The effect of stock splits on liquidity in a dynamic model

2024 European Meeting of the Econometric Society Erasmus School of Economics, August 26 - August 30, 2024

Linqi Wang joint work with C.M. Hafner and O.B. Linton

Introduction

- Liquidity is a fundamental property of well-functioning markets ⇒ lack of liquidity is at the heart of many episodes of market stress.
- Why do companies split their stocks? This creates "wider" markets.
 - ▶ making the stock more accessible to retail investors.
 - ▶ allows existing investors to sell part of their holdings more easily.
- As the volume of transactions increases, liquidity conditions should improve.

Arguments for a decrease in liquidity following a stock split:

- increases in real transaction costs.
- volume increases less than proportionately.
- brokerage revenues increase.
- increases in bid-ask spreads as a percentage of the value of the stock.

- We study the impact of stock splits on liquidity for a recent sample of Dow Jones index component stocks.
- The analysis is based on the daily Amihud illiquidity measure.
- We use the Dynamic Autoregressive Liquidity (DArLiq) model of Hafner, Linton, and Wang (2023).
- We propose tests of permanent and temporary effects in a dynamic framework.
- We find that stock splits cause shifts in the long-term liquidity trend, but no additional effects on short-run liquidity dynamics.

The Model and Estimation

- The Amihud illiquidity measure of a stock at time t, A_t , is

$$A_t = rac{1}{n_t} \sum_{j=1}^{n_t} \ell_{t_j}, \quad \ell_{t_j} = rac{|R_{t_j}|}{V_{t_j}},$$

- R_{t_i} is the intra-period returns.
- V_{t_i} is the intra-period dollar trading volume.
- n_t is the number of intra-period returns.
- We focus on the daily Amihud illiquidity ratio $\ell_t = \frac{|R_t|}{V_t}$.

Daily log illiquidity for S&P 500 (SPY)

Illiquidity ratio ℓ_t follows a multiplicative process with a nonparametric trend.

 $\ell_t = g(t/T)\lambda_t\zeta_t,$ $\lambda_t = \omega + \beta\lambda_{t-1} + \gamma\ell_{t-1}^*,$ $\ell_t^* = \ell_t/g(t/T),$

where $\omega > 0, \beta \ge 0, \gamma \ge 0$ and $\beta + \gamma < 1$.

- g(.) is an unknown function of rescaled time.
- λ_t is stationary with $E[\lambda_t] = 1$ for identification \Rightarrow set $\omega = 1 \beta \gamma$.
- ζ_t is a positive random variable with conditional mean one.

- Allow trend g to be discontinuous at a finite set of points $u_1, \ldots, u_m \in (0, 1)$.
- Define the left and right limits of the function and its first two derivatives

$$\lim_{u \uparrow u} g^{(r)}(u) = g_{-}^{(r)}(u), \quad \lim_{u \downarrow u} g^{(r)}(u) = g_{+}^{(r)}(u), \quad r = 0, 1, 2,$$

but we allow that $g_{-}^{(r)}(u_i) \neq g_{+}^{(r)}(u_i)$ for i = 1, ..., m.

- By convention, $g^{(r)}(.)$ is CADLAG, i.e. $g^{(r)}(u_i) = g^{(r)}_+(u_i)$.
- For any $u \notin \{0, u_1, \ldots, u_m, 1\}$, we maintain that $g_{-}^{(r)}(u) = g_{+}^{(r)}(u)$, for r = 0, 1, 2.

Permanent shifts: size of the jump

- Potential breakpoints $u_1 = t_1/T, \ldots, u_m = t_m/T$ are known in advance.
- Size of jump at u_i is measured in level and in percentage terms respectively by

$$\mathcal{J}(u_i) = g_+(u_i) - g_-(u_i),$$

$$\mathcal{J}_{\%}(u_i) = \frac{g_+(u_i) - g_-(u_i)}{\{g_+(u_i) + g_-(u_i)\}/2}$$

This is the effect that remains permanently in the absence of further changes.

• The effects can be aggregated over different breakpoints.

Estimation of the trend function

- We observe a sample of daily illiquidities $\{\ell_t, t = 1, \ldots, T\}$.
- Local linear kernel smoother designed to be robust to potential breaks at points $0 < u_1 < u_2 < \cdots < u_m < 1$. Define $\hat{g}(u) = \hat{\alpha}(u)$ and for $u \in [u_i, u_{i+1})$

$$\left(\widehat{\alpha}(u),\widehat{\beta}(u)\right) = \arg\min_{\alpha,\beta} \sum_{t=1}^{T} K_{h}(t/T-u) \left\{\ell_{t} - \alpha - \beta(t/T-u)\right\}^{2} \mathbb{1} \left(u_{i} \leq t/T < u_{i+1}\right).$$

- The estimator $\hat{g}(u)$ is continuous everywhere except at $\{u_1, u_2, \ldots, u_m\}$.
- At point u_i we compute two estimates of $\hat{g}(u_i)$: a left sider $\hat{g}_-(u_i)$ and a right sider $\hat{g}_+(u_i) \Rightarrow$ size of jump $\hat{\mathcal{J}}(u_i)$ and $\hat{\mathcal{J}}_{\%}(u_i)$.

Estimation of the parametric component

- We use GMM to estimate $\theta = (\beta, \gamma)^{\mathsf{T}}$ from the conditional moment restriction $E(\ell_t^* | \mathcal{F}_{t-1}) = \lambda_t$, where $\ell_t^* = \ell_t / g(t/T), t = 1, \ldots, T$.
- We work with residuals $\ell_t^*/\lambda_t(\theta) 1$, which is a martingale difference sequence at the true parameter values. Define $\rho_t(\theta, \hat{g}) = z_{t-1} \left\{ \hat{\ell}_t^*/\hat{\lambda}_t(\theta) 1 \right\}$

$$\hat{\theta}_{GMM} = \arg\min_{\theta\in\Theta} \|M_T(\theta, \hat{g})\|_W, \quad M_T(\theta, \hat{g}) = \frac{1}{T} \sum_{t=1}^T \rho_t(\theta, \hat{g}),$$

where W is a weighting matrix, while $z_t \in \mathcal{F}_t$ are instruments.

• In our application, we use $z_t = (1, \hat{\ell}_t^*, \hat{\ell}_t^*/\hat{\lambda}_t)'$ and $W = I_3$.

- Given consistent estimates of θ , g(.), estimation can be improved in terms of efficiency and simplicity of standard errors.
- Note that $E(\ell_t/\lambda_t) = g(t/T)$, which is an alternative local moment condition that is purged of the short-run variation.
- Use local linear kernel smoother as before but replacing ℓ_t by $\ell_t / \hat{\lambda}_t$, where $\hat{\lambda}_t = \hat{\lambda}_t(\hat{\theta}_{GMM}, \hat{g}) \Rightarrow \tilde{g}(u_i), \ \tilde{\mathcal{J}}(u_i), \ \tilde{\mathcal{J}}_{\%}(u_i).$
- The large sample variance of $\tilde{g}(u)$ is much simpler to estimate than that of $\hat{g}(u)$.

Tests for permanent and temporary shifts

Permanent effects: single split

• We consider $H_0: g_-(u_i) = g_+(u_i)$. Test for discontinuity at u_i is based on

$$\widetilde{\tau}(u_i) = \sqrt{Th} \frac{\widetilde{g}_+(u_i) - \widetilde{g}_-(u_i)}{\sqrt{\|K^+\|^2 \left\{ \widetilde{g}_+^2(u_i) + \widetilde{g}_-^2(u_i) \right\} \widehat{\sigma}_{\zeta}^2}}, \ \widehat{\sigma}_{\zeta}^2 = \sum_{t=1}^T (\widehat{\zeta}_t - \overline{\widehat{\zeta}})^2 / T.$$

- Under H_0 and the condition that $Th^5 \to \gamma$, we have $\tilde{\tau}(u_i) \to_d N(\rho_i, 1)$, where ρ_i is an asymptotic bias/standard error term, i.e. $\rho_i = \lim_{T \to \infty} \frac{b(u_i)}{SE(u_i)}$.
- We consider three approaches for inference
 - undersmoothing.
 - bias correction.
 - ▶ "honest" confidence intervals, Armstrong and Kolesár (2020).

- We allow for short-term adjustments that eventually die out.
- Include dummy variables in the dynamic equation

$$\lambda_t = \omega + \beta \lambda_{t-1} + \sum_{j=1}^J \alpha_j D_{jt} + \gamma \ell_{t-1}^*,$$

- If $u_j = t_j/T$ is a stock split day, set $D_{jt} = 1$ if $t \in \{t_j E, \dots, t_j + E\}$ for some event window \mathcal{E} of length J = 2E + 1.
- With multiple splits, we include dummy variables around all the key dates.

Temporary effects: test statistic

- Consider the single event setting with event window $\{t_1 E, \ldots, t_1 + E\}$.
- We consider $H_0: \alpha_1 = \ldots = \alpha_J = 0.$
- Assume $\zeta_t 1$ is a stationary mixing MDS with unknown distribution F.
- Obtain the residuals $\hat{\zeta}_t = \ell_t / \tilde{g}(t/T) \hat{\lambda}_t$, t = 1, ..., T. Define abnormal illiquidity and cumulative abnormal illiquidity as

$$AIL_{\tau} = \hat{\zeta}_{t_1 - E + \tau} - 1, \quad CAIL(\tau) = \sum_{s=0}^{\tau} AIL_s, \quad \tau = 0, \dots, 2E.$$

• Critical values are estimated based on data outside the event window.

Empirical Application

- We use historical daily price and volume data for the Dow Jones index component stocks.
- The sample period starts from each asset's first available data point until December 31, 2023.
- There are in total 76 splits and 62 of them are two-to-one splits.

Individual stocks (permanent effects): Johnson & Johnson

Individual stocks (temporary effects): Johnson & Johnson

17/19

Note: τ_w is the aggregated directional statistic and is asymptotically N(0, 1) under the null hypothesis.

	UNH	MSFT	HD	AMGN	MCD	CAT	BA	HON
$ au_w$	5.73	8.78	1.99	4.00	1.64	3.61	-0.28	6.96
	TRV	AAPL	JPM	JNJ	WMT	IBM	\mathbf{PG}	CVX
$ au_w$	7.43	8.40	29.08	5.81	2.37	3.94	7.48	4.08
	MRK	MMM	NKE	KO	CSCO	INTC	VZ	WBA
$ au_w$	7.53	6.91	2.22	2.64	5.51	7.91	3.58	2.01

Temporary effects: aggregated

- We propose tests to detect both permanent and temporary breaks in illiquidity in a dynamic framework.
- We find strong empirical evidence for an increase in the long-run illiquidity component after stock splits.
- We do not find significant effects on the short-run illiquidity dynamics.

Daily log illiquidity for S&P 500 index

Daily log illiquidity for S&P 500 (SPY)

1993-01-29 / 2024-07-17

- Evidence for worsened liquidity following stock splits:
 - ▶ Lamoureux and Poon (1987).
 - ▶ Lakonishok and Lev (1987) and Huang, Liano, and Pan (2015): only temporary improvements on split announcement, then decline.
 - ▶ Han (1995): liquidity improves after reverse splits.
- Evidence for improved liquidity following stock splits:
 - ▶ Chern et al. (2008); Guo, Liu, and Song (2008); Yu and Webb (2009): reduce bid-ask spreads, increase number of small traders.
 - ▶ Mohanty and Moon (2007): improvement in the average trading volume.

Permanent effects: multiple splits

• Joint test for the null hypothesis of no breaks at any u_i . Consider the statistic

$$W = \sum_{i=1}^{m} \widetilde{\tau}(u_i)^2$$

Under H_0 , $W \to_d \sum_{i=1}^m (Z_i + \rho_i)^2$, where Z_i are i.i.d. N(0,1) random variables.

• A directional test where we pool the jumps across splits. For some weighting scheme w_i , we have

$$\widetilde{\tau}_w = \frac{\sum_{i=1}^m w_i \widetilde{\tau}(u_i)}{\sqrt{\sum_{i=1}^m w_i^2}},$$

Under H_0 , $\tilde{\tau}_w \to_d N(\rho_w, 1)$ where $\rho_w = \sum_{i=1}^m w_i \rho_i / \sqrt{\sum_{i=1}^m w_i^2}$.

- Let $F_{w_{\tau}}$ denote the distribution of $\{w_{r,\tau}\}$, where $w_{r,\tau} = \sum_{s=0}^{\tau} (\zeta_{r+s} 1)$.
- Estimate the distributions F and $F_{w_{\tau}}$ based on the data not including the event window, $S = \{1, \ldots, T\} \setminus \{t_1 E, \ldots, t_1 + E\}.$
- Let $\hat{w}_{r,\tau} = \sum_{s=0}^{\tau} (\hat{\zeta}_{r+s} 1)$, we define $\hat{F}_{\hat{w}_{\tau}}(x) = \frac{1}{T_S} \sum_{t \in S} 1 (\hat{w}_{t,\tau} \leq x)$, where T_S is the cardinality of the set S, and $\hat{F}(x) = \hat{F}_{\hat{w}_0}(x)$.
- Reject H_0 if $CAIL(\tau) \notin [\widehat{F}_{\widehat{w}_{\tau}}^{-1}(\alpha/2), \ \widehat{F}_{\widehat{w}_{\tau}}^{-1}(1-\alpha/2)]$ for $\tau = 0, \ldots, 2E$.

Permanent effects: joint tests

Note: $\widetilde{\mathcal{J}}_{\%w}$ is the average jump in percentage. p_W is the p-value of the aggregated statistic $W = \sum_{i=1}^{m} \tau(u_i)^2$.

	UNH	MSFT	HD	AMGN	MCD	CAT	BA	HON
# of splits	5	5	1	3	2	3	1	2
$\widetilde{\mathcal{J}}_{\%w}$	43%	37%	35%	49%	11%	31%	-4%	43%
p_W	0.00	0.00	0.05	0.00	0.26	0.00	0.78	0.00
	TRV	AAPL	JPM	JNJ	WMT	IBM	\mathbf{PG}	CVX
# of splits	2	2	1	2	2	2	2	2
$\widetilde{\mathcal{J}}_{\%w}$	58%	107%	239%	42%	32%	31%	42%	31%
p_W	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.00
	MRK	MMM	NKE	KO	CSCO	INTC	VZ	WBA
# of splits	1	2	5	2	5	5	1	3
$\widetilde{\mathcal{J}}_{\%w}$	33%	57%	9%	20%	63%	64%	64%	23%
p_W	0.00	0.00	0.04	0.03	0.00	0.00	0.00	0.15

- We consider constituents of S&P 400, S&P 500 and S&P 600 with reverse splits and a pre-event price level below \$5.
- We focus on stocks with at most one reverse split in the sample \Rightarrow 53 stocks.
- Individual statistics τ are significantly negative for 32 stocks, which indicates a decrease in stock illiquidity.

Reverse splits

	AAON	ACLS	AIG	ARWR	ASRT	BANR	BCEI	BCOR	BKNG	\mathbf{C}	CAR
Split size	1-4	1-4	1-20	1-10	1-4	1-7	1 - 111.6	1-10	1-6	1-10	1-10
τ	-0.09	-2.71	-21.37	-10.53	4.42	15.40	-8.41	-7.87	-11.77	8.64	-17.14
	CBB	CCOI	CIEN	CIVI	COO	CPE	CPF	CSII	CYTK	EPAC	EXPR
Split size	1-5	1 - 20	1-7	1 - 111.6	1-3	1-10	1 - 20	1-10	1-6	1 - 5	1 - 20
au	-0.01	-2.20	3.83	-8.41	0.49	-2.71	-9.85	-6.97	-24.56	-14.86	-0.46
	FBP	\mathbf{FTR}	HAFC	HPR	HSKA	IART	KEM	KLXE	LCI	LPI	MSTR
Split size	1 - 15	1 - 15	1-8	1-50	1-10	1-2	1-3	1-5	1-4	1-20	1-10
au	-4.26	-1.90	-7.65	-4.10	-7.48	4.55	-3.93	1.02	-2.19	-7.99	-19.93
	MTH	NEU	ODP	OPCH	PFBC	PPBI	RRC	SANM	SBCF	SNV	SPPI
Split size	1-3	1-5	1-10	1-4	1-5	1-5	1 - 15	1-6	1-5	1-7	1-25
au	-0.63	-4.48	-4.76	1.27	-4.15	0.47	-1.33	-13.75	-8.22	-1.69	6.36
	SSP	THRM	TISI	UCBI	UFI	UIS	VIAV	XPO	ZD		
Split size	1-3	1-5	1-10	1-5	1-3	1-10	1-8	1-4	1-4		
au	12.78	1.05	-2.22	0.66	-6.77	-18.41	-2.24	-0.09	-3.33		