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ABSTRACT. Statistical inference is often simplified by sample-splitting. This simplification
comes at the cost of the introduction of randomness not native to the data. We propose a simple
procedure for sequentially aggregating statistics constructed with multiple splits of the same
sample. The user specifies a bound and a nominal error rate. If the procedure is implemented
twice on the same data, the nominal error rate approximates the chance that the results differ
by more than the bound. We analyze the accuracy of the nominal error rate and illustrate the
application of the procedure to several widely applied statistical methods.
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1. INTRODUCTION

Sample-splitting is ubiquitous in modern statistical theory. Routine statistical tasks—model selection,

dimension reduction, nuisance parameter estimation—can be implemented on a randomly selected subsample

of a data set, without contaminating a statistical inference produced on its complement. This principle

underlies the widely applied practices of cross-validation for predictive risk estimation (Stone, 1974; Arlot

and Celisse, 2010) and cross-splitting for adaptive estimation of semiparametric models (Bickel, 1982;

Klaassen, 1987; Chernozhukov et al., 2018a), among many other applications.

For a fixed data set, statistics constructed with sample-splitting are not deterministic. Two researchers can

compute the same statistic on the same data and obtain different values. If this residual variability is large,

substantive results based on sample-split statistics may not be credible. Researchers are incentivized to report

significant results. If there is scope to materially alter the statistics that they report through the choice of the

split of their sample, should this choice be left to chance?

In this paper, we propose a method for sequentially aggregating sample-split statistics over multiple splits

of the same sample. Our method is based on the fixed-length sequential confidence intervals of Anscombe

(1952) and Chow and Robbins (1965). The procedure takes as input a bound and an error rate. The statistic

of interest is iteratively computed on different splits of the sample and aggregated in a running average. The

procedure is stopped after an estimate of the residual variability of the running average falls below a fixed

threshold. If the procedure were run twice, we show that the chance that the outputs differ by more the bound
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is well-approximated by the error rate. That is, by setting the bound and the error rate to be sufficiently small,

sample-split statistics aggregated with the procedure are reproducible.

To fix ideas, consider the setting of Banerjee et al. (2015), who study data collected from a randomized

evaluation of a poverty alleviation program implemented in several developing countries.1 We focus on

their evaluation of the effect of the program on the level of household consumption in Bangladesh. For

each household in their sample, they observe a vector Di = (Yi,Wi, Xi), where Yi is a measurement of

consumption three years after the implementation of the program, Wi is an indicator denoting assignment to

the program, and Xi is a vector of pretreatment covariates. Let D = (Di)
n
i=1 collect the data in their sample.

The augmented inverse propensity score weighted (AIPW) estimator of Robins et al. (1994) is a standard

approach to estimating average treatment effects in randomized experiments. This estimator is formed by

randomly splitting the sample into two parts. Let s and s̃ denote sets containing the indices of the households

in each part. Using data from the households i in s̃, nonparametric estimates of the propensity score and

conditional outcome regression

π(x) = P{Wi = 1 | Xi = x} and µw(x) = E[Yi | Xi = x,Wi = w]

are formed. For example, conditional outcome regressions are often estimated with the Lasso estimator of

Tibshirani (1996), through

µ̂w(Xi) = β̂w(λ)>Xi, where β̂w(λ) = arg min
β

{∑
i∈s̃

I{Wi = w}(Yi − β>Xi)
2 + λ‖β‖1

}
(1.1)

for some penalization parameter λ, with I{·} denoting the indicator function.2 Collect these estimates into

η̂(Ds̃) = (π̂, µ̂w), where Ds̃ collects the data with indices in s̃. The AIPW estimator is given by

T (s, D) =
1

|s|
∑
i∈s

ψ(Di, η̂(Ds̃)), where (1.2)

ψ(Di, η̂(Ds̃)) = µ̂1(Xi)− µ̂0(Xi) +
Wi(Yi − µ̂1(Xi))

π̂(Xi)
− (1−Wi)(Yi − µ̂0(Xi))

1− π̂(Xi)
.

Let s and s′ denote independently drawn subsets of [n] = {1, . . . , n} of size n/2. Panel A of Figure 1

compares the densities of the single-split, double-split, and two-fold cross-split estimators

T (s, D),
1

2
(T (s, D) + T (s′, D)), and

1

2
(T (s, D) + T (s̃, D)), (1.3)

over repeated samples of (s, s′) for the Banerjee et al. (2015) data.

The variability in the estimator across sample-splits is substantial and sufficient to switch the sign. A

moderate increase in the number of splits does not address the problem. The k-fold cross-split estimator is

1Further details on our treatment of the Banerjee et al. (2015) data are given in Appendix A.
2For the purposes of this section, we choose the penalization parameter with a single implementation of 10-fold cross-validation
of the mean-squared error. Similarly, we estimate the propensity score with a linear probability model constructed with 10-fold
cross-validated lasso. Further details on design of our simulation are given in Appendix A.
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FIGURE 1. Residual Randomness

Panel A: One Split, Two Splits Panel B: 10-Fold Cross Split
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Notes: Panel A of Figure 1 displays kernel estimates of the density of the single split, double split, and two-fold cross split
estimators defined in (1.3) over repeated samples of (s, s′) for the Banerjee et al. (2015) data. Panel B displays a discretized heat map
of the joint distribution of the 10-fold cross split estimator a(r10, D) defined in (1.4) and the critical value estimator CVα(r10, D)
defined in (1.5). The black line denotes the threshold where the estimator is equal to the estimated critical value. Panel C displays
quantiles of the 10-fold cross-validated estimate of the mean-squared error (1.6) of the Lasso regression (1.1) over a grid of values of
λ. The probabilities that each value of λ minimizes the cross-validated risk estimate are displayed with large grey dots.

given by

a(rk, D) =
1

k

k∑
j=1

T (sj , D) , (1.4)

where rk = (si)
k
i=1 is a collection of k equally sized sets that form a partition of [n].3 An asymptotically

exact test of the null hypothesis that the average effect of the program is less than or equal to zero can be

constructed by comparing (1.4) with the critical value

CVα(rk, D) =
z1−α
n

 k∑
j=1

∑
i∈sj

(
ψ(Yi, η̂(Ds̃j))− a(rk, D)

)21/2

, (1.5)

where z1−α is the 1− α quantile of the standard normal distribution (Chernozhukov et al., 2018a). Panel B

of Figure 1 displays a heat map of the joint distribution of the 10-fold cross-split statistic a(r10, D) and the

critical value CV0.05(r10, D) over random draws of the partition r10. The residual variability in the estimator

3If π and µw are estimated sufficiently well, this estimator is semiparametrically efficient for the average effect of the program on
household consumption (Chernozhukov et al., 2018a; Hahn, 1998).



4

has been greatly reduced, but is still large relative to estimates of the sampling variability. The choice of the

partition r10 determines whether a test that the treatment effect of the program is negative is rejected.

The problem of residual variability is even more severe when choosing the penalization parameter λ in the

Lasso regression (1.1) with cross-validation. Here, the sample-split statistic of interest is the out-of-sample

mean-squared error estimate

T (s, D) =
1∑

i∈s I{Wi = w}
∑
i∈s

I{Wi = w}(Yi − β̂w(λ)>Xi)
2 . (1.6)

Often, the penalization parameter λ is chosen as the value that minimizes the cross-fit statistic (1.4). Panel C

of Figure 1 displays the distribution of 10-fold cross-validated estimates of the mean-squared error of the

regression (1.1), with w equal to one, over a grid of values of λ.4 The probabilities that each value of λ

minimizes the cross-validated risk estimate are displayed with large grey dots. There is substantial variability

in the penalization parameter chosen by 10-fold cross-validation.

The primary methodological contribution of this paper is the introduction of a computationally efficient

procedure for aggregating sample-split statistics across multiple splits to ensure that residual variability is

small. The proposal is based on the sequential fixed-width confidence intervals developed by Anscombe

(1952) and Chow and Robbins (1965). In Section 2, we detail the proposed algorithm and give very general

conditions for its validity, in a particular asymptotic sense.

A user must make several choices when implementing the procedure. These include specifying a suitable

bound and error rate as well as choosing the size and joint distribution of the random splits. The primary

theoretical contribution of this paper is a non-asymptotic analysis that motivates approaches for making these

choices. In particular, in Section 3, we restrict attention to linearly separable statistics that are symmetric in

each part of each split. We give two main results. First, we derive concentration inequalities for averages

of independently drawn cross-split statistics of the form (1.4) around their conditional mean. Our bounds

characterize the dramatic difference between the residual variability of the double split and two-fold cross

split statistics displayed in Panel A of Figure 1. Second, we provide a Berry-Esseen type bound on the

accuracy of the nominal error rate for the procedure. As the procedure is sequential, this calculation is

nonstandard. This result illustrates a trade-off between the computational efficiency of the procedure and the

accuracy of the nominal error rate.

The main theoretical challenge posed by this analysis is the accommodation of the dependence between

statistics computed on cross-splits of a sample. That is, conditioned on the data, the summands, over j

from 1 to k, of the aggregate statistic (1.4) will be dependent. We address this through an application of

the method of exchangeable pairs (see e.g., Stein, 1986; Ross, 2011; Chen et al., 2011). To construct an

appropriate exchangeable pair for our problem, we develop a novel application of a coupling argument due to

Chatterjee (2005). See also Paulin et al. (2013, 2016). The various concentration and moment inequalities we

develop are then obtained by applying results due to Chatterjee (2005, 2007). These arguments are outlined

in Section 5.
4We consider the values of λ reported by the “glmnet” R software package (Friedman et al., 2021).
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In Section 4, we measure the performance of our procedure in the applications considered in Figure 1.

Section 6 concludes. Details concerning the data and simulations considered in this paper are given in

Appendix A. Unless otherwise specified, proofs for all results stated in the main text are given in Appendix B.

Proofs supporting Lemmas used in Appendix B are given in Appendix C. Appendix D gives additional results

that will be introduced at appropriate points throughout the paper.

1.1 Related Literature. The procedure studied in this paper is based on the sequential fixed-width

confidence intervals of Anscombe (1952) and Chow and Robbins (1965). Our non-asymptotic analysis

is related to the Berry-Esseen bounds for randomly indexed sums given in Landers and Rogge (1976,

1988). Applications of these results to fixed-width confidence intervals have been given in Csenki (1980),

Mukhopadhyay (1981), and Callaert and Janssen (1981). A more recent non-asymptotic consideration of the

application of fixed width confidence intervals to Monte Carlo techniques is given in Hickernell et al. (2013).

Our more specialized analysis differs from these results by accommodating and quantifying the dependence

induced by cross-splitting.

Our setting is related to a large literature that studies methods for constructing confidence intervals for

cross-validated estimates of generalization error. Several recent examples include Dietterich (1998), Nadeau

and Bengio (1999), Lei (2020), Bayle et al. (2020), Austern and Zhou (2020), and Bates et al. (2023).

In contrast, we are interested in the randomness conditional on the data. Formally, our results are most

similar to the Berry-Esseen bounds given in Austern and Zhou (2020), who study the unconditional normal

approximation of statistics similar to the those considered in Section 3. Our bounds apply under strictly

weaker conditions and are substantially simpler. See also Chetverikov et al. (2021) and Chetverikov and

Sørensen (2021) for further analyses of cross-validated regression.

Some of our arguments build on a literature studying the role of algorithmic stability in the accuracy of

cross-validation (Kale et al., 2011; Kumar et al., 2013). These papers are related to a broader literature that

derives generalization bounds for stable algorithms, originating with Bousquet and Elisseeff (2002). The

stability of several specific estimators is studied in Elisseeff et al. (2005), Hardt et al. (2016), Celisse and

Guedj (2016), Chen et al. (2022), and Du et al. (2023). Some of the concentration inequalities we derive can

be compared to the results of Cornec (2010) and Abou-Moustafa and Szepesvári (2019). Again, the setting

we study is different and our conditions are substantially simpler.

Chen et al. (2022) show that sample-splitting is unnecessary for the asymptotic normality of estimators

of the form (1.2) if the nuisance parameter estimator η̂ satisfies a stability condition related to some of the

conditions studied in this paper. The intention of our paper is not to argue that sample-splitting should,

necessarily, be used for any particular application. Rather, our premise is that sample-splitting is widely

applied in practice, irrespective of its optimality.

The procedure studied in this paper is applicable to a large variety of statistical methods constructed with

sample-splitting. General methods for testing statistical hypothesis with sample-splitting are studied in Guo

and Romano (2017), DiCiccio and Romano (2019), DiCiccio et al. (2020), Wasserman et al. (2020), and Tse

and Davison (2022). Rinaldo et al. (2019) study a general procedure for selective inference based on sample-

splitting. Meinshausen et al. (2009) and Meinshausen and Bühlmann (2010) study methods for inference
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in high-dimensional linear models that use multiple data splitting. Chernozhukov et al. (2018b) study a

procedure for estimating best linear predictors of heterogeneous treatment effects based on sample-splitting.

Although our emphasis is on statistics constructed with sample-splitting, the algorithmic and formal

methods studied in this paper are potentially applicable to randomized algorithms more generally. See Beran

and Millar (1987) for an analysis of the asymptotics of randomized tests and estimators. Guo and Shah (2023)

and Zhang et al. (2023) propose methods for conducting inference with randomized algorithms through

subsampling (Politis et al., 1999).

1.2 Notation. We let s̃ denote the complement of the set s in [n] = {1, . . . , n}. The set Sn,b consists of

all subsets of [n] of size b. The setRn,k,b contains all collections of k mutually exclusive elements of Sn,b.
We refer to elements of Rn,k,b as cross-splits. That is, if n = k · b, then Rn,k,b is the set of all partitions

of [n] into k mutually exclusive subsets of size b. Likewise, Rn,1,b is the collection of sets containing one

element of Sn,b. We say a . b if there exists a universal constant C such that a ≤ Cb. We let zα denote the

α quantile of the standard normal distribution and bxc denote the largest integer smaller than or equal to x.

2. REPRODUCIBLE AGGREGATION

Consider a sample D = (Di)
n
i=1. Let s be some subset of [n] with complement s̃. We are interested in

reporting a real-valued sample-split statistic of the form

T (s, D) = Ψ (Ds, η̂ (Ds̃)) , (2.1)

where the collection Ds = (Di)i∈s contains data with indices in s, η̂ is an estimator of an unknown nuisance

parameter η, and Ψ (·) is some function. The structure encoded in statistics of the form (2.1) is quite general

and encompasses most applications of sample-splitting encountered in practice, including out-of-sample

evaluation of prediction error, model selection, and nuisance parameter estimation.

We study methods for aggregating statistics of the form (2.1) across multiple splits of the same sample. Our

objective is to ensure that the auxiliary randomness introduced by sample-splitting is small. In particular, for

each collection Rg,k = (ri)
g
i=1 of g elements ofRn,k,b, where we write ri = (si,j)

k
j=1, we consider aggregate

statistics of the form

a(Rg,k, D) =
1

g

1

k

g∑
i=1

k∑
j=1

T (si,j , D) . (2.2)

The statistic (2.2) generalizes several standard methods for aggregating sample-split statistics. If k = n/b

and g = 1, then (2.2) is a k-fold cross-split statistic (also known as, e.g., k-fold cross-validation or k-fold

cross-fitting). If k = 1, then (2.2) averages over g independently drawn sample-splits. In this case, if η̂ is

constant, then (2.2) is an incomplete U -statistic of order b.5 We entertain the intermediate cases, i.e., where k

is between 1 and n/b, so that the theoretical results to follow interpolate between independent splitting and

cross-splitting. Throughout, we denote the proportion b/n by ϕ.

5A special case of the class of statistics with k = 1 are subsampled statistics (Politis et al., 1999).
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Algorithm 1: Anscombe-Chow-Robbins Aggregation
Input: Data D, tolerance ξ, error rate β, collection size k, split size b, initialization ginit

1 Set g ← ginit
2 Draw r1, ..., rginit independently and uniformly fromRn,k,b. Collect Rginit,k = (rj)

ginit
j=1.

3 while v̂(Rg,k, D) > cvξ,β do
4 Set g ← g + 1

5 Draw rg uniformly fromRn,k,b. Collect Rg,k = (Rg−1, rg).
6 end
7 Set ĝ ← g

8 return Rĝ,k

Our task is to formulate a method for choosing the number of collections of mutually exclusive splits g to

ensure that the residual variability of the aggregate statistic (2.2) is small. This objective is formalized in the

following criterion.

Definition 2.1 (Reproducibility). Suppose that the integers ĝ and ĝ′ and the collections Rĝ,k and R′ĝ′,k, are

independent and identically distributed, conditional on the data D. We say that Rĝ,k is (ξ, β)-reproducible if

P

{∣∣a(Rĝ,k, D)− a(R′ĝ′,k, D)
∣∣ ≤ ξ | D} ≥ 1− β (2.3)

almost surely.

Remark 2.1. Suppose that the data D are given to two researchers. Each researcher is tasked with producing

an estimate of the form (2.2). They generate the collections of splits Rĝ,k and R′ĝ′,k independently using

the same procedure. That is, the two collections of splits used by the two researchers are independent and

identically distributed conditional on the data D. If this procedure is (ξ, β)-reproducible, then the probability

that the two researchers’ estimates differ by more than ξ is less than β. �

We propose a sequential method for constructing a reproducible collection Rĝ,k. Our proposal is based on

the fixed-length sequential confidence intervals of Anscombe (1952) and Chow and Robbins (1965). Define

the variance estimator

v̂ (Rg,k, D) =
1

g (g − 1) k2

g∑
i=1

k∑
j,j′=1

(T (si,j , D)− a (Rg,k, D))
(
T (si,j′ , D)− a (Rg,k, D)

)
. (2.4)

Observe that (2.4) is simply the sample variance of the summands in (2.2) across the g collections of splits.

Our procedure iteratively draws a collection uniformly at random and computes the variance (2.4) until the

condition

v̂ (Rg,k, D) ≤ cvξ,β =
1

2

(
ξ

z1−β/2

)2

(2.5)

is satisfied. We let ĝ denote the smallest value of g greater than or equal to ginit such that (2.5) is satisfied,

where ginit ≥ 2 is an integer chosen by the user. This procedure is summarized in Algorithm 1.
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The following theorem gives an asymptotic sense in which the collection of sample-splits chosen with

Algorithm 1 are (ξ, β)-reproducible. The proof is closely related to the arguments of Anscombe (1952) and

Chow and Robbins (1965). See e.g., Theorem 3.1 of Gut (2009) for a textbook treatment.

Theorem 2.1. Suppose that the real-valued statistic a(R1,k, D) has a non-zero variance conditional on D

almost surely. If the collections Rĝ,k and R′ĝ′,k are independently computed with Algorithm 1, then

P

{∣∣a(Rĝ,k, D)− a(R′ĝ′,k, D)
∣∣ ≤ ξ | D}→ 1− β as ξ → 0 . (2.6)

Remark 2.2. Theorem 2.1 applies to a fixed data set D. Asymptotics are taken as ξ → 0 with all other

quantities, including the sample size n, fixed. Roughly, Theorem 2.1 is established by showing that

ĝ/g?
a.s→ 1 as ξ → 0, where g? = min {g : Var (a(Rg,k, D) | D) ≤ cvξ,β} , (2.7)

and using the fact that a central limit theorem will hold for the sequence a(Rg?,k, D) as ξ → 0, conditional on

the data. The discrepancy between a(Rĝ,k, D) and a(Rg?,k, D) can be handled with an appropriate maximal

inequality, an idea due to Rényi (1957). �

Remark 2.3. The proof of Theorem 2.1 uses only the fact that the g collections ri in Rg,k are drawn

independently and identically. However, Figure 1 suggests that we should expect the statistic a(Rg,k, D)

to concentrate as k increases. Some insight into this phenomenon can be gained without any assumptions.

In particular, let s and s′ each be uniformly distributed on Sn,b such that their intersection is empty with

probability one. Define the conditional variance and covariance

φn,b(D) = Var(T (s, D) | D) and γn,b(D) = Cov(T (s, D), T (s′, D) | D) (2.8)

respectively. We can evaluate

vg,k(D) = Var(a(Rg,k, D) | D) =
1

g

(
1

k
φn,b(D) +

k − 1

k
γn,b(D)

)
. (2.9)

Observe that γn,b(D) ≤ φn,b(D) by the Cauchy-Schwarz inequality. Thus, for a fixed total number of cross-

splits g and split size b, the conditional variance vg,k(D) decreases as k increases. That is, cross-splitting (i.e.,

setting k > 1) always has a smaller conditional variance than independent splitting (i.e., setting k = 1) for a

fixed value of g. On the other hand, for a fixed number of total splits m = gk and split size b, the conditional

variance vg,k(D) is smaller for cross-splitting than for independent splitting if and only if the conditional

covariance γn,b(D) is negative.

In many standard applications, the conditional covariance γn,b(D) is negative.6 Consider again the

Banerjee et al. (2015) data. Figure 2 compares the variance components

1

k
φn,b(D) and − k − 1

k
γn,b(D) (2.10)

under the restriction that n = kb for both the treatment effect and risk estimation applications introduced in

Section 1. In both cases, the two terms (2.10) are nearly equal, i.e., the two terms in the variance (2.9) nearly

6This will not always be the case. In Appendix D.1, we give examples where γn,b(D) obtains both endpoints of the Cauchy-Schwarz
bound −φn,b(D) ≤ γn,b(D) ≤ φn,b(D).
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FIGURE 2. Covariance Across Cross-Splits

Panel A: Treatment Effect Estimation Panel B: Risk Estimation
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Notes: Figure 2 displays measurements of the quantities (2.10) for the treatment effect and risk estimation applications to the
Banerjee et al. (2015) data introduced in Section 1. For the risk estimation application, we study the regression (1.1) for the treated
outcome, i.e., w equal to one, for a fixed choice of λ. In each case, the parameters k and b are chosen to satisfy n = kb. The x-axes
are displayed in a log-scale base 10. Further details on this figure are given in Appendix A.

cancel each other out. In other words, cross-splitting is able to account for almost all of the residual variability

introduced by independent splitting. By placing restrictions on the statistic (2.1), the subsequent section

provides a non-asymptotic account of the error in the approximation (2.6) that quantifies and compares the

concentration in a(Rg,k, D) with both g and k. �

3. NON-ASYMPTOTIC THEORY

Theorem 2.1 is very general. However, interpretation of the asymptotic approximation with ξ → 0 is

somewhat nebulous, or at least unfamiliar. What would be a reasonable value of ξ to choose such that the

approximation (2.6) is accurate? Or, how quickly should we expect the error in (2.6) to diminish as ξ shrinks?

We give a non-asymptotic analysis of the quality of the nominal error rate β in Algorithm 1. This is

accomplished by placing restrictions on the statistics of interest (2.1). We emphasize that Theorem 2.1 should

provide assurance that Algorithm 1 can be applied widely. The more specialized analysis that follows is

aimed at (i) articulating why cross-split statistics often exhibit significantly lower residual variability than

independently split statistics and (ii) providing intuition for how the error in the approximation (2.6) depends

on the choices of k and ξ. Proofs for results stated in this section are deferred to Section 5.

3.1 Symmetry, Linearity, and Stability. We impose two simplifying restrictions on the statistic of interest.

First, we assume that the statistic is symmetric and deterministic in each part of the split sample.

Assumption 3.1 (Symmetry and Determinism). For all sets s ⊆ [n] and data D, the statistic T (s, D) is

deterministic and invariant to permutations of the data with indices in s and of the data with indices in s̃.

Remark 3.1. The intention of Assumption 3.1 is to restrict the residual randomness under consideration to

the randomness introduced by sample-splitting. Assumption 3.1 rules out procedures where the estimator η̂ is

random conditional on the data. This includes settings where, e.g., η̂ is estimated with stochastic gradient

descent, bagging or subsampling, or is itself constructed with data splitting. It does not, however, exclude
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cases where η̂ is deterministic, e.g., when η̂ is a coefficient vector determined by a regularized regression or

in the applications to hypothesis testing considered by DiCiccio et al. (2020) or Wasserman et al. (2020).7�

Second, we assume that the statistic (2.1) is linearly separable in the first part of the split sample.

Assumption 3.2 (Linearity). For all sets s ⊆ [n] and data D, the statistic T (s, D) can be written

T (s, D) = Ψ (Ds, η̂ (Ds̃)) =
1

|s|
∑
i∈s

ψ(Di, η̂ (Ds̃)) (3.1)

for some function ψ(·, ·).

Remark 3.2. Assumption 3.2 is satisfied in the applications to treatment effect and risk estimation studied

in Section 1 in addition to the applications to hypothesis testing considered in DiCiccio et al. (2020) and

Wasserman et al. (2020). Extending our analysis to cases where (2.1) satisfies a component-wise Lipschitz or

bounded differences condition is worth further consideration. �

Both the remaining assumptions, and the ensuing bounds, specified in this section are expressed in terms

of two objects that measure the sensitivity of the statistics of interest (2.1) to perturbations of the data and of

the splits, respectively. We refer to these objects as stabilities. Let D′ denote an independent and identical

copy of the data D. For each q ⊆ [n], let D̃(q) be constructed by replacing Di with D′i in D for each i in q.

Definition 3.1 (Sample Stability). Fix a set s ⊆ Sn,b. Let I be an index drawn uniformly from s. Let q be a

randomly selected subset of s̃ of cardinality q. We refer to the quantities

σ
(r)
valid = E

[∣∣ψ(DI , η̂ (Ds̃))− ψ(D′I , η̂ (Ds̃))
∣∣r] and

σ
(r,q)
train = E

[∣∣ψ(DI , η̂ (Ds̃))− ψ(DI , η̂(D̃
(q)
s̃ ))

∣∣r]
as the rth-order validation and (r, q)th-order training sample stabilities, respectively. Similarly, we refer to

the quantity

σ
(r)
max = max

{
σ

(r)
valid, σ

(r,1)
train

}
(3.2)

as the rth-order full sample stability.

Definition 3.2 (Split Stability). We refer to the quantity

ζ(r) = E
[

max
s,s′∈Sn,b

(
T (s, D)− T

(
s′, D

))r]
.

as the rth-order split stability.

At several points in the analysis that follows, we focus attention on statistics whose training sample

stabilities shrink at an appropriate rate as n increases.

7In Appendix D.2, we show that the hypothesis tests constructed with multiple splits of the same sample considered in e.g., DiCiccio
et al. (2020), Meinshausen et al. (2009), Chernozhukov et al. (2018b), and Wasserman et al. (2020) continue to be valid when they
are constructed sequentially with Algorithm 1. These results follow from an inequality due to Ramdas and Manole (2023).
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Definition 3.3. A statistic T (s, D) that satisfies Assumption 3.2 is sample stable if

σ
(r,q)
train .

(
q

n− b

)r
(3.3)

uniformly for all even values of the parameter r.

Remark 3.3. The (2, 1)th-order training sample stability σ(2,1)
train is a widely studied object and is referred

to as mean-square stability in the statistical learning literature (see e.g., Kale et al., 2011; Kumar et al.,

2013).8 In Appendix D.3, we give simple sufficient conditions for the sample stability of statistics that satisfy

Assumption 3.2 when η̂ is an empirical risk minimizer of a potentially regularized strictly convex loss. The

argument is closely related to a similar result given in Austern and Zhou (2020). Analogous bounds have been

obtained for many estimators that do not necessarily satisfy Assumption 3.1, such as bagged or subsampled

estimators (Chen et al., 2022), ensemble methods (Elisseeff et al., 2005), and estimators computed with

stochastic gradient descent (Hardt et al., 2016). It most settings, it is reasonable to expect that the validation

sample stability σ(r)
valid is bounded for small values of r. The split stability ζ(r) is a less frequently studied

object, and we will only require that it is finite for r equal to 4 or 8, depending on the setting. This is a weak

restriction that will hold, for example, if T (s, D) is bounded. �

3.2 Concentration and Normal Approximation. We begin by studying the concentration of the aggregate

statistic a(Rg,k, D) about its conditional mean

a (D) = E [a(Rg,k, D) | D] = E [T (si,j , D) | D] . (3.4)

The nonstandard aspect of our analysis is that we account for the dependence in the summands in a(Rg,k, D)

across cross-splits, i.e., the dependence induced by cross-fitting. This is accomplished by constructing a

suitable exchangeable pair with a coupling argument due to Chatterjee (2005) and applying a method for

deriving concentration inequalities with exchangeable pairs, also due to Chatterjee (2005, 2007). Aspects of

our argument are closely related to the analysis of Paulin et al. (2013, 2016).

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold, that the data D are independently and identically

distributed, and that the statistic a(R1,k, D) has a non-zero variance conditional on D almost surely. If the

fourth-order split stability ζ(4) is finite, then the concentration inequality

logP {a(Rg,k, D)− a (D) ≥ t | D} ≤ − g

24(2− ϕk − ϕ)2

δt2

Γk,ϕ,b
(3.5)

holds with probability greater than 1− δ as D varies, where

Γk,ϕ,b =

(
1− kϕ
1− ϕ

)
4σ

(2)
max +

(
kϕ− ϕ
1− ϕ

)
σ

(2,b−1)
train (3.6)

and ϕ = b/n.

Remark 3.4. In the inequality (3.5), a conditional probability that depends on the data D is bounded by

a term that depends on the fixed parameters g, k, ϕ, δ, and t in addition to the unconditional quantity

8Connections between sample stability and generalization are studied in Bousquet and Elisseeff (2002) and Celisse and Guedj (2016).
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FIGURE 3. Sample Stability

Panel A: Treatment Effect Estimation Panel B: Risk Estimation
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Notes: Figure 3 displays estimates of the validation and training sample stabilities, defined in Definition 3.1, for the treatment
effect and risk estimation applications to the Banerjee et al. (2015) data introduced in Section 1. For the risk estimation application,
we study the regression (1.1) for the treated outcome, i.e., w equal to one, for a fixed choice of λ. We approximate the unknown true
data generating distribution with the empirical distribution of the data. The y-axes are displayed in a log-scale base 10. Further
details on this figure are given in Appendix A.

Γk,ϕ,b. In other words, if F is the event that the inequality (3.5) holds, then P{F} > 1− δ unconditionally.

This transference from a conditional quantity to an unconditional quantity is obtained by a Markov type

bound at one point in the proof. In the sequel, we give many conditional bounds of a similar form. This

strategy—bounding the conditional quantities of interest with unconditional quantities—is helpful because

the resultant unconditional objects are more tractable and are widely studied.

Remark 3.5. The quantity Γk,ϕ,b interpolates between σ(2)
max and σ(2,b−1)

train as k varies between its bounds 1

and 1/ϕ.9 In the case of independent splitting, the rate of concentration for the statistic a(Rg,k, D) is driven

by the full sample stability σ(2)
max. On the other hand, in the case of cross-splitting, concentration depends only

on the training sample stability σ(2,b−1)
train . At the extreme, if b is set equal to one and k is set equal to n, known

as leave-one-out or jackknife cross-fitting, Γk,ϕ,b will equal zero and there will be no residual randomness

(that is, the assumption that a(R1,k, D) has a non-zero conditional variance is violated).

To provide a quantitative sense of this tradeoff, Figure 3 displays estimates of σ(2)
valid and σ(2,b−1)

train for the risk

and treatment effect estimation applications to the Banerjee et al. (2015) data, where we have approximated

the unknown data generating distribution with the empirical distribution of the data. The training stability is

dramatically smaller than the validation stability and decreases rapidly as b decreases.

An interesting structure emerges under the assumption that T (s, D) is sample stable. In particular,

restricting attention to the case of cross-fitting b = n/k, and plugging (3.3) into the bound (3.5) yields

δgt2

24(1− ϕ)2

(
n− b
b− 1

)2

≥ δ

24
gk2t2

In other words, in the case of cross-splitting, large deviation probabilities converge to zero with an exponential

rate that is quadratic in k. By contrast, the exponential rate of concentration is always linear in g. That is,

9The pre-factor (2− ϕk − ϕ) also reduces by a factor of 2 as k increases from 1 to 1/ϕ.
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for a fixed total number of splits m = gk, the exponential rates of concentration for sample stable statistics

aggregated with independent splitting and with cross-splitting are m and m · k, respectively. �

Next, we derive bounds for the centered conditional moments of a (Rg,k, D) through an argument closely

related to the proof of Theorem 3.1. Bounds of this form are known as Burkholder-Davis-Gundy inequalities

(Burkholder, 1973). By combining these bounds with a standard Berry-Esseen inequality (Shevtsova, 2011),

we obtain a non-asymptotic central limit theorem as a corollary.

Theorem 3.2. Suppose that Assumptions 3.1 and 3.2 hold and that the data D are independent and identically

distributed. If r = 2c−1 for some positive integer c and the 4rth-order split stability ζ(4r) is finite, then the

inequality

E
[
(a (Rg,k, D)− a (D))2r

]
≤ (2r − 1)r

(
24(2− ϕk − ϕ)2

g

)r
Γ

(r)
k,ϕ,b , (3.7)

holds, where

Γ
(r)
k,ϕ,b =

(
1− kϕ
1− ϕ

)
22rσ

(2r,1)
max +

(
kϕ− ϕ
1− ϕ

)
σ

(2r,b−1)
valid (3.8)

and ϕ = b/n.

Remark 3.6. By setting r = 1, the inequality (3.7) gives a variance bound. In this case, the right-hand side

of the inequality (3.7) is equal to negative one times the inverse of the right-hand side of the inequality (3.5).

In this sense, the concentration inequality (3.5) can be thought of as an exponential Efron-Stein inequality

adapted to the dependence inherent in our problem (Boucheron et al., 2003).10 For values of r greater than 1,

the unconditional quantity Γ
(r)
k,ϕ,b again interpolates between the 2rth order full sample stability σ(2r,1)

max and

the (2r, b − 1)th order training sample stability σ(2r,b−1)
valid as k increases from 1 to 1/ϕ. For sample stable

statistics under cross-fitting, the bound (3.7) can be re-written

E
[
(a (Rg,k, D)− a (D))2r

]
.

(
1

gk2

)r
(3.9)

by omitting constants that depend only on r. The rate of convergence of central moments of cross-split

sample stable statistics is much faster with k than it is with g.

The Kolmogorov distance between two measures P and Q on the real line is given by

dK (P,Q) = sup
w∈R
{|P {(−∞, w]} −Q {(−∞, w]} |} . (3.10)

With a mild abuse of notation, we let dK (X,Y ) denote the Kolmogorov distance between the probability

measures of the real-valued random variables X and Y .

Corollary 3.1. Let W denote a standard normal random variable. Suppose that Assumptions 3.1 and 3.2 hold,

that the data D are independently and identically distributed, and that the statistic a(R1,k, D) has a non-zero

variance conditional on D almost surely. If the eighth-order split stability ζ(8) is finite, then for all g, the

10Abou-Moustafa and Szepesvári (2019) give related exponential Efron-Stein inequality in a different setting.
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conditional Berry-Esseen inequality

dK

(
a (Rg,k, D)− a (D)√

vg,k (D)
,W

∣∣∣∣D
)
≤ 2632

δ

(2− ϕk − ϕ)3

g1/2

(Γ
(2)
k,ϕ,b)

1/2

v1,k(D)

3/2

(3.11)

is satisfied with probability greater than 1− δ as D varies.11

Remark 3.7. Consider again the case of cross-splitting, where k = n/b = 1/ϕ. By Theorem 3.2, the

Berry-Esseen bound (3.11) is at least

(1− ϕ)3

g1/2

(
(σ

(4,b−1)
train )1/2

v1,k(D)

)3/2

&
1

g1/2

(
(σ

(4,b−1)
train )1/2

σ
(2,b−1)
train

)3/2

. (3.12)

Suppose that the statistic is sample stable. As long as σ(4,b−1)
train and σ(2,b−1)

train are well-approximated by their

upper bounds (3.3), the quantity (3.12) is of order g−1/2 and does not decrease as k increases.

This argument suggests that, despite the fast decay in the residual randomness demonstrated in Theorem 3.2,

the quality of a normal approximation to a (Rg,k, D) does not increase as k increases. This is again born out

in our running examples. Figure 4 displays the Kolmogorov distance between a standard normal random

variable and the studentized distribution of the cross-fit statistic a (R1,k, D) conditioned on D over a range of

values of k for our two applications to the Banerjee et al. (2015) data. That is, Figure 4 plots the left-hand

side of the inequality (3.11). In both cases, despite a substantial initial improvement, the quality of a normal

approximation does not increase for large k. In fact, in the risk estimation application, the quality of a normal

approximation decays for values of k larger than 20. On the other hand, it is worth noting that a normal

approximation in the treatment effect application is remarkably accurate for values of k larger than 20. �

3.3 Reproducibility. We now return our attention to the sequential procedure for aggregating sample-split

statistics formulated in Section 2. Our main result is a Berry-Esseen type bound on the accuracy of the

nominal error rate β for the Anscombe-Chow-Robbins method specified in Algorithm 1.

Theorem 3.3. Suppose that the statistic a(R1,k, D) has a non-zero and variance, conditional on D, almost

surely and that the collections Rĝ,k and R′ĝ′,k are independently computed with Algorithm 1. If Assumptions 3.1

and 3.2 hold, the data D are independent and identically distributed, and the eighth-order split stability ζ(8) is

finite, then the Berry-Esseen inequality∣∣∣∣P{∣∣a(Rĝ,k, D)− a(R′ĝ′,k, D)
∣∣ ≤ ξ | D}− (1− β)

∣∣∣∣ . ρk,ϕ,b(ξ, β | D) + λk,ϕ,b(ξ, β | D) , (3.13)

holds with probability greater than 1− δ as D varies, for

ρk,ϕ,b(ξ, β | D) =
ξ

z1−β/2

(2− ϕk − ϕ)3(Γ
(2)
k,ϕ,b)

3/4

δ (v1,k (D))2 and (3.14)

11To the best of our knowledge, the only Stein’s method central limit theorem in the Kolmogorov distance, applicable to our setting,
is given in Zhang (2022), which generalizes the argument of Shao and Zhang (2019). In Appendix D.4, we show that this central
limit theorem, in conjunction with the bounds used to derive Theorem 3.2, implies a bound that does not reduce as either g or k
increase.
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FIGURE 4. Quality of Normal Approximation

Panel A: Treatment Effect Estimation Panel B: Risk Estimation
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Notes: Figure 4 displays measurements of the Kolmogorov distance (3.10) between a standard normal random variable and the
studentized distribution of the cross-fit statistic a (R1,k, D) conditioned on D over a range of values of k for our two applications
to the Banerjee et al. (2015) data. This quantity is defined in the left hand side of the inequality (3.11). The y-axis of Panel A is
displayed in a log-scale base 10. For the risk estimation application, we study the regression (1.1) for the treated outcome, i.e., w
equal to one, for a fixed choice of λ. Further details on this figure are given in Appendix A.

λk,ϕ,b(ξ, β | D) =

 ξ

z1−β/2

(2− ϕk − ϕ)4Γ
(1)
k,ϕ,b(Γ

(2)
k,ϕ,b)

1/2

δ3/2(v1,k (D))5/2

1/2

, (3.15)

where a multiplicative factor that grows logarithmically as ξ shrinks has been omitted in writing (3.15) and

an additional additive term that shrinks exponentially as ξ shrinks has been omitted in writing (3.13).

Remark 3.8. Recall the definition of the oracle stopping time g? given in (2.7). The bound (3.13) is

obtained by decomposing the approximation error into two terms. The first term involves the error in a

normal approximation to the difference a(Rg?,k, D)− a(R′g?,k, D) and contributes the term ρϕ,k(ξ, β | D).

As g? is deterministic conditional on D, a bound on this term follows from an argument very similar

to the proof of Corollary 3.1. The second term involves the differences a(Rĝ,k, D) − a(Rg?,k, D) and

a(R′ĝ′,k, D) − a(R′g?,k, D) and contributes the quantity λϕ,k(ξ, β | D). The key step in bounding these

quantities involves deriving a high probability bound for the difference ĝ − g?. This follows by combining

a concentration inequality analogous to Theorem 3.1 for the conditional variance estimator v̂g,k(D) with a

Bernstein-type maximal inequality, due to Steiger (1970). �

Remark 3.9. The dependence of the bound (3.13) on ξ is sharp, at least up to the logarithmic factor. This

follows from the examples given in Landers and Rogge (1976, 1988). Berry-Esseen type bounds on the

coverage error of Anscombe-Chow-Robbins fixed-width sequential confidence intervals have been given in

Csenki (1980), Mukhopadhyay (1981), and Callaert and Janssen (1981). Our result differs in several respects.

Most importantly for our application, the dependence of our bound on the quantities k, ϕ, and v1,k(D) is

explicit. We explore the structure of the bound through these terms in the following remark. Secondarily, we

give an explicit characterization of the logarithmic factors in the bound by using Bernstein-type concentration

inequalities, e.g., the bound given in Theorem 3.1, rather than moment bounds. �



16

Remark 3.10. Restrict attention again to the case of cross-fitting and assume that the statistic of interest is

sample stable. We will refer to the procedure that uses the oracle stopping time g? in the place of ĝ as the

oracle procedure. Observe that the oracle stopping time g? is the unique integer that satisfies

g? − 1 ≤ 2v1,k(D)

(
z1−β/2

ξ

)2

≤ g? . (3.16)

Replacing the variance v1,k(D) by the bound derived in Theorem 3.2, we get that g? is proportional to

2

k2

(
z1−β/2

ξ

)2

. (3.17)

Thus, if m? = kg? is the total number of splits used by the oracle procedure, then m? is proportional to k−1

as k increases with all other quantities held fixed. In other words, the total number of splits used by the oracle

procedure decreases rapidly as k increases. In the proof of Theorem 3.3, we give high probability bounds

for |g? − ĝ|. Consequently, similar intuition will hold for Algorithm 1. That is, with high probability, the

computational cost scales like k−1 as k increases.

On the other hand, by Theorem 3.2, the leading term λk,ϕ,b(ξ, β | D) in the bound (3.13) is at least(
ξ

z1−β/2

1

δ3/2(1− ϕ)

(σ
(4,b−1)
train )1/2

(σ
(2,b−1)
train )3/2

)1/2

. (3.18)

If σ(4,b−1)
train and σ(2,b−1)

train are proportional to their upper bounds (3.3), then the quantity (3.18) is of order(
ξ

z1−β/2

k

δ3/2

)1/2

, (3.19)

which is in turn of order (g?)−1/4 by (3.17).

Comparison of the quantities (3.16) and (3.19) illustrates a fundamental trade-off in the performance

of Algorithm 1 over the choice of k. Increased values of k reduce the conditional variance vg,k(D), and

thereby, reduce the oracle sample size g?, easing computational cost. But as a consequence, the quality of

the accuracy of the nominal error rate may deteriorate. In particular, at smaller values of g, the accuracy

of the estimator v̂g,k(D) for the conditional variance vg,k(D) will be lower, increasing the risk that ĝ is

smaller than g?. The increased risk of early stopping decreases the probability that a result is reproducible.

It is desirable, then, to choose values for k and ξ such that the variance v1,k(D) is small enough to make

Algorithm 1 computationally efficient, but not so small that the effective sample size g? is too small for the

nominal error rate β to be accurate.

4. PERFORMANCE

We now study the performance of Algorithm 1 in the applications to the Banerjee et al. (2015) data

introduced in Section 1. Figure 5 displays measurements of reproducibility error

P

{∣∣a(Rĝ,k, D)− a(R′ĝ′,k, D)
∣∣ ≥ ξ | D} (4.1)
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when Rĝ,k and R′ĝ′,k are obtained independently with Algorithm 1 for the risk estimation application.

Figure A.2, given in Appendix A.3, displays analogous measurements for the treatment effect estimation

application. We set the nominal error rate to β = 0.1 and vary the values of k and ξ.

Panel A displays measurements of the reproducibility error with the initialization ginit set equal to 2, the

minimal feasible value. A transition is evident. For large values of ξ, the reproducibility error is monotonically

decreasing in k. As ξ decreases, this pattern reverses and the reproducibility probability approaches the

nominal error rate. This phenomenon is caused by severe early stopping at large values of ξ. In particular, at

large values of ξ, there is a substantial probability that ĝ is chosen to be a very small value, e.g., 2 or 3, often

several orders of magnitude less than g?.12 We document this behavior in Figure A.3, given in Appendix A.3.

This issue can be addressed through a very small increase in ginit. Panel B displays measurements of the

reproducibility error with the initialization ginit increased to 10. The nominal error rate is now substantially

more accurate over the full support of values for ξ considered. The moderate inaccuracy at larger values

of ξ has two sources. First, there is still some risk of early stopping at values of g not much greater than

10. Second, if ξ is large relative to the conditional variance v1,k(D), ensuring that ĝ is at least 10 can cause

the reproducibility error to be close to 0. At moderate values of ξ, the trade off documented in Section 3 is

apparent. As k increases, the effective sample size g? decreases, reducing the accuracy of the nominal error

rate. Figure A.3, given in Appendix A.3, demonstrates that this inaccuracy can be largely explained by the

error in the approximation of g? with ĝ. For small values of ξ, at the level of precision likely to be of practical

interest, the nominal error rate is very accurate.

5. A STEIN REPRESENTER, CONCENTRATION, AND REPRODUCIBILITY

In this section, we outline the proofs for results stated in Section 3. The primary difficulty is accommodating

the dependence in the summands of a(Rg,k, D) across elements of the same cross-split. We tackle this problem

through the method of exchangeable pairs (Stein, 1986).

Suppose that we are interested in studying the statistic f (X), where X is random variable valued on

the separable metric space X . The method of exchangeable pairs has two ingredients. First, we need to

construct a random variable X ′ such that (X,X ′) is an exchangeable pair. Second, we need to construct an

antisymmetric function F (X,X ′) such that

f (X) = E
[
F
(
X,X ′

)
| X
]

(5.1)

almost surely. We will refer to the function F (X,X ′) as a “Stein representer” for f (X).

5.1 Constructing a Stein Representer. In many applications, the Stein representer (5.1) induced by a

suitable exchangeable pair (X,X ′) can be derived in closed form. See e.g Chen et al. (2011) and Ross (2011).

A closed form derivation is more challenging in our setting, where the collection Rg,k takes the place of the

random variable X . To address this issue, we apply a method due to Chatterjee (2005) for constructing Stein

representers through a pair of coupled Markov chains induced by an appropriately chosen exchangeable pair.

12In the risk estimation application, with k = 10, g? is 54.4 when ξ is 10.4 and is 570.5 when ξ is 3.2.
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FIGURE 5. Reproducibility Error in Risk Estimation

Panel A: Early Stopping with ginit = 2
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Panel B: Reproducibility with ginit = 10
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Notes: Figure 5 displays measurements of reproducibility error (4.1) for Algorithm 1 in the risk estimation application to the
Banerjee et al. (2015) data. A dashed horizontal line is displayed at the nominal error rate β = 0.1. The x-axes vary the bound ξ and
are displayed in a log-scale base 10. We study the regression (1.1) for the treated outcome, i.e., w equal to one, for a fixed choice of
λ. To ease computation, we only display reproducibility error estimates for a (ξ, k) pair if g? is less than 104. Further details on this
figure are given in Appendix A.
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Chatterjee’s construction is founded on a observation, due to Stein (1986), that an exchangeable pair

(X,X ′) induces a reversible Markov kernel K through

Kg(X) = E
[
g(X ′) | X = x

]
,

where g is any function satisfying E [|g(X)|] < ∞. Suppose that {Xm}m≥0 and {X ′m}m≥0 are two

Markov chains constructed with the kernel induced by (X,X ′) and coupled in a such way that the marginal

distributions of Xm and X ′m depend only on the initial conditions X0 and X ′0, respectively. Chatterjee makes

the following observation. If there exists a constant C such that
∞∑
m=0

|E
[
f(Xm)− f(X ′m) | X0 = x,X ′0 = y

]
| ≤ C , (5.2)

for each x and y in X , then the function

F (x, y) =
∞∑
m=0

E
[
f(Xm)− f(X ′m) | X0 = x,X ′0 = y

]
is a Stein representer for f (X). See Paulin et al. (2013, 2016) for applications of this idea to the derivation

of matrix concentration inequalities. To apply this construction to our setting, we have two tasks. First, we

need to specify a suitable exchangeable pair. Second, we need to construct a pair of coupled Markov chains

induced by this pair that satisfy the finiteness condition (5.2). Throughout, for a vector x = (xi)
n
i=1 we let

(x−`, y) denote the vector formed by replacing the `th component of x with y.

Our construction is premised on the observation that the random collection of splits Rg,k can be generated

by a random collection of permutations. To see this, let Pn denote the set of permutations of the set [n],

treating each π ∈ Pn as a bijection from [n] to [n]. Observe that each permutation π ∈ Pn can be associated

with an element ofRn,k,b, denoted by rk (π) = (s1 (π) , . . . , sk (π)), through

si (π) = {π (k · (i− 1) + 1) , . . . , π (k · (i− 1) + b)} .

If π = (πi)
g
i=1denotes a collection of permutations drawn independently and uniformly at random from Pn,

then the collection Rg,k (π) = (rk (πi))
g
i=1 is equidistributed with the collection Rg,k defined in Section 2.

Now, we construct an exchangeable pair (π,π′), keeping in mind that our aim is to verify a condition of

the form (5.2). For any permutation π ∈ Pn and indices i, j ∈ [n], define the updated permutation

π̂ (i, j) (x) =


j, x = i,

π (i) , x = π−1 (j) ,

π (x) , otherwise.

In other words, π̂ (i, j) is identical to π, except that imaps to j and π−1 (j) maps to π (i). Let L be distributed

uniformly on [g] and let I and J be independently and uniformly distributed on [n]. Define the modified

collection

π′ = (π−L, π̂L(I, J)).
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and observe that (π,π′) is an exchangeable pair.

With the exchangeable pair (π,π′) in place, we choose a coupled pair of Markov chains that it induces.

For each m ≥ 1, let Lm be distributed uniformly on [g] and let Im and Jm be distributed uniformly on [n].

Construct (πm,π
′
m) from the pair (π0,π

′
0) = (π,π′) by setting

πm = (πm−1,−Lm , π̂m−1,Lm(Im, Jm)) and π′m = (π′m−1,−Lm , π̂
′
m−1,Lm(Im, Jm)) (5.3)

recursively. In other words, the Markov chain π′0 is initialized by choosing one permutation in π0 and

swapping one pair of indices. In the mth iteration of the Markov chain (πm,π
′
m)m≥0, the permutations

πm−1,Lm and π′m−1,Lm
are selected and updated so that Im now maps to Jm. As the iterations proceed,

Im will continue to map to the same index in the Lmth permutation in both collections. That is, in each

iteration that a new permutation L and index I are selected, the two collections become more similar.

Eventually, every L and I will have been selected, the two collections πm and π′m will be the same, and so

a(Rg,k(πm), D)− a(Rg,k(π
′
m), D) = 0. This will imply the finiteness (5.2). This argument is formalized in

the proof of the following Lemma.

Lemma 5.1. The function

A
(
π,π′ | D

)
=
∞∑
m=0

E
[(
a (Rg,k(πm), D)− a

(
Rg,k(π

′
m), D

))
| π0 = π,π′0 = π′, D

]
,

is finite, antisymmetric, and satisfies the equality

E
[
A
(
π,π′ | D

)
| π, D

]
= a (Rg,k(π), D)− a (D) (5.4)

almost surely.

5.2 Proofs for Theorems 3.1 and 3.2 and Corollary 3.1. To obtain the concentration inequality (3.5)

and Burkholder-Davis-Gundy inequality (3.7), we apply the following result due to Chatterjee (2005, 2007),

which we have augmented to be applicable under a set of assumptions considered in Paulin et al. (2016).

Lemma 5.2. Let X be a separable metric space and suppose that (X,X ′) is an exchangeable pair of X -valued

random variables. Let f : X → R be a square integrable function and let F : X × X → R be a Stein

representer for f . For each positive integer (r), define the quantities

U
(r)
f (X) =

1

2
E
[(
f (X)− f

(
X ′
))2r | X] and U

(r)
F (X) =

1

2
E
[
F
(
X,X ′

)2r | X] . (5.5)

If there exist nonnegative constants u and s such that

U
(1)
f (X) ≤ s−1u and U

(1)
F (X) ≤ su, (5.6)

then the concentration inequality

P {|f (X) | ≥ δ} ≤ 2 exp
(
−t2/2u

)
(5.7)

holds for all t ≥ 0. Moreover, the moment inequality

E
[
f (X)2r

]
≤ (2r − 1)r

(
sE
[
U

(r)
F (X)

]
+ s−1E

[
U

(r)
f (X)

])
(5.8)
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holds for all positive integers r for any positive constant s.

Throughout, to ease notation, we use the short hand

Z = (Rg,k(π), D) and Z ′ = (Rg,k(π
′), D) .

The Markov chains (Zm)m≥0 and (Z ′m)m≥0 are defined accordingly and we simplify A (π,π′ | D) to

A(Z,Z ′). To apply Lemma 5.2, we are required to develop bounds for the objects

U (r)
a (Z) =

1

2
E
[(
a (Z)− a

(
Z ′
))2r | Z] and U

(r)
A (Z) =

1

2
E
[
A
(
Z,Z ′

)2r | Z] .
Our approach is based on the following Lemma, which combines a generalization of an idea due to Lemma

10.4 of Paulin et al. (2016) with a Markov type bound.

Lemma 5.3. Let r = 2c for some positive integer c. Let f : Z → R be a function such that there exists a

square integrable random variable W with( ∞∑
m=0

E
[
f (Zm)− f

(
Z ′m
)
| Z0 = Z,Z ′0 = Z ′

])r
≤W (5.9)

almost surely. If the inequality

E
[
E
[
f(Zm)− f(Z ′m) | Z0 = Z,Z ′0 = Z ′

]r | π] ≤ hrm (5.10)

holds for each m ≥ 0 and each collection π, where (hm)m≥0 is a deterministic sequence of nonnegative

numbers, then the inequalities

1

2
E
[(
f (Z)− f

(
Z ′
))r | Z] ≤ hr0

δ
and (5.11)

1

2
E

[( ∞∑
m=0

E
[
f (Zm)− f

(
Z ′m
)
| Z0 = Z,Z ′0 = Z ′

])r
| Z
]
≤ 1

δ

( ∞∑
m=0

hm

)r
(5.12)

both hold with probability greater than 1− δ as D varies

To apply this Lemma, we begin by noting that the inequality( ∞∑
m=0

E
[
a (Zm)− a

(
Z ′m
)
| Z0 = Z,Z ′0 = Z ′

])2

. g2n4 max
s,s′∈Sn,b

(
T (s, U,D)− T

(
s′, U,D

))2 (5.13)

follows from Lemma B.1, stated in Appendix B.2. Moreover, the right hand side of (5.13) is square integrable,

as the fourth order split-stability ζ(4) is finite by assumption. Deterministic bounds of the form (5.10) are

obtained through the following Lemma.

Lemma 5.4. Under Assumptions 3.1 and 3.2, for all integers m ≥ 0 and r ≥ 1, the inequality

E
[
E
[
a(Zm)− a(Z ′m) | Z0 = Z,Z ′0 = Z ′

]2r | π]
≤ 24r

(
1− 2

gn2

)2mr (2n− bk − b
gn2

)2r

Γ
(r)
k,ϕ,b
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holds almost surely, where Γ
(r)
k,ϕ,b is defined in the statement of Theorem 3.2.

Combining Lemmas 5.3 and 5.4, we have that

U
(r)
A (Z) ≤ 1

δ

(
gn2

2

)r(
24 (2n− bk − b)2

gn2

)r
Γ

(r)
k,ϕ,b

and

U (r)
a (Z) ≤ 1

δ

(
2

gn2

)r(24 (2n− bk − b)2

gn2

)r
Γ

(r)
k,ϕ,b

with probability 1 − δ. Theorem 3.1 is obtained by setting r = 1 and applying (5.7) of Lemma 5.2 with

s = gn2/2 and

u =
1

δ

24 (2n− bk − b)2

gn2
Γ

(1)
n,k,b.

Similarly, Theorem 3.2 is obtained by applying (5.8) of Lemma 5.2 with s = (gn2/2)r.

The normal approximation error bound (3.11) is a corollary of Theorem 3.2. To see this, consider the

centered statistic

a (Z)− a (D) =
1

g

g∑
`=1

a (r`, D) , where a (r`, D) =
1

k

k∑
i=1

(T (s`,i, D)− a (D)) (5.14)

for each ` in [g]. Conditional on the data D, the statistics a (r`, D) are independent, identically distributed,

and mean zero. Moreover, we have that

E
[
|a (r`, D) |3

]
≤ 3226 (2− ϕk − ϕ)3 (Γ

(2)
k,ϕ,b)

3/4 (5.15)

by Hölder’s inequality and Theorem 3.2. Hence, we find that

E
[
|a (r`, D) |3 | D

]
g1/2 (v1,k(D))3/2

≤ 3226

δ

(2− ϕk − ϕ)3

(v1,k(D))3/2

(Γ
(2)
k,ϕ,b)

3/4

g1/2

holds with probability greater than 1− δ, by combining (5.15) with the Markov inequality. The proof then

follows by the standard Berry-Esseen inequality. See e.g., Corollary 1 of Shevtsova (2011).

5.3 Proof of Theorem 3.3. The first step for verifying Theorem 3.3 is deriving the exponential rate of

concentration for the variance estimator v̂ (Rg,k, D) defined in (2.4). This is obtained in the following Lemma,

which follows from an argument very similar to the proof of Theorem 3.1.

Lemma 5.5. Suppose that Assumptions 3.1 and 3.2 hold and that the data D are independent and identically

distributed. If the eighth-order split-stability ζ(8) is finite, then the conditional concentration inequality

log
1

4
P

{∣∣∣∣ v̂(Rg,k, D)

vg,k (D)
− 1

∣∣∣∣ ≥ t | D} . − δ (v1,k(D))2

(2− ϕk − ϕ)4

gt2

Γ
(2)
k,ϕ,b

holds for all t > 0 with probability greater than 1− δ as D varies.
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We focus our analysis on the error

|P
{
a(Rĝ,k, D)− a(R′ĝ′,k, D) ≤ ξ | D

}
− (1− β/2) |. (5.16)

An analogous argument will yield the same bound for the lower tail. We begin by bounding (5.16) with

quantities that will be easier to handle in isolation. Define the objects

U (Rg,k, D) =
1

g?

 g∑
i=1

a (ri,k, D)−
g?∑
i=1

a (ri,k, D)

 and (5.17)

Q (Rg,k, D) =

(
1− g

g?

)
(a(Rg,k, D)− a (D)) . (5.18)

The following Lemma bounds the error (5.16) in terms of the error in the normal approximation to the

quantity a(Rg?,k, D)− a(R′g?,k, D) and generic high probability bounds on (5.17) and (5.18).

Lemma 5.6. Let W denote a standard normal random variable. Define the events

Uk,λ (D) =

{
|U(Rĝ,k, D)− U(R′ĝ′,k, D)| ≤ λ

√
2vg?,k (D)

}
and

Qk,λ(D) =

{∣∣∣Q(Rg,k, D)−Q(R′ĝ′,k, D)
∣∣∣ ≤ λ√2vg?,k (D)

}
.

The quantity (5.16) is bounded above by

dK

(
a(Rg?,k, D)− a(R′g?,k, D)√

2vg?,k (D)
,W | D

)
+ 2λ+ (1− P {Uk,λ (D) ∩Qk,λ(D) | D}) , (5.19)

where the Kolmogorov distance dK (·, ·) is defined in (3.10).

Thus, it remains to give suitable bounds for the objects in (5.19). These are obtained in the following Lemma.

Lemma 5.7. Let W denote a standard normal random variable. Recall the objects ρϕ,k (ξ, β | D) and

λϕ,k (ξ, β | D) defined in the statement of Theorem 3.3. Suppose that Assumptions 3.1 and 3.2 hold, that the

data D are independent and identically distributed, and that the eighth-order split stability ζ(8) is finite.

(i) The Berry-Esseen inequality

dK

(
a(Rg?,k, D)− a(R′g?,k, D)√

2vg?,k (D)
,W | D

)
. ρk,ϕ,b (ξ, β | D)

is satisfied with probability greater than 1− δ as D varies.

(ii) The conditional concentration inequality

P

{
|U(Rĝ,k, D)− U(R′ĝ′,k, D)|√

2vg?,k (D)
≥ λk,ϕ,b (ξ, β | D) λ̃k,ϕ,b (D) | D

}
. ρk,ϕ,b (ξ, β | D)

holds with probability greater than 1− δ as D varies, where λ̃ϕ,k (D) is a term that grows logarithmically as

ξ shrinks and is characterized explicitly in the proof.
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(iii) The conditional concentration inequality

P

{
|Q(Rĝ,k, D)−Q(R′ĝ′,k, D)|√

2vg?,k (D)
≥ λk,ϕ,b (ξ, β | D)

}
. ρk,ϕ,b (ξ, β | D) + ρ̃k,ϕ,b (ξ, β | D)

holds with probability greater than 1−δ asD varies, where ρ̃ϕ,k (ξ, β | D) is a term that shrinks exponentially

as ξ shrinks and is characterized explicitly in the proof.

The proof is complete by substituting the bounds specified in Lemma 5.7 into Lemma 5.6.

6. CONCLUSION

We propose a method for sequentially aggregating randomized statistics to ensure that residual randomness

is small. The method is applicable under very general conditions. By restricting the set of statistics under

consideration, we give a non-asymptotic analysis of the performance of the method. We have two main

findings. First, aggregation of sample-split statistics with cross-splitting reduces residual randomness at a

much faster rate than for independent splitting. Second, cross-splitting does not necessarily improve the

quality of the nominal error rate of the procedure. Thus, users navigate a tradeoff. Finer cross-splitting

reduces the conditional variance of the aggregate statistic, reducing the computation needed to achieve a

given bound on the residual randomness. But as a consequence, the quality of the nominal error rate may

have also been reduced, limiting the user’s ability to give a high quality estimate of the probability that their

results are reproducible.

Our computational analysis has highlighted the substantial practical importance of choosing the initialization

parameter ginit to be sufficiently large. By contrast, our theoretical analysis is agnostic to this issue. In the

context of fixed-length sequential confidence intervals, Mukhopadhyay and Datta (1996) study the choice of

ginit. They show that if ginit is chosen appropriately, a non-uniform asymptotic approximation to the coverage

error, based on Edgeworth expansions due to Aras and Woodroofe (1993), has a leading term of order O(ξ2).

This is a substantial improvement on the O(ξ1/2) rate given in Theorem 3.3. Further research should give a

non-asymptotic treatment of the choice of the parameter ginit, aimed at assessing whether the O(ξ1/2) rate

can be improved through further assumptions and a principled choice of ginit.
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APPENDIX A. DETAILS CONCERNING DATA AND SIMULATIONS

A.1 Data. Banerjee et al. (2015) study randomized evaluations of several similar poverty-alleviation

programs implemented by BRAC, a large non-governmental organization. The data from Banerjee et al. (2015)

were acquired from https://dataverse.harvard.edu/dataset.xhtml?persistentId=

doi:10.7910/DVN/NHIXNT on September 10, 2021. See Appendix D of Chen and Ritzwoller (2023)

for further details concerning the cleaning of these data. Our discussion in this subsection uses language

similar to the language used to discuss the data there.

The programs studied by Banerjee et al. (2015) randomly allocated productive assets (typically livestock) to

participating households and measured economic outcomes two and three years later. We restrict attention to

data from the program evaluation in Pakistan. In the sample considered in this paper, there are 854 households.

Of these households, 446 were randomly assigned to participate in the program. In both the treatment effect

and risk estimation applications considered throughout the paper, the outcome of interest Yi is the total

monthly consumption for each household. The covariate vector Xi collects measurements of 20 pretreatment

variables. These variables can be grouped into five categories: consumption, food security, assets, finance,

and income and revenue. The consumption variables are pretreatment total monthly consumption and total

monthly consumptions on food, non-food, and durable commodities. The food-security variables are an index

for overall food-security and five binary variables indicating different aspects of food security (e.g., did a

child in the household skip a meal). The assets variables are value of assets, value of productive assets, and

value of the household’s assets, each aggregated in two ways. The financial variables are total amount of

formal and informal loans outstanding and total value of the household’s savings. The income and revenue

variables are income from agriculture, income from business, income from paid labor, revenue from animals,

and self-assessed perception of economic status. We refer the reader to the appendix of Banerjee et al. (2015)

for further information on the construction of these variables.

A.2 Simulations. Throughout the paper, we consider three Lasso regressions

β̂w(λ) = arg min
β

{∑
i∈s̃

I{Wi = w}(Yi − β>Xi)
2 + λ‖β‖1

}
, w ∈ {0, 1}, and (A.1)

β̃(λ) = arg min
β

{∑
i∈s̃

(Wi − β>Xi)
2 + λ‖β‖1

}
(A.2)

which produce the nuisance parameter estimates

µ̂w(Xi) = β̂w(λ)>Xi and π̂(Xi) = β̃(λ)>Xi .

Estimates of the average treatment effect are formed with the estimator (1.2). Figure A.1 displays average

cross-validated risk estimates, over one million cross-splits, for the regressions (A.1) and (A.2) as k is

varied. For all figures, except for Figure 1, we choose λ based off of the estimates reported in Figure A.1.

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/NHIXNT
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/NHIXNT
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Specifically, for the two outcome regressions (A.1). we choose the value of λ that minimizes the average

10-fold cross-validated mean-squared error.13 For the propensity score regression, the average k-fold mean-

squared error is monotonically decreasing in λ. To encourage some selection of covariates, we set the value

of λ sub-optimally, at approximately 0.02.

A.2.1 Figure 1. To emulate the way that cross-splitting is often applied in practice, for the purpose of Panels

A and B of Figure 1, we choose λ by implementing 10-fold cross validation once. We use one hundred

thousand cross-splits to construct each Panel.

A.2.2 Figure 2. For the purpose of Figure 2, we reduce the sample under consideration so that the total

sample size has many perfect divisors. In particular, for the treatment effect application, we randomly

reduce the sample of 854 households to a sample of 800 households. For the risk estimation application,

we randomly reduce the sample of 446 treated households to 400 treated households. We consider the set

of values of b that perfectly divide 800 and 400 respectively. For each value of b, we generate one million

sample sample-splitsplits. In both applications, to address some numerical instability in the estimation of

φn,b(D) and γn,b(D) we drop the 0.25% of simulation draws with the largest and smallest values of T (s, D).

A.2.3 Figure 3. One million sample-splits are used to estimate σ(2)
valid and σ(2,b−1)

train for each value of b

considered in Figure 3. In particular, for a given value of b, we draw one million sample-splits s and compute

T (s, D). For each sample-split s, we draw a random index I in s and compute(
ψ(DI , η̂ (Ds̃))− ψ(D′I , η̂ (Ds̃)

)2
, (A.3)

whereD′I is a random data point drawn from the uniformly from the dataD.14 The quantity σ(2)
valid is estimated

by averaging the quantity (A.3) over the one million sample-splits s. The estimate of σ(2,b−1)
train is constructed

similarly, where now we replace b− 1 random data points in s̃ with b− 1 observations drawn uniformly from

the data D.

A.2.4 Figure 4. The total number of simulation draws used in the measurements displayed in Figure 4

varies by the value of k. In the treatment effect estimation application, one million cross-split estimates are

drawn for each value of k less than or equal to 20. For each value of k greater than 20, five hundred thousand

cross-splits are used. Similarly, in the risk estimation application, one million cross-splits are used for k less

than or equal to 20 and five hundred thousand cross-splits are used for k greater than 20. To address issues

with numerical instability, when computing the variance v1,k(D) in the left-hand side of the Berry-Esseen

inequality (3.11), we drop the 0.1% of simulation draws with the largest and smallest values of a(R1,k, D).

13The chosen values of λ are equal to approximately 3.38 and 1.85 for the untreated and treated outcome regression, respectively.
14In the case of the risk estimation application to the treated outcome regression, the data set D is composed of only the data for the
treated households.
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FIGURE A.1. Mean Squared Error for Nuisance Parameter Estimates
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Notes: Figure A.1 displays the average of cross-validated risk estimate, taken over one million cross-splits, for the regressions
(A.1) and (A.2) implemented with the Banerjee et al. (2015) data. Each line displays this estimate for a different value of k. We
consider the values of λ reported by the “glmnet” R software package (Friedman et al., 2021).
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A.2.5 Figure 5. The measurements displayed in this figure are obtained by first computing one million

replicates of a(R1,k, D) for each value of k. For each value of k and and ξ, we implement Algorithm 1 twice

fifty thousand times by sampling with replacement from the replicates of a(R1,k, D). The measurements of

the reproducibility error give the proportions of time that these two measurements differ by more than ξ.

A.3 Additional Figures and Discussion. Figure A.2 displays measurements of reproducibility error (4.1)

when Rĝ,k and R′ĝ′,k are obtained independently with Algorithm 1 for the treatment effect application to the

Banerjee et al. (2015) data. Again, we set the nominal error rate to β = 0.1 and vary the values of k and ξ.

These measurements are qualitatively similar to the results for the risk estimation application displayed in (5).

The details of the simulation are also similar. We first compute one million replicates of a(R1,k, D) for

each value of k. However, for numerical stability, we remove the 0.001% of replicates with the largest and

smallest values of a(R1,k, D). These extreme values are caused by the division by estimates of the propensity

score in the formula (1.2). For each value of k and and ξ, we implement Algorithm 1 twice fifty thousand

times by sampling with replacement from the replicates of a(R1,k, D). To ease computation, we do not

display reproducibility error estimates for a (ξ, k) pair if k is less than 10 and ξ is less than 0.03. We reduce

the number of replications from fifty thousand to ten thousand for all estimates with k less than or equal to 7.

Figure A.3 displays the quantiles of the distribution of the sample size discrepancy

ĝ/g? − 1 (A.4)

for the risk estimation application to the Banerjee et al. (2015) data. The 95th and 5th quantiles of the

distribution of this difference are displayed with triangles and dots, respectively. Panel A gives results for

ginit set equal to 2. The high probability of early stopping at large values of ξ is evident. Interestingly, there

appears to be a phase transition as ξ decreases, wherein early stopping becomes much less likely. Panel B

gives results for ginit set equal to 10. Here, the features that characterize the measurements in Panel A only

occur at very large values of ξ. That is, the problem of early stopping has largely been resolved. At moderate

and small values of ξ, the variance of ĝ around g? increases as k increases.

APPENDIX B. PROOFS FOR RESULTS STATED IN THE MAIN TEXT

B.1 Proof of Theorem 2.1. For each collection rk = (sj)
k
j=1 inRn,k,b, we write

a(rk, D) =
1

k

k∑
j=1

T (sj , D)− E [T (sj , D) | D] .

Define the conditional variance

vg,k(D) = Var(a(Rg,k, D) | D)
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FIGURE A.2. Reproducibility Error in Treatment Effect Estimation
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Notes: Figure A.2 displays measurements of reproducibility error (4.1) for Algorithm 1 in the treatment effect estimation
application to the Banerjee et al. (2015) data. A dashed horizontal line is displayed at the nominal error rate β = 0.1. The x-axes
vary the bound ξ and are displayed in a log-scale base 10. To ease computation, we do not display reproducibility error estimates for
a (ξ, k) pair if k is less than 10 and ξ is less than 0.03. We reduce the number of simulation replications from 50,000 to 10,000 for
all estimates with k less than or equal to 7.
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FIGURE A.3. Sample Size Discrepancy in Risk Estimation
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Notes: Figure A.3 displays quantiles of measurements of sample size discrepancy (A.4) for Algorithm 1 in the risk estimation
application to the Banerjee et al. (2015) data. The 95th and 5th quantiles of the sample size error are displayed with triangles and
circles, respectively. We set the error rate at β = 0.1. The x-axes vary the bound ξ and are displayed in a log-scale base 10. We
study the regression (1.1) for the treated outcome, i.e., w equal to one, for a fixed choice of λ. To ease computation, we only display
reproducibility error estimates for a (ξ, k) pair if g? is less than 104.
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and the oracle stopping time

g? = arg min
g≥2

{
vg,k(D) ≤ 1

2

(
ξ

z1−β/2

)2
}
.

Observe that vg,k(D) = (1/g) · v1,k(D) as the collections of cross-splits are drawn independently and

identically. Similarly, we have that

v̂(Rg,k, D)

vg,k(D)
=
gv̂(Rg,k, D)

v1,k(D)

a.s→ 1 (B.1)

as g →∞, by the strong law of large numbers. Observe that

ĝ · v̂(Rĝ,k, D)

v1,k(D)
≤ ĝ

2v1,k(D)

(
ξ

z1−β/2

)2

≤ ĝ · v̂(Rĝ−1,k, D)

v1,k(D)
, (B.2)

by definition. Thus, as ĝ →∞ and

g?

(
2v1,k(D)

(
z1−β/2

ξ

)2
)
→ 1

as ξ → 0, we have that

ĝ/g?
a.s→ 1 (B.3)

as ξ → 0 by (B.1) and (B.2).

Define the objects

U (Rg,k, D) =
1

g?

 g∑
i=1

a (ri,k, D)−
g?∑
i=1

a (ri,k, D)

 and (B.4)

Q (Rg,k, D) =

(
1− g

g?

)
(a(Rg,k, D)− E [T (sj , D) | D]) (B.5)

Observe that we can decompose(
a(Rĝ,k, D)− a(R′ĝ′,k, D)

)
/
√

2vg?,k(D)

=

√
g?

2v1,k(D)

 1

g?

g?∑
i=1

(
a (ri,k, D)− a

(
r′i,k, D

))
+

√
g?

2v1,k(D)

1

ĝ

ĝ∑
i=1

a (ri,k, D)− 1

g?

g?∑
i=1

a (ri,k, D)


−
√

g?

2v1,k(D)

 1

ĝ′

ĝ′∑
i=1

a
(
r′i,k, D

)
− 1

g?

g?∑
i=1

a
(
r′i,k, D

)
=

√
g?

2v1,k(D)

(
a(Rg?,k, D)− a(R′g?,k, D)

)
+

√
g?

2v1,k(D)

(
U(Rĝ,k, D)− U(R′ĝ′,k, D)

)
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+

√
g?

2v1,k(D)

(
Q(Rĝ,k, D)−Q(R′ĝ′,k, D)

)
. (B.6)

First, we have that √
g?

2v1,k(D)

(
Q(Rĝ,k, D)−Q(R′ĝ′,k, D)

)
= op(1)

as ξ → 0 by (B.3). To handle the terms involving (B.4), fix some ε > 0 and observe that

P


∣∣∣∣ ĝ∑
i=1

a(ri,k, D)−
g?∑
i=1

a(ri,k, D)

∣∣∣∣ > ε
√
g? | D


≤ P


∣∣∣∣ ĝ∑
i=1

a(ri,k, D)−
g?∑
i=1

a(ri,k, D)

∣∣∣∣ > ε
√
g?, ĝ ∈

[
g?
(
1− ε3

)
, g?
(
1 + ε3

)]
| D


+ P


∣∣∣∣ ĝ∑
i=1

a(ri,k, D)−
g?∑
i=1

a(ri,k, D)

∣∣∣∣ > ε
√
g?, ĝ′ 6∈

[
g?
(
1− ε3

)
, g?
(
1 + ε3

)]
| D


≤ P

{
max

g?(1−ε3)≤g≤g?

∣∣∣∣ g∑
i=1

a(ri,k, D)

∣∣∣∣ > ε
√
g? | D

}
(B.7)

+ P

{
max

g?≤g≤(1+ε3)g?

∣∣∣∣ g∑
i=1

a(ri,k, D)

∣∣∣∣ > ε
√
g? | D

}
+ P

{
ĝ 6∈

[
g?
(
1− ε3

)
, g?
(
1 + ε3

)]
| D
}
.

The third term in (B.7) is smaller than ε for all sufficiently small ξ by (B.3). To handle the first two terms,

observe that

P

{
max

g?≤g≤(1+ε3)g?

∣∣∣∣ g∑
i=1

a(ri,k, D)

∣∣∣∣ > ε
√
ĝ | D

}
≤ 1

ε2

1

g?
Var

bε3ĝc+1∑
i=1

a(ri,k, D) | D

 ≤ ε,
where the first inequality follows from Kolmogorov’s maximal inequality (see e.g., Proposition 2.3.16 of

Dembo (2021)). An analogous bound holds for the remaining term. Thus, we have that√
g?

2v1,k(D)

(
U(Rĝ,k, D)− U(R′ĝ′,k, D)

)
= op (1)

as ξ → 0. Hence, we have that

P
{∣∣a(Rĝ,k, D)− a(R′ĝ′,k, D)

∣∣ > ξ | D
}

= P


∣∣∣∣
√

g?

2v1,k(D)

 1

g?

g?∑
i=1

a(ri,k, D)− a(r′i,k, D)

∣∣∣∣ > z1−β/2 | D

+ o (1)

= 1− β + o (1)

as ξ → 0 by the central limit theorem.

B.2 Proof of Lemma 5.1. We use the following Lemma in several places.
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Lemma B.1. Let ψ and ψ′ be two sets, each containing g elements of Pn. The inequality

∞∑
m=0

∣∣∣∣E [a (Rg,k(πm))− a
(
Rg,k(π

′
m)
)
| π0 = ψ,π′0 = ψ′, D

] ∣∣∣∣
≤ 2gn2 max

s,s′∈Sn,b

(
T (s, D)− T

(
s′, D

))
holds almost surely.

Observe that the quantity

max
s,s′∈Sn,b

(
T (s, D)− T

(
s′, D

))
is finite almost surely. Thus, the convergence of the series defining A (π,π′ | D) follows from Lemma B.1.

Define the operator

K : F → F

f (·) 7→ E
[
f
(
π′
)
| π = ·

]
,

where F is the set of all measurable functions supported on the domain of π. Observe that

E
[
a (Rg,k(πm), D)− a

(
Rg,k(π

′
m), D

)
| π0 = π,π′0 = π′, D

]
= E [a (Rg,k(πm), D)− a(D) | π0 = π, D]− E

[
a
(
Rg,k(π

′
m), D

)
− a(D) | π′0 = π′, D

]
= Km (a (Rg,k(π))− a(D))−Km+1

(
a
(
Rg,k(π

′)
)
− a(D)

)
.

Thus, for any m′, we have that

m′∑
m=0

E
[
a (Rg,k(πm), D)− a

(
Rg,k(π

′
m), D

)
| π0 = π,π′0 = π′, D

]
= a (Rg,k(π), D)− a (D)−Km′+1 (a (Rg,k(π), D)− a (D)) . (B.8)

By Lemma B.1, the partial sums (B.8) converge almost everywhere and so the sequence(
Km+1 (a (Rg,k(π), D)− a (D))

)
m≥0

(B.9)

also converges almost everywhere. Lemma B.1 also implies that the limit of (B.9) depends only on D, as

Km (a ((Rg,k (ψ) , D))− a (D))−Kma
((
Rg,k

(
ψ′
)
, D
)
− a (D)

)
→ 0

for any ψ and ψ′ each containing g elements of Pn. Therefore, we have that

E
[
A
(
π,π′ | D

)
| D
]

= E
[

lim
n→∞

(
a (Rg,k(π), D)− a (D)−Km+1a (Rg,k(π), D)− a (D)

)
| D
]

= E [a (Rg,k(π), D)− a (D) | D]− b (D) ,
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for some quantity

b (D) = lim
m→∞

Km (a (Rg,k(π), D)− a (D))

that depends only on D. Observe that

E
[
A
(
π,π′ | D

)
| D
]

= E

[
lim

m′→∞

m′∑
m=0

E
[
a (Rg,k(πm), D)− a

(
Rg,k(π

′
m), D

)
| π0 = π,π′0 = π′, D

]
| D
]

= lim
m′→∞

m′∑
m=0

E
[
a (Rg,k(πm), D)− a

(
Rg,k(π

′
m), D

)
| D
]

(Dominated Conv.)

= 0, (Exchangeability)

where the applicability of the Dominated Convergence Theorem follows from Lemma B.1. Thus, as

E [a (Rg,k(π), D)− a (D) | D] = 0,

we can conclude that b (D) = 0 almost surely. Hence, we find that

E
[
A
(
π,π′ | D

)
| π, D

]
= E

[
lim

m′→∞

m′∑
m=0

E
[
a (Rg,k(πm), D)− a

(
Rg,k(π

′
m), D

)
| π0 = π,π′0 = π′, D

]
| π, D

]

= lim
m′→∞

m′∑
m=0

E
[
a (Rg,k(πm), D)− a

(
Rg,k(π

′
m), D

)
| π0 = π,π′0 = π′, D

]
(Dominated Conv.)

− lim
m′→∞

Km′+1 (a (Rg,k(π), D)− a (D))

= a (Rg,k(π), D)− a (D) ,

completing the proof.

B.3 Proof of Lemma 5.2. First, observe that

UF (X) ≥ 1

2

(
E
[
F
(
X,X ′

)
| X
])2

=
1

2
f (X)2 ,

where the inequality follows from Jensen’s inequality and the definition of the Stein representer F . By (5.11),

we have that

su ≥ 1

2
f (X)2 .

Hence, the random variable f (X) is bounded almost surely.

Now, suppose h : X → R is any measurable function such that E [h (X)F (X,X ′)] < ∞. Then,

E [h (X) f (X)] = E [h (X)F (X,X ′)]. Using the exchangeability of X and X ′ and the fact that F is
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antisymmetric, we have that

E
[
h (X)F

(
X,X ′

)]
= E

[
h
(
X ′
)
F
(
X ′, X

)]
= −E

[
h
(
X ′
)
F
(
X,X ′

)]
and that therefore

E [h (X) f (X)] =
1

2
E
[(
h (X)− h

(
X ′
))
F
(
X,X ′

)]
. (B.10)

Let

m (θ) = E [exp (θf (X))]

denote the moment generating function of f (X). As f (X) is bounded almost surely, we can exchange

differentiation and expectation in the differentiation of m (θ). Thus, we obtain

m′ (θ) = E [exp (θf (X)) f (X)] .

=
1

2
E
[(

exp (θf (X))− exp
(
θf
(
X ′
)))

F
(
X,X ′

)]
, (B.11)

where the second inequality follows from (B.10). To bound m′ (θ) we apply the following exponential

mean-value inequality, stated in a more general form in Paulin et al. (2016).

Lemma B.2. For all constants x, y, and c in R and s > 0, it holds that

| (ex − ey) c| ≤ 1

4

(
s (x− y)2 + s−1c2

)
(ex + ey) .

In particular, by (B.11) and Lemma B.2, we obtain the bound

|m′ (θ) | ≤ 1

2
E
[
|
(
exp (θf (X))− exp

(
θf
(
X ′
)))

F
(
X,X ′

)
|
]

≤ 1

8
inf
t>0

E
[(
t
(
θf (X)− θf

(
X ′
))2

+ t−1F
(
X,X ′

)2) (
exp (θf (X)) + exp

(
θf
(
X ′
)))]

=
|θ|
4

inf
t>0

E
[(
t
(
f (X)− f

(
X ′
))2

+ t−1F
(
X,X ′

)2)
exp (θf (X))

]
=
|θ|
2

inf
t>0

E
[(

t

2
E
[(
f (X)− f

(
X ′
))2 | X]+

1

2t
E
[
F
(
X,X ′

)2 | X])E [exp (θf (X)) | X]

]
.

=
|θ|
2

inf
t>0

E
[(
tUf (X) + t−1UF (X)

)
E [exp (θf (X)) | X]

]
≤ |θ|

2
E
[(
sUf (X) + s−1UF (X)

)
E [exp (θf (X)) | X]

]
≤ |θ|vE [exp (θf (X))]

for all θ ∈ R. Thus, we have that

m′ (θ) ≤ uθm (θ)

for all θ > 0. As m (·) is a convex function and m′ (0) = 0, m′ (θ) always has the same sign as θ, we find

that
d
dθ

logm (θ) ≤ uθ.
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As a consequence, and by m (0) = 1, we have that

logm (θ) ≤
∫ θ

0
utdt ≤ uθ2

2
.

By the Chernoff bound (see e.g., Equation 2.5, Wainwright, 2019), we have

logP {f (X) ≥ δ} ≤ inf
θ≥0

(logm (θ)− θδ) ≤ inf
θ≥0

(
uθ2

2
− θδ

)
Solving this minimization with θ = δ/u, we find

P {f (X) ≥ t} ≤ exp

(−δ2

2u

)
,

as required. The analogous lower tail bound follows from an identical argument, which completes the proof

of (5.7). To prove (5.8) we apply the following result stated in Chatterjee (2007).

Theorem B.1 (Theorem 1.5, (iii), Chatterjee, 2007). Reintroduce the notation and assumptions from the

statement of Theorem 5.2. Define

∆ (X) =
1

2
E
[
|F
(
X,X ′

) (
f (X)− f

(
X ′
))
| | X

]
.

The Burkholder-Davis-Gundy inequality

E
[
f (X)2r

]
≤ (2r − 1)r E [∆ (X)r]

holds for any positive integer r.

The inequality

E [∆ (X)r] = E
[
E
[
|
(
f (X)− f

(
X ′
))
F
(
X,X ′

)
| | X

]r]
≤ E

[
E
[
|
(
f (X)− f

(
X ′
))
F
(
X,X ′

)
|r | X

]]
(Jensen)

= E
[
E
[((

s−1
(
f (X)− f

(
X ′
))2r)(

sF
(
X,X ′

)2r))1/2
| X
]]

≤ E
[
E
[
s−1

(
f (X)− f

(
X ′
))2r

+ sF
(
X,X ′

)2r | X]] (Young)

= s−1E
[
U

(r)
f (X)

]
+ sE

[
U

(r)
F (X)

]
then completes the proof.

B.4 Proof of Lemma 5.3. We apply the following Lemma.

Lemma B.3. Let (Xm)m≥0 be a sequence of real-valued random variables. Suppose that the inequality

E
[
X2c

m

]
≤ h2c

m (B.12)
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holds for each m ≥ 0 and positive integer c, where (hm)m≥0 is a deterministic sequence of nonnegative real

numbers. If there exists a square integrable random variable W such that( ∞∑
m=0

Xm

)2c

≤W

almost surely, then the inequality

E

( ∞∑
m=0

Xm

)2c
 ≤ ( ∞∑

m=0

hm

)2c

holds almost surely.

Define the objects

U
(r)
f (Z) =

1

2
E
[(
f (Z)− f

(
Z ′
))2r | Z] and

U
(r)
F (Z) =

1

2
E

( ∞∑
m=0

E
[
f (Zm)− f

(
Z ′m
)
| Z0 = Z,Z ′0 = Z ′

])2r

| Z

 .
By the (5.9), we have that

E

[ ∞∑
m=0

f(Zm)− f(Z ′m) | Z0 = Z,Z ′0 = Z ′

]2c

≤W.

Thus, (5.10) guarantees that the conditions of Lemma B.3 are satisfied, and we have that

E
[
U

(2c−1)
F (Z) | π

]
≤ 1

2

( ∞∑
i=0

hi

)2c

and E
[
U

(2c−1)
f (Z) | π

]
≤ 1

2
h2c

0 .

By Markov’s inequality, we obtain

P

{
U

(2c−1)
F (Z) ≥ 2

δ
E
[
U

(2c−1)
F (Z) | π

]
or U

(2c−1)
f (Z) ≥ 2

δ
E
[
U

(2c−1)
f (Z) | π

]
| π
}
≤ δ.

Hence, by Lemma B.3 and DeMorgan’s law, the probability that both

U
(2c−1)
F (Z) ≤ 2

δ
E
[
U

(2c−1)
F (Z) | π

]
≤ 1

δ

( ∞∑
m=0

hm

)2c

and

U
(2c−1)
f (Z) ≤ 2

δ
E
[
U

(2c−1)
f (Z) | π

]
≤ h2c

0

δ

hold is greater than 1− δ.

B.5 Proof of Lemma 5.4. Recall the definition of the collections (πm,π
′
m)m≥0 given in (5.3). Fix Z0 = Z

and Z ′0 = Z ′ throughout. For any i in [n], let sm,` (i) denote the element of the collection

r(πm,`) = (s1(πm,`), . . . , sg(πm,`))



14

that contains the index i and set sm,`(i) equal to ∅ if no element of r(πm,`) contains i.

We begin by defining three events that will determine the structure of our argument. By construction,

the collections πm and π′m are either identical or differ in exactly two indices in their Lth element. Let Em
denote the event that πm and π′m differ. On the event Em, let i1,m and i2,m denote the two indices in which

the Lth elements of πm and π′m differ. Define the random variables Bm and Cm such that, conditional on

Em, each is uniformly distributed on {i1,m, i2,m} such that Bm 6= Cm. On the complement of Em, set these

indices uniformly at random. Let Fm denote the event that

sm,L (Bm) 6= sm,L (Cm) ,

i.e., the event that the indices that differ are not in the same element of the collection r(πm,`). Finally, let Gm
denote the event that

sm,L (Bm) 6= ∅ and sm,L (Cm) 6= ∅,

i.e., the event that the indices that differ are both in the collection r(πm,`).

By Assumption 3.1, the eventHm = Em ∩ Fm is a necessary condition for a (Zm)− a (Z ′m) 6= 0. Thus,

we can compute

P {Hm | E0} = P {Fm | Em, E0}P {Em | E0}

=
(
P {sm,L (Bm) 6= sm,L (Cm) | sm,L (Bm) 6= ∅, Em}P {sm,L (Bm) 6= ∅ | Em}

+ P {sm,L (Bm) 6= sm,L (Cm) | sm,L (Bm) = ∅, Em}P {sm,L (Bm) = ∅ | Em}
)

· P {Em | E0}

=

(
n− b
n− 1

kb

n
+

kb

n− 1

n− kb
b

)(
1− 2

gn2

)m
=

(
kb (2n− kb− b)

n(n− 1)

)(
1− 2

gn2

)m
for all m ≥ 0 by the law of total probability. Moreover, we have that

P
{
Hm | Z,Z ′

}
≤ P {Hm | E0}

almost surely. Consequently, we find that

E
[
E
[
a (Zm)− a

(
Z ′m
)
| Z,Z ′

]2r | π]
= E

[(
P
{
Hm | Z,Z ′

}
E
[
a (Zm)− a

(
Z ′m
)
| Z,Z ′,Hm

])2r | π]
≤ (P {Hm | E0})2r E

[
E
[(
a (Zm)− a

(
Z ′m
))2r | Z,Z ′,Hm] | π] (Jensen)

=

(
1− 2

gn2

)2mr (kb (2n− kb− b)
n(n− 1)

)2r

E
[
E
[(
a (Zm)− a

(
Z ′m
))2r | Hm,π] | π]
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≤
(

1− 2

gn2

)2mr (2kb (2n− kb− b)
n2

)2r

E
[(
a (Zm)− a

(
Z ′m
))2r | Hm] , (B.13)

where the final inequality follows from the fact that π is uniformly distributed independently of D and the

elementary inequality n/(n− 1) ≤ 2. Thus, it remains to bound the expectation in (B.13).

To ease notation, we now drop the dependence on m and L. Observe that

P {G | H} = P {s (B) 6= ∅ | s (C) 6= ∅} =
kb− b
n− b

and that therefore

E
[(
a (Z)− a

(
Z ′
))2r | H,π] =

(
kb− b
n− b

)
E
[(
a (Z)− a

(
Z ′
))2r | G]

+

(
n− kb
n− b

)
E
[(
a (Z)− a

(
Z ′
))2r | H \ G] . (B.14)

Define the sets

ŝi = s(i) \ i and s = s̃(B) ∩ s̃(C).

With an abuse of notation, we let

ψ(Di, η̂(Dj , Dŝk)) = ψ(Di, η̂(Dj ∩Dŝk ∩Ds)) and

h(Di, Dj , Dŝk) = ψ(Di, η̂(Dj , Dŝk))− ψ(Dj , η̂(Di, Dŝk)).

Observe that

E
[(
a (Z)− a

(
Z ′
))2r | H \ G]

= E
[(
a (Z)− a

(
Z ′
))2r | H \ G] =

(
1

gkb

)2r

E
[
h(DB, DC , Ds̃C )2r

]
. (B.15)

On the other hand, we can decompose

E
[(
a (Z)− a

(
Z ′
))2 | G]

=

(
1

gkb

)2r

E
[
(h(DB, DC , DŝC ) + h(DC , DB, DŝB ))2r

]
=

(
1

gkb

)2r

E
[
(h(DB, DC , DŝC )− h(DB, DB, DŝB ))2r

]
. (B.16)

Consequently, by (B.14), (B.15), and (B.16), it suffices to express suitable bounds for the expectations

E
[
(ψ(DB, η̂(DC , DŝC ))− ψ(DC , η̂(DB, DŝC )))2r

]
and

E

[(
(ψ(DB, η̂(DC , DŝC ))− ψ(DC , η̂(DB, DŝC ))) (B.17)
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− (ψ(DB, η̂(DC , DŝB ))− ψ(DC , η̂(DB, DŝB )))

)2r
]

respectively. To this end, recall that D̃i are independent copies of Di for each i. Observe that

E
[
(ψ(DB, η̂(DC , DŝC ))− ψ(DC , η̂(DB, DŝC )))2r

]
= E

[(
ψ(DB, η̂(DC , DŝC ))− ψ(D̃B, η̂(D̃C , DŝC )) + ψ(D̃B, η̂(D̃C , DŝC ))− ψ(DC , η̂(DB, DŝC ))

)2r
]

=
2r∑
q=0

(
2r

q

)
E
[(
ψ(DB, η̂(DC , DŝC ))− ψ(D̃B, η̂(D̃C , DŝC ))

)2r−q

(
ψ(D̃B, η̂(D̃C , DŝC ))− ψ(DC , η̂(DB, DŝC ))

)q ]
(Binomial Theorem)

≤ 22rE
[(
ψ(DB, η̂(DC , DŝC ))− ψ(D̃B, η̂(D̃C , DŝC ))

)2r
]

(B.18)

where the inequality follows from the fact thatB and C are exchangeable and the Hölder inequality. Similarly,

we have that

E
[(
ψ(DB, η̂(DC , DŝC ))− ψ(D̃B, η̂(D̃C , DŝC ))

)2r−q
]

= E
[(
ψ(DB, η̂(DC , DŝC ))− ψ(DB, η̂(D̃C , DŝC )) + ψ(DB, η̂(D̃C , DŝC ))− ψ(D̃B, η̂(D̃C , DŝC ))

)2r
]

=
2r∑
q=0

(
2r

q

)
E
[(
ψ(DB, η̂(DC , DŝC ))− ψ(DB, η̂(D̃C , DŝC ))

)2r−q

(
ψ(DB, η̂(D̃C , DŝC ))− ψ(D̃B, η̂(D̃C , DŝC ))

)q ]
(Binomial Theorem)

≤
2r∑
q=0

(
2r

q

)(
σ

(2r)
valid

) 2r−q
2r
(
σ

(2r,1)
train

) q
2r (Hölder)

≤ 22rσ
(2r)
max , (B.19)

where the last inequality follows by the definitions of σ(2r)
valid and σ(2r,1)

train . Thus, we have that

E
[
(ψ(DB, η̂(DC , DŝC ))− ψ(DC , η̂(DB, DŝC )))2r

]
≤ 24rσ

(2r)
max (B.20)

by (B.18) and (B.19).

Next, we consider the double difference term (B.17). In this case, we have that

E

[(
(ψ(DB, η̂(DC , DŝC ))− ψ(DC , η̂(DB, DŝC )))

− (ψ(DB, η̂(DC , DŝB ))− ψ(DC , η̂(DB, DŝB )))

)2r
]
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= E

[(
(ψ(DB, η̂(DC , DŝC ))− ψ(DB, η̂(DC , DŝB )))

− (ψ(DC , η̂(DB, DŝC ))− ψ(DC , η̂(DB, DŝB )))

)2r
]

=
2r∑
q=0

(
2r

q

)
E

[(
(ψ(DB, η̂(DC , DŝC ))− ψ(DB, η̂(DC , DŝB )))

· (ψ(DC , η̂(DB, DŝC ))− ψ(DC , η̂(DB, DŝB )))

)2r
]

(Binomial Theorem)

≤ 22rE
[
(ψ(DB, η̂(DC , DŝC ))− ψ(DB, η̂(DC , DŝB )))2r

]
= 22rσ

(2r,b−1)
train (B.21)

where the final inequality follows from the fact that B and C are exchangeable and the Hölder inequality.

Putting the pieces together, we have that

E
[
E
[
a (Zm)− a

(
Z ′m
)
| Z,Z ′

]2r | π]
≤ 24r

(
1− 2

gn2

)2mr (2n− kb− b
gn2

)2r ((n− kb
n− b

)
22rσ

(2r)
max +

(
kb− b
n− b

)
σ

(2r,b−1)
train

)
as required.

B.6 Proof of Lemma 5.5. Throughout, we us the short hand v̂g,k (Z) to denote v̂(Rg,k, D). We begin by

decomposing the estimator v̂g,k (Z) into two parts that will each be easier to handle when considered in

isolation. To this end, define the statistics

ṽg,k (Z) =
1

g2k2

g∑
`=1

k∑
i,i′=1

(T (s`,i, Y )− a (D))
(
T (s`,i′ , D)− a (D)

)
and

v̌g,k (Z) = (a (Z)− a (D))2 .

Observe that both ṽg,k (Z) and v̌g,k (Z) are unbiased for v (Z). Moreover, we can write

v̂g,k (Z) =
1

g (g − 1) k2

g∑
`=1

k∑
i,i′=1

(T (s`,i, D)− a (Z))
(
T (s`,i′ , D)− a (Z)

)
=

1

g (g − 1) k2

g∑
`=1

k∑
i,i′=1

(T (s`,i, D)− a (D))
(
T (s`,i′ , D)− a (Z)

)
+

1

g (g − 1) k

g∑
`=1

g∑
i=1

(a (D)− a (Z)) (T (s`,i, D)− a (Z))

=
1

g (g − 1) k2

g∑
`=1

k∑
i,i′=1

(T (s`,i, D)− a (D))
(
T (s`,i′ , D)− a (Z)

)
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=
g

g − 1
ṽ (Z) +

1

g (g − 1) k

g∑
`=1

k∑
i=1

(T (s`,i, D)− a (D)) (a (D)− a (Z))

=
g

g − 1
ṽg,k (Z)− 1

g − 1
v̌g,k (Z) . (B.22)

Hence, it will suffice to characterize the exponential rates of conditional concentration for the statistics

ṽg,k (Z) and v̌g,k (Z). These are established through the application of the following Lemma, which follows

from an argument very similar to the proof of Theorem 3.1.

Lemma B.4. Suppose that Assumptions 3.1 and 3.2 hold and that the dataD are independently and identically

distributed. If the eighth-order split-stability ζ(8) is finite, then:

(i) The conditional concentration inequality

log
1

2
P {|ṽ (Z)− v (D) | ≥ t | D} . − δ

(2− ϕk − ϕ)4

g3t2

Γ
(2)
k,ϕ,b

, (B.23)

holds for all t > 0 with probability greater than 1− δ.

(ii) The conditional concentration inequality

log
1

2
P {|v̌ (Z)− v (D) | ≥ t | D} . − δ

(2− ϕk − ϕ)4

g2t2

Γ
(2)
k,ϕ,b

, (B.24)

holds for all t > 0 with probability greater than 1− δ.

Putting the pieces together, by (B.22), we have that

P {|v̂g,k (Z)− vg,k (D) | ≤ t | D}

= P

{
| g

g − 1
(ṽg,k (Z)− vg,k (D))− 1

g − 1
(v̌g,k (Z)− vg,k (D)) | ≤ t | D

}
≥ P

{
g

g − 1
|ṽg,k (Z)− vg,k (D) |+ 1

g − 1
|v̌g,k (Z)− vg,k (D) | ≤ t | D

}
≥ P

{
g

g − 1
|ṽg,k (Z)− v (D) | ≤

√
g

1 +
√
g
t,

1

g − 1
|v̌ (Z)− v (D) | ≤ 1

1 +
√
g
t | D

}
≥ P

{
|ṽg,k (Z)− v (D) | ≤ 1√

g

g − 1

1 +
√
g
t | D

}
+ P

{
|v̌g,k (Z)− v (D) | ≤ g − 1

1 +
√
g
t | D

}
− 1

≥ 1− 4 exp

− δ

C(2− ϕk − ϕ)4

g3t2

Γ
(2)
k,ϕ,b


with probability greater than 1− δ for some universal constant C, where the last inequality follows by Lemma

B.4 and the facts that 4g ≥
(
1 +
√
g
)2 for all g ≥ 1 and (1/4) g2 ≤ (g − 1)2 for all g ≥ 2.

B.7 Proof of Lemma 5.6. Define the event

Wλ (D) = Uk,λ (D) ∩Qk,λ(D),
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the quantity

W (D) =
(
U(Rĝ,k, D)− U(R′ĝ′,k, D

)
+
(
Q(Rĝ,k, D)−Q(R′ĝ′,k, D)

)
.

By the decomposition (B.6), we have that∣∣∣∣P {a(Rĝ,k, D)− a(R′ĝ′,k, D) ≤ ξ | D
}
− (1− β/2)

∣∣∣∣
=

∣∣∣∣P
{
a(Rĝ,k, D)− a(R′ĝ′,k, D)√

2vg?,k (D)
≤ ξ√

2vg?,k (D)
| D
}
− (1− β/2)

∣∣∣∣
=

∣∣∣∣P
{
a(Rg?,k, D)− a(R′g?,k, D)√

2vg?,k (D)
≤ ξ√

2vg?,k (D)
− W (D)√

2vg?,k (D)
| D
}
− (1− β/2)

∣∣∣∣
≤ sup

q∈[−2λ,2λ]

∣∣∣∣P
{
a(Rg?,k, D)− a(R′g?,k, D)√

2vg?,k (D)
≤ z1−β/2 + q

}
− (1− β/2)

∣∣∣∣+ (1− P {Wλ (D) | D})

≤ dK
(
a(Rg?,k, D)− a(R′g?,k, D)√

2vg?,k (D)
,W | D

)
+ 2λ+ (1− P {Wλ (D) | D}) ,

as required.

B.8 Proof of Lemma 5.7, Part (i). Observe that we can write

a(Rg?,k, D)− a(R′g?,k, D) =
1

g?

g∑
`=1

(
a(r`, D)− a(r′`, D)

)
,

where a (·, D) is defined in (5.14). We have that

E
[
|a(r`, D)− a(r′`, D)|3

]
≤
(
E
[(
a(r`, D)− a(r′`, D)

)4])3/4
(Hölder)

≤ 26
(
E
[
(a(r`, D))4

])3/4

≤ 2632(2− ϕk − ϕ)3(Γ
(2)
k,ϕ,b)

3/4 ,

where the second inequality follows from Hölder’s inequality, the binomial theorem, and the fact that r` and

r′` are exchangeable. The final inequality follows from Theorem 3.2. Consequently, we find that

E
[
|a(r`, D)− a(r′`, D)|3 | D

]
(g?)1/2 (2v1,k (D))3/2

.
(2− ϕk − ϕ)3(Γ

(2)
k,ϕ,b)

3/4

δ (g?)1/2 (v1,k (D))3/2
(Markov)

.
ξ

z1−β/2

(2− ϕk − ϕ)3(Γ
(2)
k,ϕ,b)

3/4

δ (v1,k (D))2 ,

holds with probability 1− δ. The Lemma then follows by the standard Berry-Esseen inequality.

B.9 Proof of Lemma 5.7, Part (ii). Our bound is based on the following two conditional concentration

inequalities. Both arguments are based on a Chernoff-type maximal inequality, due to Steiger (1970).
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Lemma B.5. Suppose that Assumptions 3.1 and 3.2 hold, that the data D are independent and identically

distributed, and that the eighth-order split ζ8 stability is finite.

(i) For all t > 0 and c > 0, the condition concentration inequality

log
1

2
P

{
|U(Rĝ,k, D)| ≥ t

√
vg?,k (D), |ĝ/g? − 1| ≤ c | D

}
≤ −

δv1,k(D)

24(2− ϕk − ϕ)2Γ
(1)
k,ϕ,b

t2

c
(B.25)

holds with probability greater than 1− δ as D varies.

(ii) If g?c ≥ 2 and 1/2 > c > 0, then the conditional concentration inequality

log
1

8
P {|ĝ − g?| > cg? | D} . − δ(v1,k(D))3

(2− ϕk − ϕ)4

z1−β/2

Γ
(2)
k,ϕ,b

c2

ξ2
(B.26)

holds with probability greater than 1− δ as D varies.

Observe that

P

{
|U(Rĝ,k, D)− U(R′ĝ′,k, D)| ≥ λ

√
2vg?,k (D)

}
. P

{
|U(Rĝ,k, D)| ≥ λ

√
2vg?,k (D)

}
≤ P

{
|U(Rĝ,k, D)| ≥ λ

√
2vg?,k (D), |ĝ/g? − 1| ≤ c | D

}
+ P {|ĝ/g? − 1| ≥ c | D}

. exp

− δv1,k(D)

24(2− ϕk − ϕ)2Γ
(1)
k,ϕ,b

λ2

c

+ exp

−C δ(v1,k(D))3

(2− ϕk − ϕ)4

z1−β/2

Γ
(2)
k,ϕ,b

c2

ξ2

 (B.27)

for some universal constant C. Hence, it remains to choose c and λ such that the quantity (B.27) is less than

ρk,ϕ,b (ξ, β | D). First, we choose c such that

δ(v1,k(D))3

(2− ϕk − ϕ)4

z1−β/2

Γ
(2)
k,ϕ,b

c2

ξ2
. log

(
ρk,ϕ,b (ξ, β | D)−1

)
Choosing c by

c = ξ

(2− ϕk − ϕ)2 (Γ
(2)
k,ϕ,b)

1/2

z1−β/2δ1/2(v1,k(D))3/2

 log1/2
(
ρk,ϕ,b (ξ, β | D)−1

)
(B.28)

suffices. Next, we choose λ such that

δv1,k(D)

24(2− ϕk − ϕ)2Γ
(1)
k,ϕ,b

λ2

c
. log

(
ρk,ϕ,b (ξ, β | D)−1

)
.

We can rewrite this condition by plugging in our choice of c through

λ2

ξ

z1−β/2δ
3/2(v1,k(D))5/2

(2− ϕk − ϕ)4 Γ
(1)
k,ϕ,b(Γ

(2)
k,ϕ,b)

1/2
. log3/2

(
ρk,ϕ,b (ξ, β | D)−1

)
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Choosing λ by

λ =

 ξ

z1−β/2

(2− ϕk − ϕ)4Γ
(1)
k,ϕ,b(Γ

(2)
k,ϕ,b)

1/2

δ3/2(v1,k (D))5/2

1/2

λ̃Uk,ϕ,b (D) , where

λ̃Uk,ϕ,b (D) = log3/4
(
ρk,ϕ,b (ξ, β | D)−1

)
will then suffice, as required.

B.10 Proof of Lemma 5.7, Part(iii). Observe that

P

{
|
(

1− ĝ

g?

)
(a(Rĝ,k, D)− a (D)) | ≥ λ

√
2vg?,k (D), |g? − ĝ| ≤ cg? | D

}
= P

{
| (a(Rĝ,k, D)− a (D)) | ≥ λ

c

√
2vg?,k (D), |g? − ĝ| ≤ cg? | D

}
≤ P

{
max

|g?−g|≤cg?
| (a(Rg,k, D)− a (D)) | ≥ λ

c

√
2vg?,k (D) | D

}
≤ P

{
max

|g?−g|≤cg?
| (a(Rg,k, D)− a (D)) | ≥ λ

c

(
ξ

z1−β/2

)
| D
}

≤
∑

|g?−g|≤cg?
P

{
| (a(Rg,k, D)− a (D)) | ≥ λ

c

(
ξ

z1−β/2

)}
. (B.29)

By Theorem 3.1, we have that

P

{
| (a(Rg,k, D)− a (D)) | ≥ λ

c

(
ξ

z1−β/2

)}
≤ 2 exp

(
− gδ

24(2− ϕk − ϕ)2Γk,ϕ,b(1)

λ2

c2

(
ξ

z1−β/2

)2
)

and so is (B.29) bounded from above by

4cg? exp

(
− g?(1− c)δ

4(2− ϕk − ϕ)2Γk,ϕ,b(1)

λ2

c2

(
ξ

z1−β/2

)2
)

. v1,k (D) c

(
z1−β/2

ξ

)2

exp

(
− δv1,k(D)

25(2− ϕk − ϕ)2Γk,ϕ,b(1)

λ2

c2

)
if 1− c ≥ 1/2 by the definition of g?. Thus, we have that

P

{
|Q(Rĝ,k, D)−Q(R′ĝ′,k, D)| ≥ λ

√
2vg?,k (D) | D

}
. P

{
|
(

1− ĝ

g?

)
(a(Rĝ,k, D)− a (D)) | ≥ λ

√
2vg?,k (D), |g? − ĝ| ≤ cg? | D

}
+ P

{
|g? − ĝ| ≥ cg? | D

}
. v1,k (D) c

(
z1−β/2

ξ

)2

exp

− δv1,k(D)

25(2− ϕk − ϕ)2Γ
(1)
k,ϕ,b

λ2

c2

 (B.30)

+ exp

− 1

C

δ(v1,k(D))3

(2− ϕk − ϕ)4

z1−β/2

Γ
(2)
k,ϕ,b

c2

ξ2

 (B.31)
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for some universal constant C by Lemma B.5, Part (ii). If c is chosen to satisfy (B.28), the term (B.31) will

be bounded above by ρϕ,k (ξ, β | D) . By plugging this value of c and λ = λϕ,k (ξ, β | D) into (B.30), we

obtain the sub-polynomial term

ρ̃k,ϕ,b(ξ, β | D) =

(
z2

1−β/2

ξ

)(2− ϕk − ϕ)2 (Γ
(2)
k,ϕ,b)

1/2

z1−β/2δ1/2(v1,k(D))1/2

 log1/2
(
ρk,ϕ,b (ξ, β | D)−1

)

exp

−1

ξ

δ1/2(v1,k(D))3/2

(2− ϕk − ϕ)2(Γ
(2)
k,ϕ,b)

1/2
λ̃Uk,ϕ,b (D) log

(
ρk,ϕ,b (ξ, β | D)−1

) (B.32)

as required.

APPENDIX C. PROOFS FOR AUXILIARY RESULTS

C.1 Proof of Lemma B.1. Let Ti (πm,`) = T (si (π`,m) , D) and define Ti(π′m,`) analogously. Define

Rm (`) =
{
i ∈ [n] : πm,` (i) 6= π′m,` (i)

}
and let Rm (`) = |Rm (`) | denote the number of shared indices in the permutations in πm,` and π′m,`.

Observe that
1

k

k∑
i=1

(
Ti (πm,`)− Ti

(
π′m,`

))
= 0 (C.1)

almost surely for all m′ ≥ m if and only if Rm (`) = n. Let N (`) denote the values of the smallest index m

with Rm (`) = n. Observe that

∞∑
m=0

∣∣∣∣E [a(Rg,k(πm), D)− a(Rg,k(π
′
m), D) | π0 = ψ,π′0 = ψ′, D

] ∣∣∣∣ (C.2)

≤
∞∑
m=0

1

g

1

k

g∑
`=1

k∑
i=1

E
[∣∣∣∣ (Ti (πm,`)− Ti

(
π′m,`

)) ∣∣∣∣ | π0 = ψ,π′0 = ψ′, D

]

≤ 1

g

1

k

g∑
`=1

k∑
i=1

max
s,s′∈Sn,b

∣∣T (s, D)− T
(
s′, D

) ∣∣E [N (`)]

Hence, it suffices to bound the quantity E [N (`)].

To that end, let Nr (`) be the value of the smallest index m with Rm (`) ≥ r. We proceed analogously to

standard analysis of the coupon collector’s problem (see e.g., Section 2.2 of Levin and Peres, 2017). We can

evaluate

P
{
Rm (`) ≥ r + 1 | Rm−1 (`) = r

}
=

1

g
P
{
π` (Im) 6= π′` (Im) , π−1

` (Jm) 6= π′−1
` (Jm)

}
=

(n− r)2

gn2

and

P
{
Rm (`) < r | Rm−1 (`) = r

}
= 0,
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and thereby obtain the bound

E [N (`)] =
n∑
r=1

E [Nr (`)−Nr−1 (`)] ≤
n∑
r=1

gn2

(n− r + 1)2 = gn2
n∑
r=1

1

r2
≤ 2gn2. (C.3)

Hence, we find that (C.2) is upper bounded by

2gn2 max
s,s′∈Sn,b

T (s, D)− T
(
s′, D

)
,

as required.

C.2 Proof of Lemma B.2. Observe that

d
dt
etxe(1−t)y = (x− y) etxe(1−t)y.

Thus, we find that

c (ex − ey) = c

∫ 1

0

(
d
dt
etxe(1−t)y

)
dt (Fundamental Theorem of Calculus)

= c (x− y)

∫ 1

0
etxe(1−t)ydt

≤ c (x− y)

∫ 1

0
(tex + (1− t) ey) (Convexity)

=
c

2
(x− y) (ex + ey)

=
1

2

((
s−1c2 (ex + ey)

) (
s (x− y)2 (ex + ey)

))1/2

≤ 1

4

((
s−1c2

)
+ s (x− y)2

)
(ex + ey) , (AM-GM)

as required.

C.3 Proof of Lemma B.3. To begin, consider any collection of real numbers x1, . . . , x2c , for some positive

integer c. For any integer s > 0, we have

(x1 · · ·x2c)
2s ≤ 1

4

((
xi1 · · ·xi2c−1

)2s
+
(
xi2c−1+1

· · ·x2c

)2s
)2

(Young’s Inequality)

≤ 1

4

((
xi1 · · ·xi2c−1

)2(s+1)
+ 2 (x1 · · ·x2c)

2s +
(
xi2c−1+1

· · ·x2c

)2(s+1)
)

and so

(x1 · · ·x2c)
2s ≤ 1

2

(
xi1 · · ·xi2c−1

)2(s+1)
+

1

2

(
xi2c−1+1

· · ·x2c

)2(s+1)
. (C.4)

Consequently, we have that

x1 · · ·x2c ≤
1

2c

2c∑
i=1

x2c
i (C.5)

through 2r applications of (C.4).
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Now, to prove the Lemma, we may assume without loss that hi > 0 for all i by continuity. Observe that

E

( ∞∑
m=0

Xm

)2c
 =

∞∑
i1=0

· · ·
∞∑

i2c=0

E [Xi1 · · ·Xi2c ] (C.6)

by dominated convergence. By writing

X1 · · ·X2c =
2c∏
j=1

(∏
k 6=j hk

h2c−1

j

)1/2c

Xj

we find that

E [X1 · · ·X2c ] ≤
1

2c

2c∑
j=1

∏
k 6=j hk

h2c−1

j

h2c

j =
2c∏
j=1

hj

by (C.5). Hence, by (C.6), we have that

E

( ∞∑
m=0

Xm

)2c
 ≤ ∞∑

i1=0

· · ·
∞∑

i2c=0

2c∏
j=1

hij =

( ∞∑
m=0

hj

)2c

,

as required.

C.4 Proof of Lemma B.4. We begin by constructing Stein representers Ṽ (Z,Z ′) and V̌ (Z,Z ′) for the

statistic ṽg,k (Z) and v̌g,k (Z), respectively. We will use the same exchangeable pair (Z,Z ′)m≥0 and Markov

chain (Zm, Z
′
m)m≥1 defined in Section 5.1. The subsequent result follows from an argument similar to

Lemma 5.1, again based on an idea expressed by Lemma 4.1 of Chatterjee (2005).

Lemma C.1.

(i) Let ψ and ψ′ be two sets, each containing g elements of Pn. The inequalities

∞∑
m=0

∣∣∣∣E [(ṽg,k (Zm)− ṽg,k
(
Z ′m
))
| Z0 = Z,Z ′0 = Z ′

] ∣∣∣∣ ≤ n2 max
s,s′∈Sn,b

(
T (s, D)− T (s′, D)

)2 and

∞∑
m=0

∣∣∣∣E [(v̌g,k (Zm)− v̌g,k
(
Z ′m
))
| Z0 = Z,Z ′0 = Z ′

] ∣∣∣∣ ≤ 2gn2 max
s∈Sn,b

(
T (s, D)− T (s′, D)

)2
hold almost surely.

(ii) The functions

Ṽ
(
Z,Z ′

)
=

∞∑
m=0

E
[(
ṽg,k (Zm)− ṽg,k

(
Z ′m
))
| Z0 = Z,Z ′0 = Z ′

]
and

V̌
(
Z,Z ′

)
=
∞∑
m=0

E
[(
v̌g,k (Zm)− v̌g,k

(
Z ′m
))
| Z0 = Z,Z ′0 = Z ′

]
are finite and satisfy the equalities

E
[
Ṽ
(
Z,Z ′

)
| Z
]

= ṽg,k (Z)− vg,k (D) and
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E
[
V̌
(
Z,Z ′

)
| Z
]

= v̌g,k (Z)− vg,k (D)

almost surely.

Next, we apply the concentration inequality stated in Theorem 5.2, due to Chatterjee (2005, 2007). That is, to

establish part (i) of the Lemma, it will suffice to characterize constants s and u that satisfy

Uṽ (Z) ≤ s−1u and UṼ (Z) ≤ su,

with probability 1− δ, where

Uṽ (Z) =
1

2
E
[(
ṽ (Z)− ṽ

(
Z ′
))
| Z
]

and UṼ (Z) =
1

2
E
[
Ṽ
(
Z,Z ′

)2 | Z] .
The same statement holds for part (ii) of the Lemma, for the objects Uv̌ (Z) and UV̌ (Z) defined analogously.

We obtain such a characterization through the application of Lemma 5.3. To this end, observe that, by

Lemma C.1, part (i), the bound( ∞∑
m=0

E
[(
ṽg,k (Zm)− ṽg,k

(
Z ′m
))
| Z0 = Z,Z ′0 = Z ′

])2

≤ n4 max
s,s′∈Sn,b

(
T (s, D)− T (s′, D)

)4 (C.7)

holds almost surely. The right hand side of (C.7) is square integrable, as the eighth-order split-stability ζ(8) is

finite almost surely. An analogous statement holds for the statistic v̌g,k (Z). Thus, deterministic bounds of

the form (5.10) can be obtained through the application of the following Lemma.

Lemma C.2. Suppose that Assumptions 3.1 and 3.2 hold and that the data D are independent and identically

distributed. If the eighth-order split stability ζ(8) is finite, then

(i) The inequality

E
[
E
[
ṽg,k(Zm)− ṽg,k(Z ′m) | Z,Z ′

]2 | π] . (1− 2

gn2

)2m
(

(2− ϕk − ϕ)4

n2g4

)
Γ

(2)
k,ϕ,b ,

holds almost surely for all integers m ≥ 0, and

(ii) The inequality

E
[
E
[
v̌g,k(Zm)− v̌g,k(Z ′m) | Z,Z ′

]2 | π] . (1− 2

gn2

)2m
(

(2− ϕk − ϕ)4

n2g3

)
Γ

(2)
k,ϕ,b ,

holds almost surely for all integers m ≥ 0.

Thus, by Lemma 5.3, part (i), the inequalities

UṼ (Z) .
1

δ

(
gn2

2

)2
(

(2− ϕk − ϕ)4

n2g4

)
Γ

(2)
k,ϕ,b

.

(
gn2

2

)(
1

δ

(2− ϕk − ϕ)4

g3

)
Γ

(2)
k,ϕ,b
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and

Uṽ (Z) .
1

δ

(
(2− ϕk − ϕ)4

n2g4

)
Γ

(2)
k,ϕ,b

.

(
2

gn2

)(
1

δ

(2− ϕk − ϕ)4

g3

)
Γ

(2)
k,ϕ,b

both hold with probability greater than 1− δ. Hence, we obtain the bound (B.23) by applying Theorem 5.2

and choosing s = gn2/2 and

u =
1

δ

(2− ϕk − ϕ)4

g3
Γ

(2)
k,ϕ,b .

Analogous inequalities for the objects Uv̌ (Z) and UV̌ (Z) hold by Lemma 5.3, part (ii), where in that case

u =
1

δ

(2− ϕk − ϕ)4

g2
n4Γ

(2)
k,ϕ,b .

which similarly implies the bound (B.24) by Theorem 5.2.

C.5 Proof of Lemma C.1. Reinstate the notation of the proof of Lemma B.1. We begin by noting that

max
s,s′∈Sn,b

(
T (s, D)− T (s′, D)

)2
= max

s,s′∈Sn,b
(T (s, D)− a (D))2 +

(
T (s′, D)− a (D)

)2
+ 2 (T (s, D)− a (D))

(
T (s′, D)− a (D)

)
≥ 4 max

s∈Sn,b
(T (s, D)− a (D))2 .

Observe that

k∑
i,i′=1

(Ti (πm,`)− a (D)) (Ti (πm,`)− a (D))−
k∑

i,i′=1

(
Ti
(
π′m,`

)
− a (D)

) (
Ti′
(
π′m,`

)
− a (D)

)
= 0

for all for all m′ ≥ m if and only if Rm (`) = n. Thus, we have that

∞∑
m=0

∣∣∣∣E [ṽg,k(Zm)− ṽg,k(Z ′m) | Z0 = (r (ψ) , D) , Z ′0 =
(
r
(
ψ′
)
, D
)] ∣∣∣∣

≤
∞∑
m=0

1

g2k2

g∑
`=1

k∑
i,i′=1

E
[∣∣∣∣ (Ti (πm,`)− a (D)) (Ti′ (πm,`)− a (D))

−
(
Ti
(
π′m,`

)
− a (D)

) (
Ti′
(
π′m,`

)
− a (D)

) ∣∣∣∣ | Z0 = (r (ψ) , D) , Z ′0 =
(
r
(
ψ′
)
, D
) ]

≤ 2

g2k2

g∑
`=1

k∑
i,i′=1

max
s,s′∈Sn,b

∣∣ (T (s, D)− a (D))
(
T
(
s′, D

)
− a (D)

) ∣∣E [N (`)] .

≤ 2

g
max
s∈Sn,b

(T (s, D)− a (D))2 E [N (`)] .

≤ 1

2g
max

s,s′∈Sn,b

(
T (s, D)− T (s′, D)

)2 E [N (`)] .
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Similarly, we have that

∞∑
m=0

∣∣∣∣E [v̌g,k(Zm)− v̌g,k(Z ′m) | Z0 = (r (ψ) , D) , Z ′0 =
(
r
(
ψ′
)
, D
)] ∣∣∣∣

≤
∞∑
m=0

1

g2k2

g∑
`,`′=1

k∑
i,i′=1

E
[∣∣∣∣ (Ti (πm,`)− a (D))

(
Ti′
(
πm,`′

)
− a (D)

)
−
(
Ti
(
π′m,`

)
− a (D)

) (
Ti′
(
π′m,`′

)
− a (D)

) ∣∣∣∣ | Z0 = (r (ψ) , D) , Z ′0 =
(
r
(
ψ′
)
, D
) ]

≤ 2

g2k2

g∑
`,`′=1

k∑
i,i′=1

max
s,s′∈Sn,b

∣∣ (T (s, D)− a (D))
(
T
(
s′, D

)
− a (D)

) ∣∣E [max
{
N (`) , N

(
`′
)}]

≤ 2

g2k2

g∑
`,`′=1

k∑
i,i′=1

max
s,s′∈Sn,b

∣∣ (T (s, D)− a (D))
(
T
(
s′, D

)
− a (D)

) ∣∣E [N (`) +N
(
`′
)]

≤ 1

2
max

s,s′∈Sn,b

(
T (s, D)− T (s′, D)

)2 ∣∣E [N (`) +N
(
`′
)]

Thus, part (i) of the Lemma follows by the bound (C.3). Part (ii) of the Lemma then follows by an argument

analogous to the proof of Lemma 5.1.

C.6 Proof of Lemma C.2. We reinstate the notation introduced in the proof of Lemma 5.4 from Section

B.5. First, observe that

E
[
E
[
ṽg,k(Zm)− ṽg,k(Z ′m) | Z,Z ′

]2 | π]
= E

[(
P {Hm}E

[
ṽg,k(Zm)− ṽg,k(Z ′m) | Hm, Z, Z ′

])2 | π]
≤
(

1− 2

gn2

)2m(2kb (2n− bk − b)
n2

)2

E
[(
ṽg,k(Zm)− ṽg,k(Z ′m)

)2 | Hm,π] (C.8)

as before. Recall the notation

a(r`, D) =
1

k

k∑
i=1

(T (s`,i, D)− a(D))

and observe that

E
[(
ṽg,k(Zm)− ṽg,k(Z ′m)

)2 | Hm,π]
=

1

g4
E
[(
a(r(πm,L), D)2 − a(r(π′m,L), D)2

)2 | Hm]
=

1

g4
E
[(
a(r(πm,L), D) + a(r(π′m,L), D)

)2 (
a(r(πm,L), D)− a(r(π′m,L), D)

)2 | Hm]
≤ 1

g4

(
E
[(
a(r(πm,L), D) + a(r(π′m,L), D)

)4 | Hm])1/2
(Cauchy-Schwarz)

·
(
E
[(
a(r(πm,L), D)− a(r(π′m,L), D)

)4 | Hm])1/2



28

≤ 24

g4

(
E
[
(a(r(πm,L), D)− a(D))4

])1/2
(Hölder)

·
(
E
[(
a(r(πm,L), D)− a(r(π′m,L), D)

)4 | Hm])1/2
. (C.9)

Observe that

E
[
(a(r(πm,L), D)− a(D))4

]
≤ 32

(
24(2− ϕk − ϕ)2

)2
Γ

(2)
k,ϕ,b

by Theorem 3.2, as Assumption 3.1 is maintained and the eighth-order sample-split stability ζ(8) is finite. In

turn, we have that

E
[(
a(r(πm,L), D)− a(r(π′m,L), D)

)4 | Hm] ≤ 4

k4b4
Γ

(2)
k,ϕ,b (C.10)

by (B.14), (B.20), and (B.21). Hence, we have that

E
[(
ṽg,k(Zm)− ṽg,k(Z ′m)

)2 | Hm,π] ≤ 3 · 29

k2b2g4
(2− ϕk − ϕ)2Γ

(2)
k,ϕ,b . (C.11)

Combining (C.8), (C.10), (C.11), we find that

E
[
E
[
ṽg,k(Zm)− ṽg,k(Z ′m) | Z,Z ′

]2 | π] ≤ (1− 2

gn2

)2m
((

3 · 211
)

(2− ϕk − ϕ)4

n2g4

)
Γ

(2)
k,ϕ,b ,

which completes the proof of the first part of the Lemma.

Second, following the same argument, we again have that

E
[
E
[
v̌g,k(Zm)− v̌g,k(Z ′m) | Z,Z ′

]2 | π]
≤
(

1− 2

gn2

)2m(2kb (2n− bk − b)
n2

)2

E
[(
v̌g,k(Zm)− v̌g,k(Z ′m)

)2 | Hm,π] (C.12)

In this case, we can compute

E
[(
v̌g,k(Zm)− v̌g,k(Z ′m)

)2 | Hm,π]
= E

[(
(a(Zm)− a(D))2 −

(
a(Z ′m)− a(D)

)2)2
| Hm

]
= E

[(
a(Zm)− a(D) + a(Z ′m)− a(D)

)2 (
a(Zm)− a(Z ′m)

)2 | Hm]
≤
(
E
[(
a(Zm)− a(D) + a(Z ′m)− a(D)

)4 | Hm])1/2
(Cauchy-Schwarz)

·
(
E
[(
a(Zm)− a(Z ′m)

)4 | Hm])1/2

≤ 24
(
E
[
(a(Zm)− a(D))4

])1/2 (
E
[(
a(Zm)− a(Z ′m)

)4 | Hm])1/2
, (C.13)

where the last inequality follows from Hölder’s inequality. Again we have that

E
[(
a(Zm)− a(Z ′m)

)4] ≤ 32

(
24ϕ2(2− ϕk − ϕ)2

g

)2

Γ
(2)
k,ϕ,b (C.14)
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by Theorem 3.2, as Assumption 3.1 is maintained and the eighth-order sample-split stability ζ(8) is finite.

Similarly. we have that

E
[
(a(Zm)− a(D))4 | Hm

]
≤ 4

g4k4b4
Γ

(2)
k,ϕ,b (C.15)

by (B.14), (B.20), and (B.21). Combining (C.12), (C.14), (C.15), we find that

E
[(
v̌g,k(Zm)− v̌g,k(Z ′m)

)2 | Hm,π] ≤ (1− 2

gn2

)2m
((

3 · 29
)
ϕ4 (2− ϕk − ϕ)4

n2g3

)
Γ

(2)
k,ϕ,b ,

which completes the proof of the second part of the Lemma.

C.7 Proof of Lemma B.5, Part (i). Observe that

P

{
|U(Rĝ,k, D)| ≥ t

√
vg?,k (D), |ĝ − g?| ≤ cg? | D

}

= P


g∑
i=1

a (ri,k, D)−
g?∑
i=1

a (ri,k, D) ≥ tg?
√
vg?,k (D), |ĝ − g?| ≤ cg? | D


≤ P

 max
g?(1−c)≤g≤g?

|
g∑
i=1

a (ri,k, D)−
g?∑
i=1

a (ri,k, D) | ≥ tg?
√
vg?,k (D) | D


+ P

 max
g?≤g≤g?(1+c)

|
g∑
i=1

a (ri,k, D)−
g?∑
i=1

a (ri,k, D) | ≥ tg?
√
vg?,k (D) | D


= P

 max
g?(1−c)≤g≤g?

|
g?−g∑
i=1

a (ri,k, D) | ≥ tg?
√
vg?,k (D) | D


+ P

 max
g?≤g≤g?(1+c)

|
g−g?∑
i=1

a (ri,k, D) | ≥ tg?
√
vg?,k (D) | D

 . (C.16)

To bound the two probabilities (C.16), we apply the following Chernoff-type variation to the Kolmogorov

maximal inequality, due to Steiger (1970).

Theorem C.1 (Steiger, 1970). Let Si, i = 1, 2, . . ., be a real-valued martingale sequence. If the moment

generating function

mn (θ) = E [exp (θSn)]

is finite for all positive θ, then the inequality

log P

{
max

1≤n′≤n
Sn′ > t

}
≤ inf

θ>0
(logmn (θ)− θt) ,

holds.

Conditional on D, the random variables

a (ri,k, D) , i = 1, 2, . . . ,
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are mean-zero, independent, and identically distributed. Thus, the partial sums

Sm =
m∑
i=1

a (ri,k, D)

are a martingale sequence. Moreover, though inspection of the proof of Lemma 5.2, we find that Theorem

Theorem 3.1 implies that

inf
θ>0

(
logE

[
exp

(
θSbcg?c

)
| D
]
− θτ

)
= inf

θ>0

(
logE

[
exp

(
θ

bcg?cSbcg?c
)
| D
]
− θ τ

bcg?c

)
≤ − bcg?c

24(2− ϕk − ϕ)2Γ
(1)
k,ϕ,b

δτ2

(bcg?c)2

≤ − δ

24(2− ϕk − ϕ)2Γ
(1)
k,ϕ,b

τ2

cg?

with probability greater than 1− δ, as Assumption 3.1 holds and the fourth-order split stability ζ(4) is finite.

Thus, by setting

τ = tg?
√
vg?,k (D) =

√
g?t (v1,k(D))1/2

we find that

log
1

2
P

{
|U(Rĝ,k, D)| ≥ t

√
vg?,k (D), |ĝ − g?| ≤ cg? | D

}
≤ − δv1,k(D)

24(2− ϕk − ϕ)2Γ
(1)
k,ϕ,b

t2

c

with probability greater than 1− δ, by Theorem C.1 and the inequality (C.16).

C.8 Proof of Lemma B.5, Part (ii). Observe that

P {|ĝ − g?| > cg? | D} = P {g? (1 + c) < ĝ | D}+ P {ĝ < g? (1− c) | D} . (C.17)

We begin by handling the first term. We have that

P {g? (1 + c) < ĝ | D} ≤ P
{
v̂g?(1+c),k (Z)− vg?(1+c),k (D) + vg?(1+c),k (D) >

1

2

(
ξ

z1−β/2

)2

| D
}

≤ P
{
v̂g?(1+c),k (Z)− vg?(1+c),k (D) >

v1,k(D)

g?
− v1,k(D)

g? (1 + c)
| D
}

= P

{
v̂g?(1+c),k (Z)− vg?(1+c),k (D) >

v1,k(D)

g?
c

1 + c
| D
}
,
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where the first inequality follows the definition of g?. Thus, as Assumption 3.1 holds and the eighth-order

split stability ζ(8) is finite, we have that

log
1

4
P {g? (1 + c) < ĝ | D} . − δ(v1,k(D))2

(2− ϕk − ϕ)4

g?(1 + c)c2

Γ
(2)
k,ϕ,b

. − δ(v1,k(D))3

(2− ϕk − ϕ)4

z1−β/2c
2

ξ2Γ
(2)
k,ϕ,b

with probability greater than 1− δ, by Lemma 5.5, the definition of g? and the assumption that 0 < c < 1/2.

Next, we bound the second term in (C.17). Define the partial sums

Ag =

g∑
`=1

 1

k2

k∑
i,i′=1

(T (s`,i, D)− a (D))
(
T (s`,i′ , D)− a (D)

)
− v1,k(D)

 and

Bg =

g∑
`=1

(
1

k2

k∑
i,i′=1

(T (s`,i, D)− a (D))
(
T (s`,i′ , D)− a (D)

)
+ 2

`−1∑
`′=1

(T (s`,i, D)− a (D))
(
T (s`′,i′ , D)− a (D)

)
− v1,k(D)

)
.

Observe that the equality

v̂g,k (Z)− vg,k (D) =
g

g − 1
(ṽg,k (Z)− vg,k (D))− 1

g − 1
(v̌g,k (Z)− vg,k (D)) ,

from the proof of Lemma 5.5, implies that

v̂g,k (Z)− vg,k (D) =
1

g (g − 1)

g∑
`=1

1

k2

k∑
i,i′=1

(T (s`,i, D)− a (Z))
(
T (s`,i′ , D)− a (Z)

)
− v1,k(D)

g

=
1

g − 1

1

g
Ag −

1

g − 1

1

g2
Bg

for all positive g. Thus, we can write

P {ĝ < g? (1− c) | D}

= P

{
min

2≤g′≤g?(1−c)
v̂g′,k (Z) ≤

(
ξ

z1−β/2

)2

| D
}

= P

{
min

2≤g′≤g?(1−c)

(
g′Ag′ −Bg′

)
(g′ − 1) (g′)2 +

1

g′
v1,k(D) ≤

(
ξ

z1−β/2

)2

| D
}
,

where the first equality follows from the definition of ĝ. Now, in the event that

min
2≤g′≤g?(1−c)

(
g′Ag′ −Bg′

)
(g′ − 1) (g′)2 +

1

g′
v1,k(D) ≤

(
ξ

z1−β/2

)2

, (C.18)
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it must also be the case that

min
2≤g′≤g?(1−c)

(
g′ − 1

) (
g′
)2((g′Ag′ −Bg′)

(g′ − 1) (g′)2 +
1

g′
v1,k(D)

)
≤(ĝ − 1)(ĝ)2

(
ξ

z1−β/2

)2

(C.19)

as ĝ ≤ g? (1− c) necessarily. But then, similarly, (C.19) implies that

min
2≤g′≤g?(1−c)

(
g′Ag′ −Bg′

)
+

(ĝ − 1)(ĝ)2

g′
v1,k(D) ≤ (ĝ − 1)(ĝ)2

(
ξ

z1−β/2

)2

,

and in turn

min
2≤g′≤g?(1−c)

(
g′Ag′ −Bg′

)
(g? (1− c)− 1) (g? (1− c))2

≤ (ĝ − 1)(ĝ)2

(g? (1− c)− 1) (g? (1− c))2

(
1

g? − 1
− 1

g? (1− c)

)
v1,k(D)

=
(ĝ − 1)(ĝ)2

(g? (1− c)− 1) (g? (1− c))2

(
1− g?c

g? (g? − 1) (1− c)

)
v1,k(D),

are then also true. Finally, again as (C.18) is equivalent to ĝ < g? (1− c), we have that

P

{
min

2≤g′≤g?(1−c)

(
g′Ag′ −Bg′

)
(g′ − 1) (g′)2 +

1

g′
v1,k(D) ≤

(
ξ

z1−β/2

)2

| D
}

≤ P
{

min
2≤g′≤g?(1−c)

g′Ag′ −Bg′
(g? (1− c)− 1) (g? (1− c))2 ≤

(
1− g?c

g? (g? − 1) (1− c)

)
v1,k(D) | D

}
.

Now, observe that we can write

P

{
min

2≤g′≤g?(1−c)

g′Ag′ −Bg′
(g? (1− c)− 1) (g? (1− c))2 ≤

(
1− g?c

g? (g? − 1) (1− c)

)
v1,k(D) | D

}
= P

{
max

2≤g′≤g?(1−c)

Bg′ − g′Ag′
(g? (1− c)− 1) (g? (1− c))2 ≥

(
g?c− 1

g? (g? − 1) (1− c)

)
v1,k(D) | D

}
. (C.20)

We bound (C.20) by combining the argument used to establish Lemma 5.5 with an application of Theorem C.1.

To this end, observe that

P

{
max

2≤g′≤g

Bg′ − g′Ag′
(g − 1) g2

≤ t | D
}

≥ P
{

max
2≤g′≤g

−1

g − 1

g′

g2
Ag′ ≤

1

1 +
√
g
t | D

}
+ P

{
max

2≤g′≤g

1

g − 1

1

g2
Bg′ ≤

√
g

1 +
√
g
t | D

}
− 1

≥ P
{

max
2≤g′≤g

g

g − 1

−1

g2
Ag′ ≤

√
g

1 +
√
g
t | D

}
+ P

{
max

2≤g′≤g

1

g − 1

1

g2
Bg′ ≤

1

1 +
√
g
t | D

}
− 1

≥ P
{

max
2≤g′≤g

−Ag′ ≤ g2 1√
g

g − 1

1 +
√
g
t | D

}
+ P

{
max

2≤g′≤g
|Bg′ | ≤ g2 g − 1

1 +
√
g
t | D

}
− 1 (C.21)

for any t > 0 and any positive integer D. Observe that the partial sums Ag and Bg are both martingale

sequences. As Assumption 3.1 holds and the eighth-order split stability ζ(8) is finite, though inspection of the
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proof of Lemma 5.2, Lemma B.4 implies that implies that

inf
θ>0

(
logE [exp (θAg) | D]− θg2 1√

g

g − 1

1 +
√
g
t

)
= inf

θ>0

(
logE

[
exp

(
θ

g2
Ag

)
| D
]
− θ 1√

g

g − 1

1 +
√
g
t

)
. − δ

(2− ϕk − ϕ)4

g3t2

Γ
(2)
k,ϕ,b

(C.22)

and

inf
θ>0

(
logE [exp (θBg) | D]− θg2 g − 1

1 +
√
g
t

)
= inf

θ>0

(
logE

[
exp

(
θ

g2
Bg

)
| D
]
− θ g − 1

1 +
√
g
t

)
. − δ

(2− ϕk − ϕ)4

g3t2

Γ
(2)
k,ϕ,b

(C.23)

each with probability greater than 1− δ, where we have used the facts that 4g ≤
(
1 +
√
g
)2 for all g ≥ 1

and (1/4) g2 ≥ (g − 1)2 for all g ≥ 2. Hence, by Theorem C.1, and plugging (C.22) and (C.23) into (C.21),

we find that

log
1

4
P

{
max

2≤g′≤g

Bg′ − g′Ag′
(g′ − 1) (g′)2 ≥ t | D

}
. − δ

(2− ϕk − ϕ)4

g3t2

Γ
(2)
k,ϕ,b

with probability greater than 1− δ. Consequently, by (C.20) and the definition of g?, we find that

log
1

4
P {g? − ĝ ≥ c | D}

= log
1

4
P

{
max

2≤g′≤g?(1−c)

Bg′ − g′Ag′
(g? (1− c)− 1) (g? (1− c))2 ≥

(
g?c− 1

g? (g? − 1) (1− c)

)
v1,k(D) | D

}
. − δ(v1,k(D))2

(2− ϕk − ϕ)4

g?(1− c)(g?c− 1)2

(g? − 1)2Γ
(2)
k,ϕ,b

. − δ(v1,k(D))2

(2− ϕk − ϕ)4

g?c2

Γ
(2)
k,ϕ,b

. − δ(v1,k(D))3

(2− ϕk − ϕ)4

z1−β/2c
2

ξ2Γ
(2)
k,ϕ,b

where in the second to last inequality we have used the facts that 1
2x ≤ x− 1 for x ≥ 2 and g?c ≥ 2. Thus,

putting the pieces together, we find that

log
1

8
P {|ĝ − g?| > cg? | D} . − δ(v1,k(D))3

(2− ϕk − ϕ)4

z1−β/2c
2

ξ2Γ
(2)
k,ϕ,b

with probability greater than 1− δ, as required.
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APPENDIX D. ADDITIONAL RESULTS

D.1 Examples of Positive and Negative Conditional Covariance. In this appendix, we give simple

examples where the conditional covariance γn,b(D) obtains either endpoint of the Cauchy-Schwarz bound

−φn,b(D) ≤ γn,b(D) ≤ φn,b(D) .

Suppose that the data are

D1 = −4, D2 = −2, D3 = 2, and D4 = 4 .

Set b = 2 and consider the statistic

T (s, D) =
∣∣∑
i∈s

Di

∣∣
Observe that

T (s, D) = T (̃s, D)

for each set s in {1, . . . , 4} of size 2. Thus, we have that

γn,b(D) = Cov(T (s, D), T (̃s, D) | D) = Var(T (s, D) | D) = φn,b(D)

giving one end of the inequality.15 On the other hand, suppose that

T (s, D) =
∑
i∈s

Di .

In this case, we have that

T (s, D) = −T (̃s, D)

and thereby

γn,b(D) = Cov(T (s, D), T (s̃, D) | D) = −Var(T (s, D) | D) = −φn,b(D) ,

giving the other end of the inequality.

D.2 Validity of Testing Procedures Based on Multiple Sample-Splitting. In this appendix, we discuss the

application of Algorithm 1 to testing procedures based on averaging over multiple splits of the same sample.

We show that methods based on both p-values and e-values constructed with sample splitting continue to

control the Type I error rate if they are aggregated sequentially with Algorithm 1. Both results follow from

the “Exchangeable Markov Inequality” of Ramdas and Manole (2023). As before, let D = (Di)
n
i=1 be

independent and identically distributed according to a probability distribution P . Interest is in testing the null

hypothesis H0 : P ∈ P for some collection of probability distributions P.

15Observe that this will occur for any mean zero data set.
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D.2.1 Methods Based on p-Values. Suppose that we have access to a valid p-value p̂(s, D). That is, the

statistic p̂(s, D) satisfies

P {p̂(s, D) ≤ u | Ds̃} ≤ u

for all u in (0, 1) and P in P. For example, a test-statistic could be chosen using the data in Ds̃ and a p-value

can be constructed based on this test statistic using the data in Ds. For any collection Rg,k inRn,k,b, let

aδ(Rg,k, D) =
1

g

1

k

g∑
i=1

k∑
j=1

I {p̂(si,j , D) ≤ δ} (D.1)

denote the proportion of p-values that are less than or equal than δ. Rüger (1978), Meinshausen et al. (2009),

and DiCiccio et al. (2020) observe that if Rg,k is constructed independently of the data D, then

P {aδ(Rg,k, D) ≥ c} ≤ E [aδ(Rg,k, D)]

c
=
δ

c

by Markov’s inequality, for all P in P. Thus, if δ and c are chosen such that δ/c = α, then the test that rejects

the null hypothesis H0 if aδ(Rg,k, D) is larger than c has level α.

The following theorem establishes that this test continues to be valid if the collection of sample-splits Rg,k
is constructed sequentially with Algorithm 1.

Theorem D.1. If the statistic aδ(Rĝ,k, D) defined in (D.1) is constructed sequentially with Algorithm 1, then

P {aδ(Rĝ,k, D) ≥ c} ≤ δ

c
(D.2)

for all P in P.

Proof. We apply the following inequality, due to Ramdas and Manole (2023).

Theorem D.2 (Theorem 1.1, Ramdas and Manole (2023)). If X1, X2, . . . form an exchangeable sequence of

integrable random variables, then

P

{
∃t ≥ 1 :

1

t

t∑
i=1

|Xi| ≥ 1/a

}
≤ aE [|Xi|] (D.3)

for any a > 0.

Consequently, we have that

P {aδ(Rĝ,k, D) ≥ c} ≤ P {∃g ≥ 1 : aδ(Rg,k, D) ≥ c} (D.4)

≤ E [I {p̂(si,j , D) ≤ δ}]
c

≤ δ

c

by Theorem D.2, as required.
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D.2.2 Methods Based on e-Values. Next, we consider settings where we have access to a valid e-value

ê(s, D) (see Ramdas et al. (2023) for a recent review). That is, the nonnegative statistic ê(s, D) satisfies

EP [ê(s, D)] ≤ 1

for all P in P. For example, this setting applies to the “Universal Inference” procedure of Wasserman et al.

(2020). Here, an estimator P̂ (̃s) of P is formed using the data Ds̃ and is used in the split-likelihood ratio test

statistic

ê(s, D) = inf
P∈P

∏
i∈s

dP̂ (̃s)

dP
(Di) . (D.5)

Wasserman et al. (2020) prove that (D.5) is an e-value. For any collection Rg,k inRn,k,b, let

a(Rg,k, D) =
1

g

1

k

g∑
i=1

k∑
j=1

ê(si,j , D) (D.6)

denote an aggregate e-value. See Dunn et al. (2023) and Tse and Davison (2022) for further discussion of

aggregate e-values. Observe that

P {a(Rg,k, D) ≥ 1/α} ≤ αE [ê(s, D)] = α , (D.7)

by Markov’s inequality, for all P in P. Thus, the test that rejects the null hypothesis H0 if a(Rg,k, D) is

larger than 1/α has level α.

We again establish that this test continues to be valid if the collection of sample splits Rg,k is constructed

sequentially with Algorithm 1.

Theorem D.3. If the aggregate e-value aδ(Rĝ,k, D) defined in (D.6) is constructed sequentially with

Algorithm 1, then

P

{
a(Rĝ,k, D) ≥ 1

α

}
≤ α (D.8)

for all P in P.

Proof. The claim is established with an argument very similar to the proof of Theorem D.1. Namely, the

Markov inequality used to establish (D.7) can then be replaced by Theorem D.2, as before.

D.3 Stability of Regularized M-Estimation. In this appendix, we study the (r, q)th-order training sample

σ
(r,q)
train defined in Definition 3.1. Our analysis is specialized to the case that the estimator η̂ is a regularized

empirical risk minimizer and is closely related to the proof of Proposition 4 of Austern and Zhou (2020).

Assume that the parameter η is an element of some closed convex space H ⊆ Rp. Consider the estimator

Ψ (Ds, η) =
1

b

∑
i∈s

ψ (Di, η) (D.9)

η̂ = arg min
η∈H

{
1

n− b
∑
i∈s̃

` (Di, η) + λ1,n‖η‖1 + λ2,n‖η‖2
}
, (D.10)
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where ψ (·, ·) are ` (·, ·) functions and λ1,n, λ2,n ≥ 0 are penalty parameters. Let ∇` (d, η) and ∇2` (d, η)

denote the gradient and Hessian of the function η 7→ ` (d, η). Similarly, we write

∇s̃` (D, η) =
1

n− b
∑
i∈s̃
∇` (Di, η) and

∇2
s̃ ` (D, η) =

1

n− b
∑
i∈s̃
∇2` (Di, η)

for the empirical averages of the gradients and the Hessian evaluated on the data in the set s̃. Define the

moment

κr = E
[(
`(D′i, η̂

′)−∇`(Di, η̂
′)
)r]

for every even integer r.

Assumption D.1. The minimum eigenvalue of∇2
s̃ ` (D, η) is bounded below by ρ almost surely.

Assumption D.2. For some strictly positive constant Cψ, the function ψ (·, ·) satisfies the inequality

|ψ (d, η)− ψ
(
d, η′

)
| ≤ Cψ‖η − η′‖2

for each η ∈ H and d.

Assumption D.3. The loss function ` (·, ·) is strictly convex and twice continuously differentiable in its

second argument.

Theorem D.4. Under Assumptions D.1, D.2, and D.3, if ρ+ λ2,n > 0, then

σ
(r,q)
train .

(
q

n− b
κr

ρ+ λ2,n

)r
+

(
λ1,n

p

ρ+ λ2,n

)r
as n→∞, for all even integers r and positive integers q ≤ n− b.

Remark D.1. Assumption D.1 implies that the dimension p of the parameter vector η is less than the number

of observations n. To the best of our knowledge, analysis of the stability of `1 regularized empirical risk

minimization in the regime with p larger than n is an open problem. Further analysis of this quantity in

the high-dimensional regime is a promising direction for further research, given the widespread use of

cross-validation for estimation of the prediction error for the lasso and the connections between stability and

the concentration of cross-splitting established in this paper.

Remark D.2. A necessary and sufficient condition for η̂ to be consistent for the population risk minimizer

associated with (D.10) is that λ1,n = o
(
(n− b)−1

)
. See e.g., Knight and Fu (2000). Thus, so long as the

penalty λ1,b is chosen in this regime, the training sample stability σ(r,q)
train will be

O

((
qκr
n− b

)−r)
as required.
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D.3.1 Proof of Theorem D.4. By Assumptions D.1 and D.3, the objective function for the estimator (D.10)

is strongly convex. Thus, there is a unique solution to (D.10) for any data D. Let η̂ and η̂′ denote the

solutions to (D.10) for the data D and D̃(q) respectively. Let ∂f (x) denote the subgradient set of the function

x 7→ f (x). The Karush-Kuhn-Tucker condition for the program (D.10) is given by

∇s̃` (D, η) + λ2,nη̂ + λ1,nẑ = 0, (D.11)

where ẑ ∈ ∂‖η̂‖1 is the subgradient associated with the Lasso penalty. Observe that, in this case, ẑ ∈ sign (η̂),

where we set sign (0) = [−1, 1]. Let ẑ and ẑ′ denote the subgradients obtained from D and D̃(q), respectively.

As ` (d, ·) is twice continuously differentiable under Assumption D.3 (i), we have that

∇s̃`
(
D, η̂′

)
+ λ2,nη̂

′ + λ1,nẑ

= ∇s̃` (D, η̂) + λ2,nη̂ + λ1,nẑ +
(
∇(2)

s̃ ` (D, η̃) + λ2,nId

) (
η̂ − η̂′

)
=
(
∇(2)

s̃ ` (D, η̃) + λ2,nId

) (
η̂ − η̂′

)
(D.12)

for some vector η̃, by a Taylor expansion and the optimality condition (D.11). On the other hand, we have

that

∇s̃`
(
D, η̂′

)
+ λ2,nη̂

′ + λ1,nẑ = ∇s̃`(D̃
(q), η̂′) + λ2,nη̂

′ + λ1,nẑ
′

+
1

n− b

∑
i∈q
∇`(D′i, η̂′)−∇`(Di, η̂

′)

+ λ1,n

(
ẑ − ẑ′

)

=
1

n− b

∑
i∈q
∇`(D′i, η̂′)−∇`(Di, η̂

′)

+ λ1,n

(
ẑ − ẑ′

)
(D.13)

again by the optimality condition (D.11). Thus, we have that

(
∇(2)

s̃ ` (D, η̃) + λ2,nIp

) (
η̂ − η̂′

)
=

1

n− b

∑
i∈q
∇`(D′i, η̂′)−∇`(Di, η̂

′)

+ λ1,n

(
ẑ − ẑ′

)
(D.14)

by (D.12) and (D.13). Observe that the the matrix ∇(2)
s̃ ` (D, η̃) + λ2,nIp is invertible by Assumption D.1.

Thus, we find that

η̂ − η̂′ = 1

n− b
(
∇(2)

` (D, η̃) + λ2Ip

)−1

∑
i∈q
∇`(D′i, η̂′)−∇`(Di, η̂

′)


+ λ1,n

(
∇(2)

` (D, η̃) + λ2Id

)−1 (
ẑ − ẑ′

)
and that consequently

‖η̂ − η̂′‖2 .
1

n− b

∑
i∈q∇`(D′i, η̂′)−∇`(Di, η̂

′)

(ρ+ λ2,n)
+ λ1,n

p

ρ+ λ2,n
(D.15)
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by Assumption D.1. Hence, we have that

σ
(r,q)
train = E

[(
T (s, D)− T (s, D̃(q))

)r]
. E

[
‖η̂ − η̂′‖r2

]
.

(
1

(n− b)
qκr

ρ+ λ2,n

)r
+

(
λ1,n

p

ρ+ λ2,n

)r
,

by Assumption D.2.

D.4 Comparison with Zhang (2022). We state a Berry-Esseen bound for a (Rg,k, D) through an application

of a result due to Zhang (2022). In contrast to the bound stated in Corollary 3.1, the bound obtained here does

not shrink as g increases. On the other hand, the bound obtained below is unconditional. It is straightforward

to modify our argument to give an analogous high-probability conditional bound.

Theorem D.5. Let W denote a standard normal random variable. Suppose that Assumptions 3.1 and 3.2 hold

and that the data D are independent and identically distributed. If the eighth-order split stability ζ(8) is finite,

then the Berry-Esseen inequality

dK

(
a (Rg,k, D)− a (D)√

E [vg,k (D)]
,W

)
≤

4 (2− ϕk − ϕ)2 (Γ
(2)
k,ϕ,b)

1/2

E [v1,k(D)]

is satisfied.

D.4.1 Proof of Theorem D.5. We apply the following central limit theorem, due to Zhang (2022). This

result generalizes Theorem 2.1 of Shao and Zhang (2019) to accommodate general Stein representers.

Theorem D.6 (Theorem 4.1, Zhang, 2022). Let X be a separable metric space and suppose that (X,X ′) is

an exchangeable pair of X -valued random variables. Suppose that f : X → R and F : X × X → R are

square-integrable functions such that F is antisymmetric and

E
[
F
(
X,X ′

)
| X
]

= f (X)

almost surely. Assume that Var (f (X)) is finite and non-zero and that E [f (X)] = 0. Define the objects

f (X) = f (X) /
√

Var (f (X)). (D.16)

G (X) =
1

2
E
[(
f (X)− f

(
X ′
))
F
(
X,X ′

)
| X
]

and (D.17)

G (X) =
1

2
E
[(
f (X)− f

(
X ′
))
|F
(
X,X ′

)
| | X

]
. (D.18)

Let W denote a standard normal random variable. The bound

dK
(
f (X) ,W

)
≤ E [|G (X)− E [G (X)] |] + E

[
|G (X) |

]
Var (f (X))

(D.19)

is satisfied.
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To this end, define the objects

B (Z) =
1

2
E
[(
a (Z)− a

(
Z ′
))
A
(
Z,Z ′

)
| Z
]

and

B (Z) =
1

2
E
[(
a (Z)− a

(
Z ′
))
|A
(
Z,Z ′

)
| | Z

]
.

It will suffice to bound the quantity

E [|B (Z)− E [B (Z)] |] + E
[
|B (Z) |

]
Var (a (Z)− a (Z))

. (D.20)

Observe that

E [|B (X)− E [B (X)] |] ≤
√

Var (B (Z)) and

E
[
|B (Z) |

]
≤
√

Var
(
B (Z)

)
by the Cauchy-Schwarz inequality and the fact that E

[
B (X)

]
= 0 by exchangeability. Consequently, as

Var (B (Z)) ≤ E
[
B (Z)2

]
= E

[(
a (Z)− a

(
Z ′
))2

A
(
Z,Z ′

)2]
= Var

(
B (Z)

)
it will suffice to bound

2E
[(
a (Z)− a

(
Z ′
))2

A
(
Z,Z ′

)2]
. (D.21)

By Young’s inequality, we have that

E
[(
a (Z)− a

(
Z ′
))2

A
(
Z,Z ′

)2] ≤ 1

2

(
s−1E

[
U (2)
a (Z)

]
+ sE

[
U

(2)
A (Z)

])
,

where U (2)
a (Z) and U (2)

A (Z) are defined in Section 5.2.

Observe that the bound( ∞∑
m=0

E
[
a (Zm)− a

(
Z ′m
)
| Z0 = Z,Z ′0 = Z ′

])4

≤
(

2gn2 max
s,s′∈Sn,b

(
T (s, D)− T

(
s′, D

)))4

(D.22)

holds by Lemma B.1 and that the right-hand side of (D.22) is square-integrable as the eighth-order split

stability ζ(8) is finite. Thus, by combining Lemma B.3 and Lemma 5.4, we have that

U
(2)
A ≤

(
gn2

2

)2
(

4 (2n− bk − b)2

gn2

)2

Γ
(2)
k,ϕ,b

and

U
(2)
a ≤

(
2

gn2

)2
(

4 (2n− bk − b)2

gn2

)2

Γ
(2)
k,ϕ,b .

Hence, by taking s =
(
gn2/2

)2, we find that (D.21) is bounded above by

4

gn2

(
(2n− bk − b)2 (Γ

(2)
k,ϕ,b)

1/2
)
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Now, we have that

Var (a (Z)− a (D)) = E [vg,k (D)]

by the law of total variance and the fact that E [a (Z)− a (D) | D] = 0. Consequently we can decompose

E [vg,k (D)] =
E[φn,b(D)] + (k − 1)E[γn,b(D)]

kg
. (D.23)

Hence, we have that (D.20) is bounded above by

4 (2− ϕk − ϕ)2 (Γ
(2)
k,ϕ,b)

1/2

E [v1,k(D)]
,

as required.


