The effect of stock splits on liquidity in a dynamic model

2024 European Meeting of the Econometric Society Erasmus School of Economics, August 26 - August 30, 2024

Linqi Wang joint work with C.M. Hafner and O.B. Linton

[Introduction](#page-1-0)

- **Liquidity is a fundamental property of well-functioning markets** \Rightarrow **lack of** liquidity is at the heart of many episodes of market stress.
- ' Why do companies split their stocks? This creates "wider" markets.
	- § making the stock more accessible to retail investors.
	- § allows existing investors to sell part of their holdings more easily.
- ' As the volume of transactions increases, liquidity conditions should improve.

Arguments for a decrease in liquidity following a stock split:

- ' increases in real transaction costs.
- ' volume increases less than proportionately.
- ' brokerage revenues increase.
- ' increases in bid-ask spreads as a percentage of the value of the stock.
- ' We study the impact of stock splits on liquidity for a recent sample of Dow Jones index component stocks.
- ' The analysis is based on the daily Amihud illiquidity measure.
- ' We use the Dynamic Autoregressive Liquidity (DArLiq) model of Hafner, Linton, and Wang [\(2023\)](#page-32-0).
- ' We propose tests of permanent and temporary effects in a dynamic framework.
- ' We find that stock splits cause shifts in the long-term liquidity trend, but no additional effects on short-run liquidity dynamics.

[The Model and Estimation](#page-5-0)

 \blacksquare The Amihud illiquidity measure of a stock at time *t*, A_t , is

$$
A_t = \frac{1}{n_t} \sum_{j=1}^{n_t} \ell_{t_j}, \quad \ell_{t_j} = \frac{|R_{t_j}|}{V_{t_j}},
$$

- R_{t_j} is the intra-period returns.
- \blacktriangleright V_{t_j} is the intra-period dollar trading volume.
- \blacktriangleright n_t is the number of intra-period returns.
- **•** We focus on the daily Amihud illiquidity ratio $\ell_t = \frac{|R_t|}{V_t}$ $\frac{|R_t|}{V_t}$.

Daily log illiquidity for S&P 500 (SPY)

Illiquidity ratio ℓ_t follows a multiplicative process with a nonparametric trend.

 $\ell_t = g(t/T)\lambda_t\zeta_t,$ $\lambda_t = \omega + \beta \lambda_{t-1} + \gamma \ell_{t-1}^*,$ $\ell_t^* = \ell_t/g(t/T),$

where $\omega > 0$, $\beta \ge 0$, $\gamma \ge 0$ and $\beta + \gamma < 1$.

- \bullet $g(.)$ is an unknown function of rescaled time.
- λ_t is stationary with $E[\lambda_t] = 1$ for identification \Rightarrow set $\omega = 1 \beta \gamma$.
- ζ_t is a positive random variable with conditional mean one.
- \blacksquare Allow trend *q* to be discontinuous at a finite set of points $u_1, \ldots, u_m \in (0, 1)$.
- ' Define the left and right limits of the function and its first two derivatives

$$
\lim_{u \uparrow u} g^{(r)}(u) = g^{(r)}_{-}(u), \quad \lim_{u \downarrow u} g^{(r)}(u) = g^{(r)}_{+}(u), \quad r = 0, 1, 2,
$$

but we allow that $g_{-}^{(r)}(u_i) \neq g_{+}^{(r)}(u_i)$ for $i = 1, ..., m$.

- By convention, $g^{(r)}(.)$ is CADLAG, i.e. $g^{(r)}(u_i) = g^{(r)}_+(u_i)$.
- For any $u \notin \{0, u_1, \ldots, u_m, 1\}$, we maintain that $g_{-}^{(r)}(u) = g_{+}^{(r)}(u)$, for $r = 0, 1, 2$.
- \blacksquare Potential breakpoints $u_1 = t_1/T, \ldots, u_m = t_m/T$ are known in advance.
- \blacksquare Size of jump at u_i is measured in level and in percentage terms respectively by

$$
\mathcal{J}(u_i) = g_{+}(u_i) - g_{-}(u_i),
$$

$$
\mathcal{J}_{\%}(u_i) = \frac{g_{+}(u_i) - g_{-}(u_i)}{\{g_{+}(u_i) + g_{-}(u_i)\}/2}.
$$

This is the effect that remains permanently in the absence of further changes.

' The effects can be aggregated over different breakpoints.

Estimation of the trend function

- We observe a sample of daily illiquidities $\{\ell_t, t = 1, \ldots, T\}.$
- ' Local linear kernel smoother designed to be robust to potential breaks at points $0 < u_1 < u_2 < \cdots < u_m < 1$. Define $\hat{g}(u) = \hat{\alpha}(u)$ and for $u \in [u_i, u_{i+1}]$

$$
(\widehat{\alpha}(u),\widehat{\beta}(u)) = \arg\min_{\alpha,\beta}\sum_{t=1}^T K_h(t/T-u)\left\{\ell_t-\alpha-\beta(t/T-u)\right\}^2 1 (u_i \leq t/T < u_{i+1}).
$$

- **The estimator** $\hat{g}(u)$ is continuous everywhere except at $\{u_1, u_2, \ldots, u_m\}$.
- At point u_i we compute two estimates of $\hat{g}(u_i)$: a left sider $\hat{g}(u_i)$ and a right sider $\hat{q}_+(u_i) \Rightarrow$ size of jump $\hat{\mathcal{J}}(u_i)$ and $\hat{\mathcal{J}}_{\%}(u_i)$.

Estimation of the parametric component

- We use GMM to estimate $θ = (β, γ)$ ^T from the conditional moment restriction $E(\ell_t^* | \mathcal{F}_{t-1}) = \lambda_t$, where $\ell_t^* = \ell_t / g(t/T)$, $t = 1, ..., T$.
- We work with residuals $\ell_t^*/\lambda_t(\theta) 1$, which is a martingale difference sequence at the true parameter values. Define $\rho_t(\theta, \hat{g}) = z_{t-1} \left\{ \hat{\ell}_t^* / \hat{\lambda}_t(\theta) - 1 \right\}$

$$
\widehat{\theta}_{GMM} = \arg\min_{\theta \in \Theta} \|M_T(\theta, \widehat{g})\|_W, \quad M_T(\theta, \widehat{g}) = \frac{1}{T} \sum_{t=1}^T \rho_t(\theta, \widehat{g}),
$$

where *W* is a weighting matrix, while $z_t \in \mathcal{F}_t$ are instruments.

■ In our application, we use $z_t = (1, \hat{\ell}_t^*, \hat{\ell}_t^*/\hat{\lambda}_t)'$ and $W = I_3$.

- **Civen consistent estimates of** θ **,** $g(.)$ **, estimation can be improved in terms of** efficiency and simplicity of standard errors.
- \blacksquare Note that $E(\ell_t/\lambda_t) = g(t/T)$, which is an alternative local moment condition that is purged of the short-run variation.
- Use local linear kernel smoother as before but replacing ℓ_t by $\ell_t/\hat{\lambda}_t$, where $\hat{\lambda}_t = \hat{\lambda}_t(\hat{\theta}_{CMM}, \hat{q}) \Rightarrow \tilde{q}(u_i), \tilde{\mathcal{J}}(u_i), \tilde{\mathcal{J}}(u_i),$
- **The large sample variance of** $\tilde{g}(u)$ **is much simpler to estimate than that of** $\tilde{g}(u)$ **.**

[Tests for permanent and](#page-14-0) [temporary shifts](#page-14-0)

Permanent effects: single split

Ve consider $H_0: g_-(u_i) = g_+(u_i)$. Test for discontinuity at u_i is based on

$$
\widetilde{\tau}(u_i) = \sqrt{Th} \frac{\widetilde{g}_+(u_i) - \widetilde{g}_-(u_i)}{\sqrt{\|K^+\|^2 \left\{\widetilde{g}_+^2(u_i) + \widetilde{g}_-^2(u_i)\right\}\widehat{\sigma}_{\zeta}^2}}, \ \widehat{\sigma}_{\zeta}^2 = \sum_{t=1}^T (\widehat{\zeta}_t - \overline{\widehat{\zeta}})^2 / T.
$$

- Under *H*₀ and the condition that $Th^5 \to \gamma$, we have $\tilde{\tau}(u_i) \to_d N(\rho_i, 1)$, where ρ_i is an asymptotic bias/standard error term, i.e. $\rho_i = \lim_{T \to \infty} \frac{b(u_i)}{SE(u_i)}$ $\frac{b(u_i)}{SE(u_i)}$.
- ' We consider three approaches for inference
	- undersmoothing.
	- ► bias correction.
	- § "honest" confidence intervals, Armstrong and Kolesár [\(2020\)](#page-32-0).
- ' We allow for short-term adjustments that eventually die out.
- ' Include dummy variables in the dynamic equation

$$
\lambda_t = \omega + \beta \lambda_{t-1} + \sum_{j=1}^J \alpha_j D_{jt} + \gamma \ell_{t-1}^*,
$$

- If $u_j = t_j/T$ is a stock split day, set $D_{jt} = 1$ if $t \in \{t_j E, \ldots, t_j + E\}$ for some event window $\mathcal E$ of length $J = 2E + 1$.
- ' With multiple splits, we include dummy variables around all the key dates.

Temporary effects: test statistic

- **Consider the single event setting with event window** $\{t_1 E, \ldots, t_1 + E\}.$
- **We consider** $H_0: \alpha_1 = \ldots = \alpha_J = 0$ **.**
- **Assume** $\zeta_t 1$ is a stationary mixing MDS with unknown distribution *F*.
- **•** Obtain the residuals $\hat{\zeta}_t = \ell_t / \tilde{g}(t/T) \hat{\lambda}_t$, $t = 1, ..., T$. Define abnormal illiquidity and cumulative abnormal illiquidity as

$$
AIL_{\tau} = \hat{\zeta}_{t_1 - E + \tau} - 1, \quad CAIL(\tau) = \sum_{s=0}^{\tau} AIL_s, \quad \tau = 0, \ldots, 2E.
$$

' Critical values are estimated based on data outside the event window.

[Empirical Application](#page-18-0)

- ' We use historical daily price and volume data for the Dow Jones index component stocks.
- ' The sample period starts from each asset's first available data point until December 31, 2023.
- ' There are in total 76 splits and 62 of them are two-to-one splits.

Individual stocks (permanent effects): Johnson & Johnson

Individual stocks (temporary effects): Johnson & Johnson

Note: τ_w is the aggregated directional statistic and is asymptotically $N(0, 1)$ under the null hypothesis.

Temporary effects: aggregated

- ' We propose tests to detect both permanent and temporary breaks in illiquidity in a dynamic framework.
- ' We find strong empirical evidence for an increase in the long-run illiquidity component after stock splits.
- ' We do not find significant effects on the short-run illiquidity dynamics.

Daily log illiquidity for S&P 500 index

Daily log illiquidity for S&P 500 (SPY)

1993−01−29 / 2024−07−17

- ' Evidence for worsened liquidity following stock splits:
	- § Lamoureux and Poon [\(1987\)](#page-32-0).
	- § Lakonishok and Lev [\(1987\)](#page-32-0) and Huang, Liano, and Pan [\(2015\)](#page-32-0): only temporary improvements on split announcement, then decline.
	- \blacktriangleright Han [\(1995\)](#page-32-0): liquidity improves after reverse splits.
- ' Evidence for improved liquidity following stock splits:
	- \blacktriangleright Chern et al. [\(2008\)](#page-32-0); Guo, Liu, and Song (2008); Yu and Webb [\(2009\)](#page-32-0): reduce bid-ask spreads, increase number of small traders.
	- \triangleright Mohanty and Moon [\(2007\)](#page-32-0): improvement in the average trading volume.

Permanent effects: multiple splits

 \blacksquare Joint test for the null hypothesis of no breaks at any u_i . Consider the statistic

$$
W = \sum_{i=1}^{m} \widetilde{\tau}(u_i)^2,
$$

Under H_0 , $W \rightarrow_d \sum_{i=1}^m$ $\sum_{i=1}^{m} (Z_i + \rho_i)^2$, where Z_i are i.i.d. $N(0, 1)$ random variables.

' A directional test where we pool the jumps across splits. For some weighting scheme *wⁱ* , we have ^ř*^m*

$$
\widetilde{\tau}_w = \frac{\sum_{i=1}^m w_i \widetilde{\tau}(u_i)}{\sqrt{\sum_{i=1}^m w_i^2}},
$$

Under H_0 , $\tilde{\tau}_w \rightarrow_d N(\rho_w, 1)$ where $\rho_w = \sum_{i=1}^m$ $\binom{m}{i=1} w_i \rho_i$ $\sqrt{\nabla^m}$ $\frac{m}{i=1} w_i^2$.

- **Example 1** Let $F_{w_{\tau}}$ denote the distribution of $\{w_{r,\tau}\}\$, where $w_{r,\tau} = \sum_{s}^{\tau}$ $\int_{s=0}^{T}(\zeta_{r+s}-1).$
- **Example 1** Estimate the distributions *F* and $F_{w_{\tau}}$ based on the data not including the event window, $S = \{1, \ldots, T\} \setminus \{t_1 - E, \ldots, t_1 + E\}.$
- **Let** $\hat{w}_{r,\tau} = \sum_{s}^{t}$ $\int_{s=0}^{\tau} (\hat{\zeta}_{r+s} - 1)$, we define $\hat{F}_{\hat{w}_{\tau}}(x) = \frac{1}{T_s}$ $t \in S$ ¹ $(\hat{w}_{t,\tau} \leqslant x)$, where T_S is the cardinality of the set *S*, and $\hat{F}(x) = \hat{F}_{\hat{w}_0}(x)$.
- **•** Reject H_0 if $CAIL(\tau) \notin [\hat{F}_{\hat{w}_\tau}^{-1}(\alpha/2), \ \hat{F}_{\hat{w}_\tau}^{-1}(1-\alpha/2)]$ for $\tau = 0, \ldots, 2E$.

Permanent effects: joint tests

Note: $\widetilde{\mathcal{J}}_{\%w}$ is the average jump in percentage. p_W is the p-value of the aggregated statistic $W = \sum_{i=1}^{m} \tau(u_i)^2$. ^ř*^m*

- \bullet We consider constituents of S&P 400, S&P 500 and S&P 600 with reverse splits and a pre-event price level below \$5.
- \bullet We focus on stocks with at most one reverse split in the sample \Rightarrow 53 stocks.
- Individual statistics τ are significantly negative for 32 stocks, which indicates a decrease in stock illiquidity.

Reverse splits

