condition

$$\hat{v}(\mathsf{R}_{g,k}, D) \leq \mathsf{cv}_{\xi,\beta} = \frac{1}{2} \left(\frac{\xi}{z_{1-\beta/2}} \right)^2$$

is satisfied. Return $a(\mathsf{R}_{\hat{g},k}, D)$.

Ritzwoller and Romano

Non-Asymptotic Theory

Generic Validity

Theorem: Generic Validity

If the collections $R_{\hat{g},k}$ and $R'_{\hat{g}',k}$ are independently computed with the Anscombe-Chow-Robbins procedure, then $P\left\{ |a(\mathsf{R}_{\hat{g},k},D) - \right.$

as $\xi \to 0$

Proof Sketch: Define $v_{g,k}(D) = Var(a(R_{g,k}, D) \mid D)$. We show that $\hat{g}/g^* \to 1$ a.s. as $\xi \to 0$, where $g^{\star} = \min_{g} \begin{cases} \operatorname{Var}(a(\mathsf{R}_{g,k}, D) \mid D) \leq \frac{1}{2} \left(\frac{1}{z}\right) \end{cases}$ ノ

A central limit theorem holds for $a(R_{g^{\star},k}, D)$. The discrepancy $|a(R_{\hat{g},k}, D) - a(R_{g^{\star},k}, D)|$ can be bounded.

$$a(\mathsf{R}'_{\hat{g}',k},D) \mid \geq \xi \mid D \bigg\} \to \beta$$

$$\frac{\xi}{z_{1-\beta/2}}\right)^{2} \left\{, \text{ i.e., } \xi \approx z_{1-\beta/2} \sqrt{2 \cdot v_{g^{\star},k}(D)}\right\}.$$

To this point, we have made <u>no</u> assumptions. But have we gained a real statistical understanding of the problem? At least two questions arise:

Performance

Ritzwoller and Romano

11

To this point, we have made <u>no</u> assumptions. But have we gained a real statistical understanding of the problem? At least two questions arise:

- 1. Have we said anything about cross-splitting?
 - On inspection, the proof only uses the independence of the g collections r_i in $R_{g,k}$

To this point, we have made <u>no</u> assumptions. But have we gained a real statistical understanding of the problem? At least two questions arise:

- 1. Have we said anything about cross-splitting?
- 2. How should we interpret the approximation with $\xi \to 0$?
 - This asymptotic is somewhat nebulous, or at least, unfamiliar
 - How does the associated approximation depend on parameters like k or g^* ?

To this point, we have made <u>no</u> assumptions. But have we gained a real statistical understanding of the problem? At least two questions arise:

- 1. Have we said anything about cross-splitting?
- 2. How should we interpret the approximation with $\xi \to 0$?
 - This asymptotic is somewhat nebulous, or at least, unfamiliar
 - How does the associated approximation depend on parameters like k or g^* ?

compares the concentration in $a(R_{g,k}, D)$ with both g and k

Objective: Quantify the accuracy of the nominal error rate β in a way that accounts for and

Outline

- **1.** Proposal and Generic Validity
- 2. Non-Asymptotic Theory (i) Concentration and Normal Approximation (ii) Reproducibility
- 3. Performance

Outline

- **1.** Proposal and Generic Validity
- 2. Non-Asymptotic Theory
 - (i) Concentration and Normal Approximation
 - (ii) Reproducibility
- 3. Performance

Symmetry and Linearity

We impose two simplifying restrictions on the statistic of interest

Assumption: Symmetry and Determinism

For all sets s \subseteq [n] and data D, the statistic T(s, D) is deterministic and invariant to permutations of the data with indices in s and of the data with indices in \tilde{s} , respectively.

Intention: Restrict randomness under consideration to randomness induced by sample-splitting

Symmetry and Linearity

We impose two simplifying restrictions on the statistic of interest

Assumption: Symmetry and Determinism

with indices in s and of the data with indices in \tilde{s} , respectively.

Assumption: Linearity

For all sets s \subseteq [n] and data D, the statistic T(s, D) can be written

 $T(\mathbf{s}, D) = \Psi(D_{\mathbf{s}}, \hat{\eta})$

for some function $\psi(\cdot, \cdot)$

Note: Easily relaxed to bounded differences, component-wise Lipschitz, etc.

- For all sets s \subseteq [n] and data D, the statistic T(s, D) is deterministic and invariant to permutations of the data
- Intention: Restrict randomness under consideration to randomness induced by sample-splitting

$$D_{\tilde{s}})) = \frac{1}{|s|} \sum_{i \in s} \psi(D_i, \hat{\eta}(D_{\tilde{s}}))$$

- **Ritzwoller and Romano**

Stability

Our results are expressed in terms of the following objects

- Let D' denote an independent copy of the data D
- For each set $q \subseteq [n]$, let $\tilde{D}^{(q)}$ be constructed by swapping D_i with D'_i for each i in q

Definition: Stability

Fix a set $s \in S_{n,b}$. Let q be a randomly selected subset of \tilde{s} of cardinality q. We refer to the quantity $D_i, \hat{\eta}(D_{\tilde{s}})) - \psi(D_i, \hat{\eta}(\tilde{D}_{\tilde{s}}^{(q)}))|^r$

$$\sigma^{(r,q)} = \mathbb{E}\left[|\psi(D)| \psi(D)| \psi(D) \right]$$

as the (r, q)th-order training stability.

14

 $\boldsymbol{\sigma}$

Stability

At times, we restrict attention to statistics satisfying the following bound

Definition: Stability

A statistic T(s, D) is stable if

for all positive even integers r

- Holds (and is tight) if $\hat{\eta}$ is an empirical risk minimizer of a strictly convex loss
- Widely studied in the statistical learning literature, e.g.,

 - Stochastic gradient descent (Hardt, Recht, and Singer, 2016)

Ritzwoller and Romano

$$^{(r,q)} \lesssim \left(rac{q}{n-b}
ight)^r$$

- Subsampled regression (Chen, Syrgkanis, and Austern, 2022, Ritzwoller and Syrgkanis, 2024)

Concentration

Theorem: Large Deviation Bound

Let $\varphi = b/n$. Under the stated assumptions, the inequality

$$\int_{\Delta t} \int_{\Delta $

holds with probability greater than $1 - \delta$ as D varies

Challenge: Handling dependence in summands of $a(R_{g,k}, D)$ across cross-splits Approach: Use a coupling argument to construct an exchangeable pair, apply Stein's method (Chatterjee, 2005, 2007)

Suppose that T(s, D) is stable. The rate reduces to

$$\sqrt{rac{\sigma^{(2,b-1)}}{g}}$$

Ritzwoller and Romano

The following result characterizes the concentration of $a(R_{g,k}, D)$ around $\bar{a}(D) = \mathbb{E}[a(R_{g,k}, D) \mid D]$

 $P\left\{ \left| a(\mathsf{R}_{g,k}, D) - \bar{a}(D) \right| \lesssim (1 - \varphi) \sqrt{\frac{\sigma^{(2,b-1)} \log(\varepsilon^{-1})}{g}} \left| D \right\} \ge 1 - \varepsilon \right\}$

$$\lesssim \frac{1}{\sqrt{g}} \frac{1}{k}$$
Stability

Normal Approximation

The Anscombe-Chow-Robbins procedure depends on a normal approximation

Theorem: Berry-Esseen Bound

Define the normalized statistic

 $U(\mathsf{R}_{g,k}, D) =$

Under the stated assumptions, if Z is standard normal, then the inequality

$$\sup_{z \in \mathbb{R}} \left(P\{ U(\mathsf{R}_{g,k}, D) \le z \mid D\} - P\{Z \le z\} \right) \lesssim \frac{1}{\delta} \frac{(1-\varphi)^3}{\sqrt{g}} \left(\frac{(\sigma^{(4,b-1)})^{1/2}}{v_{1,k}(D)} \right)^{3/2}$$

holds with probability greater than $1 - \delta$ as D varies

$$= \frac{a(\mathsf{R}_{g,k}, D) - \bar{a}(D)}{(v_{g,k}(D))^{1/2}}$$

Normal Approximation

Consider the error in the normal approximation

 $\frac{(1-\varphi)^3}{\sqrt{g}}$

$$\left(\frac{(\sigma_{\text{train}}^{(4,b-1)})^{1/2}}{v_{1,k}(D)}\right)^{3/2}$$

$$\frac{(b-1)}{(b-1)}^{1/2} \right)^{3/2} \underset{\text{Stability}}{\gtrsim} \frac{1}{\sqrt{g}}$$

Normal Approximation

Consider the error in the normal approximation

By stability and an upper bound on $v_{1,k}(D)$ derived from the concentration inequality, we can show that

$$\frac{(1-\varphi)^3}{\sqrt{g}} \left(\frac{(\sigma_{\text{train}}^{(4,b-1)})^{1/2}}{v_{1,k}(D)}\right)^{3/2}$$

Outline

- **1.** Proposal and Generic Validity
- 2. Non-Asymptotic Theory
 - (i) Concentration and Normal Approximation
 - (ii) Reproducibility
- 3. Performance

Reproducibility

We're now equipped to re-consider the Anscombe-Chow-Robbins procedure **Theorem:** Berry-Esseen Bound

 $\left| P\left\{ \left| a(\mathsf{R}_{\hat{g},k},D) - a(\mathsf{R}'_{\hat{g}',k},D) \right| \leq \xi \right| \right.$

holds with probability greater than $1 - \delta$ as D varies, where

$$\mathsf{A} = \frac{1}{\delta} \frac{\xi}{z_{1-\beta/2}} \frac{(1-\varphi)^3 (\sigma^{(4,b-1)})^{3/4}}{(v_{1,k}(D))^2} \quad \text{and}$$

- A results from a normal approximation to $a(R_g)$
- B results from the difference $a(R_{\hat{g},k}, D) a(R_{g^{\star},k})$
- The dependence on ξ is optimal (Landers and Rogge, 1976)

If the collections $R_{\hat{g},k}$ and $R'_{\hat{g}',k}$ are independently computed with the Anscombe-Chow-Robbins procedure, then

$$D\left\{-(1-\beta)\right| \le \mathsf{A} + \mathsf{B}$$

$$\mathsf{B} = \left(\frac{1}{\delta^{3/2}} \frac{\xi}{z_{1-\beta/2}} \frac{(1-\varphi)^4 \sigma^{(2,b-1)} (\sigma^{(4,b-1)})^{1/2}}{(v_{1,k}(D))^{5/2}}\right)^{1/2}$$

$$(\star,k,D) - a(\mathsf{R}'_{g^{\star},k},D)$$

 (\star,D)
Roage, 1976)

Computation and Accuracy

Computation

• The oracle stopping time g^{\star} is proportional to

8

• The total number of splits used by the oracle procedure $m^{\star} = kg^{\star}$ is proportional to k^{-1}

$$x^{\star} \approx \frac{2}{k^2} \left(\frac{z_{1-\beta/2}}{\xi} \right)$$

Computation and Accuracy

Computation

• The oracle stopping time g^{\star} is proportional to

8

• The total number of splits used by the oracle procedure $m^{\star} = kg^{\star}$ is proportional to k^{-1}

Accuracy

• The leading term in the accuracy of the nominal error rate is proportional to

$$\left(\frac{\xi}{z_{1-\beta/2}} \frac{(1-\varphi)^4 \sigma_{\text{train}}^{(4,b-1)} (\sigma_{\text{train}}^{(4,b-1)})^{1/2}}{(v_{1,k}(D))^{5/2}}\right)^{1/2} \approx \left(\frac{\xi k}{z_{1-\beta/2}}\right)^{1/2} \approx (g^{\star})^{-1/4}$$

*
$$\approx \frac{2}{k^2} \left(\frac{z_{1-\beta/2}}{\xi} \right)$$

Stability k^2

Computation and Accuracy

Computation

• The oracle stopping time g^{\star} is proportional to

8

• The total number of splits used by the oracle procedure $m^{\star} = kg^{\star}$ is proportional to k^{-1}

Accuracy

• The leading term in the accuracy of the nominal error rate is proportional to

$$\left(\frac{\xi}{z_{1-\beta/2}} \frac{(1-\varphi)^4 \sigma_{\text{train}}^{(4,b-1)} (\sigma_{\text{train}}^{(4,b-1)})^{1/2}}{(v_{1,k}(D))^{5/2}}\right)^{1/2} \approx \left(\frac{\xi k}{z_{1-\beta/2}}\right)^{1/2} \approx (g^{\star})^{-1/4}$$

Upshot

- There is a fundamental tradeoff between computation and accuracy

*
$$\approx \frac{2}{k^2} \left(\frac{z_{1-\beta/2}}{\xi} \right)$$

• The rate $(g^{\star})^{-1/4}$ is slower than for non-sequential problems (i.e., usually coverage error is order $n^{-1/2}$)

Outline

- **1.** Proposal and Generic Validity
- 2. Non-Asymptotic Theory
 - (i) Concentration and Normal Approximation (ii) Reproducibility
- 3. Performance

Treatment Effect Estimation : Reproducibility Error $P\{ | a(\mathsf{R}_{\hat{g},k}, D) - a(\mathsf{R}'_{\hat{g}',k}, D) | \leq \xi | D \}$

Ritzwoller and Romano

Non-Asymptotic Theory

Treatment Effect Estimation: Oracle Stopping time $g^* = 2v_{1,k}(D)(z_{1-\beta/2}/\xi)$

Ritzwoller and Romano

Non-Asymptotic Theory

Ritzwoller and Romano

Non-Asymptotic Theory

Proposal and Generic Validity

Non-Asymptotic Theory

Performance

Conclusion

- residual randomness is small
- We give two main results:
 - Cross-splitting reduces randomness more quickly than independent splitting
 - But does not necessary improve the quality of the nominal error rate
- Consequence: Users navigate tradeoff between computation and accuracy

• We propose a method for sequentially aggregating sample-split statistics to ensure that

