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Incomplete Models

Discrete choice models have been widely used.

Recent economic applications admit set-valued (or incomplete)

predictions.

Incomplete Discrete Choice Models:

• Given exogenous variables (X ,U), a set of outcome values is

predicted for Y ;

Y ∈ G (U|X ; θ),

It nests models with complete predictions: Y = g(U|X ; θ).
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Incomplete predictions

• Discrete games w/multiple equilibria (Tamer 03, Ciliberto/Tamer

09)

• Discrete choice w/heterogeneous choice sets (Barseghyan et al. 21)

• Discrete choice w/endogenous explanatory variables & IVs

(Chesher/Rosen 17)

• Dynamic discrete choice models (Heckman 78; Honoré/Tamer 06;

Torgovitsky 19; Chesher/Rosen/Zhang, 24)

• School choice models w/weak assump. on behavior (He 17;

Agarwal/Somaini 20)

• Network formation models (de Paula/Richards-Shubik/Tamer 18;

Sheng 20)

• Auctions (Haile/Tamer 03; Tamer et al. 18)
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Inference Problem

This paper develops a procedure for testing composite hypotheses:

H0 : θ ∈ Θ0 v .s. H1 : θ ∈ Θ1,

e.g., Θ0 = {θ : φ(θ) = φ∗} for some function φ : Θ → R.

Challenges/Goals:

• Testing in the presence of incompleteness & nuisance parameters

• The asymptotic distributions of existing tests are often non-standard

and require regularity conditions/tuning parameters

• We aim to provide a tractable method with finite-sample validity
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Proposed test

Our proposal:

ϕn = 1
{
Sn >

1

α

}
.

• Sn: A cross-fit version of a likelihood-ratio (LR) statistic

L0(θ̂1)/L0(θ̂0)

• 1
α : fixed critical value

Universal validity:

For any n and over the class Pn
0 of DGPs compatible with H0:

sup
Pn∈Pn

0

EPn

[
ϕn
]
≤ α.
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Universal Inference

The test has the following properties.

(i) It has finite-sample validity without complex regularity conditions

(ii) It is tractable: no moment selection regularization, resampling, or

simulations

(iii) It can yield confidence intervals for φ(θ) (e.g. counterfactual

probabilities)

(iv) It can incorporate continuous and discrete covariates

(v) Nonparametric components are allowed (so long as we can calculate

MLE)

Preliminary simulation results suggest it has nontrivial power in finite

samples. Its power properties are comparable to those of existing tests in

large samples.
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Properties

We use a “tailor-made” likelihood using the model structure to ensure

robustness to the model incompleteness

The finite sample validity builds on a sample-splitting argument and a

Chernoff-style bound developed by Wassermann/Ramdas/Balakrishnan

(20).

It can be viewed as a versatile (but not optimal) test that is effective in

settings where

• |Y| is not too high

• models are rich enough to capture various heterogeneity through

covariates

• θ contains nuisance components
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We reference here only some closely related papers

• Identification in Incomplete Models:

Jovanovic (89), Tamer (03), Galichon/Henry (11),

Beresteanu/Molchanov/Molinari (11), Chesher/Rosen (17), Luo &
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• Inference in Partially Identified/Incomplete Models

• Moment inequalities: Reviews by Canay/Shaikh (17), Molinari (20)

• Likelihood-based:

Chen/Tamer/Torgovitsky (11), Chen/Tamer/Christensen (18),
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• Monte Carlo-based: Li/Henry (23)

• Robust Statistics/Universal Inference:

Huber/Stranssen (73,74), Wassermann/Ramdas/Balakrishnan (20)
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Set-up

• Y ∈ Y: outcome, Y: finite set

• X ∈ X ⊆ RdX : covariates

• U ∈ U ⊆ RdU : latent variables

• Fθ(·|x): conditional law of U|X , which belongs to F = {Fθ, θ ∈ Θ}.

The model’s prediction is summarized by G (·|·; θ) : U ×X ↠ Y, a weakly

measurable correspondence.

A sample {(Yi ,Xi ), i = 1, . . . , n} is drawn. We assume independence of

observations across i .
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Examples

Entry game (Bresnahan & Reiss, 91, Ciliberto & Tamer 09)
Each player j ∈ {1, 2} can choose to enter (y (j) = 1) or to stay out of the

market (y (j) = 0).

The players’ payoffs are

πj = Y (j)(X (j)δ(j) + β(j)Y (3−j) + U(j)), j = 1, 2,

which is common knowledge.

• Y = {(0, 0), (0, 1), (1, 0), (1, 1)}
• X = (X (1),X (2)): Observable payoff shifters

• U = (U(1),U(2)): Unobservable payoff shifters

Suppose a pure strategy Nash equilibrium (PSNE) is played.
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Example: 2 Player Entry Game

player 2

Y2 = 0 Y2 = 1

player 1 Y1 = 0 (0, 0)
(
0,X (2)δ(2) + U(2)

)
Y1 = 1

(
X (1)δ(1) + U(1), 0

) (
X (1)δ(1) + β(1) + U(1),X (2)δ(2) + β(2) + U(2)

)

If βj < 0, j = 1, 2

G (u|x ; θ) =



{(0, 0)} u ∈ aθ(x)

{(0, 1)} u ∈ bθ(x)

{(1, 0)} u ∈ cθ(x)

{(1, 1)} u ∈ dθ(x)

{(1, 0), (0, 1)} u ∈ eθ(x)
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G (u|x ; θ) = {(1, 0)}

G (u|x ; θ) = {(0, 1), (1, 0)}

−x (2)δ(2) − β(2)
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−x (2)δ(2)

−x (1)δ(1)
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b
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e
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d

a
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Overview

Artstein’s inequality:

Let C be the set of all closed subsets of Y.

Y ∈ G (U|x ; θ), a.s. ⇔ P(A|x) ≥ νθ(A|x)︸ ︷︷ ︸
Sharp Identifying Restrictions

, ∀A ∈ C.

• The containment functional νθ(A|x) ≡
∫
1{G (u|x ; θ) ⊆ A}dFθ(u|x)

determines the distribution of G (Molchanov, 2017).
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The set of conditional densities

Let

qθ,x ≡ {q(·|x) :
∑
y∈A

q(y |x) ≥ νθ(A|x), A ∈ C}.

• The conditional density of Y is restricted by linear inequalities.

Ex. Entry game
Any density in qθ,x satisfies

q((0, 0)|x) = Fθ(aθ(x)|x)
q((1, 1)|x) = Fθ(dθ(x)|x)
q((1, 0)|x) ≤ Fθ(cθ(x)|x) + Fθ(eθ(x)|x)
q((1, 0)|x) ≥ Fθ(cθ(x)|x)
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Procedure

Split a sample (Yi ,Xi ), i = 1, . . . , n into D1 and D0.

1. From D1,

• Compute θ̂1: any estimator of

θ;

(e.g., a minimizer of a

criterion function)

• Find p(·|x) ∈ qθ̂1,x .

2. From D0,

• Compute θ̂0: RMLE

θ̂0 ∈ argmax
θ∈Θ0

∏
i∈D0

qθ(Yi |Xi )

using

qθ(·|x)
= argmin

q(·|x)∈qθ,x

IKL(q(·|x) + p(·|x)||q(·|x)).

IKL: Kullback-Leibler

divergence
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Intuition

p
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qθ′

qθ′′

qθ′′
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Intuition

{qθ, θ ∈ Θ0}

p
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Intuition

{qθ, θ ∈ Θ0}

qθ̂1

17



Procedure:

Conditional on D1, we construct a parametric model:

{qθ(·|x), θ ∈ Θ0 ∪ {θ̂1}}

• qθ̂1 : a density in the unrestricted model;

• {qθ, θ ∈ Θ0}: a collection of least-favorable densities under H0.

Any incomplete model admits the existence of such a parametric model.

This is due to νθ belonging to a class of 2-monotone capacities and

results from the robust statistics lit. (Huber/Strassen 73, Kaido/Zhang,

19).
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Cross-fitting

3. Compute Sn

Split LR statistic:

Tn =

∏
i∈D0

qθ̂1(Yi |Xi )∏
i∈D0

qθ̂0(Yi |Xi )
=

L0(θ̂1)

L0(θ̂0)

Cross-fit LR statistic:

Sn =
Tn + T swap

n

2

T swap
n is calculated in the same way as Tn after swapping the roles of D0

and D1.

4. Reject H0 if Sn > 1/α.
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LFP-based density

Ex. Entry game

Y = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Any density in qθ,x satisfies

q((0, 0)|x) = Fθ(aθ(x)|x) (1)

q((1, 1)|x) = Fθ(dθ(x)|x) (2)

q((1, 0)|x) ≤ Fθ(cθ(x)|x) + Fθ(eθ(x)|x) (3)

q((1, 0)|x) ≥ Fθ(cθ(x)|x) (4)
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LFP-based density

More details on Step 2.

Ex. Entry game

Minimizing IKL is equivalent to solving

min
q(·|x)∈∆Y

∑
y∈Y

ln
(q(y |x) + p(y |x)

q(y |x)

)
(q(y |x) + p(y |x))

s.t. q satisfies (1)-(4)

Can obtain qθ in closed form.

21



Properties



Size Control

Suppose (Yi ,Xi ,Ui )
n
i=1 are independently distributed, and (Xi ,Ui )

n
i=1 are

identically distributed across i .

Let

Pn
θ =

{
Pn =

n⊗
i=1

Pi , Pi (A|x) ≥ νθ(A|x), ∀A ∈ C, x ∈ X ,

Pi,X = PX , PX ∈ ∆(X )
}
.

Theorem:
For any n ∈ N,

sup
Pn∈Pn

0

Pn
(
Sn >

1

α

)
≤ α

where Pn
0 = {Pn ∈ Pn

θ : θ ∈ Θ0}.
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Confidence intervals

Let φ : Θ → R:

• Counterfactual probability:

φ(θ) = Fθ({u : x1
′β1 +∆1 ≥ −U1}) = Φ(x1

′β1 +∆1)

e.g., probability of Player 1 entering when y2 is set to 1;

U1 ∼ N(0, 1)

• A component of θ or a linear combination of θ:

φ(θ) = θ1, φ(θ) = l ′θ.

• (Average, distributional, quantile) structural function:

φ(θ) = EFθ
[µ(d ,X ,U; θ)] (e.g., ASF)

• Treatment effects:

φ(θ) = EFθ
[µ(1,X ,U; θ)− µ(0,X ,U; θ)] (e.g., ATE)

23



Confidence intervals

Let Θ0(φ
∗) ≡ {θ ∈ Θ : φ(θ) = φ∗}, and let Sn(φ

∗) be the corresponding

cross-fit LR statistic.

A confidence interval for φ(θ) is

CIn ≡
{
φ∗ ∈ R : Sn(φ

∗) ≤ 1

α

}
.

Comments:

• The confidence interval covers φ(θ) with prob. at least 1− α in any

finite sample.

• Only the denominator of Tn (or T swap
n ) needs to be re-calculated

across φ∗.
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Empirical Illustration (In Progress)

Thornton (08): “The demand for, and impact of, learning HIV

status”

Respondents in rural Malawi were offered a free door-to-door HIV test

and were given randomly assigned vouchers (up to $3), redeemable upon

obtaining their results at a nearby test center.

The study examined the effect of learning the HIV status on condom

purchases.

• Y : Condom purchase (0, 3, or 6 in this exercise);

• D: Learning HIV test result (0 or 1);

• X : HIV status, other individual characteristics;

• Z : Voucher amount, distance to test center.

n ≃ 1000, 10-15 parameters, continuous/discrete covariates
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Empirical Illustration

A model of ordered choice:

Y =


0 if µ(D,X ) + U ≤ cL

3 if cL < µ(D,X ) + U ≤ cU

6 if µ(D,X ) + U > cU .

D = 1{V ′Z + ψ(X ,Z )′δ ≥ 0}.

We work with a control function (CF) assumption (Han & Kaido, 2024)

• U|D,X ,V ∼ U|X ,V for some CF V ∈ V , where

V =

{
{v : v ′z + ψ(x , z)′δ ≥ 0} if d = 1

{v : v ′z + ψ(x , z)′δ < 0} if d = 0.

This model yields a set-valued prediction. Right now, we use a

fixed-coefficient model with an additive heterogeneity term v .
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Prediction

Y ∈ G (ϵ|X ; θ), U = g(V ) + ϵ

ε

{0}

{0, 3}

{3}

{3, 6}

{6}

cU − µ(D,X )− gL(V )

cU − µ(D,X )− gU(V )

cL − µ(D,X )− gL(V )

cL − µ(D,X )− gU(V )

gL(V ) = infV∈Sel(V ) g(V ), gU(V ) = supV∈Sel(V ) g(V ) 27



Target objects

The model is characterized by 4 inequality restrictions and yields a

closed-form LFP-based density qθ.

We consider two objects

• Average Structural Function

φ(θ) = ASF(d , xHIV )

• Policy Relevant Structural Function

Consider giving the maximum voucher amount (z∗amt =$3) to
everyone to encourage them to learn about their HIV status.

φ(θ) = PRSF($3, xHIV )
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Confidence Intervals

HIV+ HIV-

ASF(1) [0.090,5.216] [0.332, 2.623]

ASF(0) [0.030,4.251] [0.211, 2.985]

HIV+ HIV-

PRSF($3) [0.091, 4.824] [0.331, 2.502]
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Findings

• We cannot determine the sign of the ATE. Thornton also finds very

mild effects (2SLS estimands).

• The ASFs may be heterogeneous across different HIV status groups.

• One can attain effects similar to setting d = 1 by providing the

financial incentive ($3).
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Summary

This paper explores a universal inference method that has finite-sample

validity for incomplete models.

• We use a “tailor-made” likelihood using the model structure to

ensure robustness to the model incompleteness

• It can be viewed as a versatile (but not optimal) test that remains

effective in settings with nuisance parameters, continuous and

discrete covariates, and limited sample sizes.

• Preliminary codes are available at

https://github.com/hkaido0718/IncompleteDiscreteChoice.

31
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Thank you!
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Monte Carlo Experiments



Simulation designs

Design 1:

Entry game with

π(j) = y (j)
(
θ(j)y (−j) + u(j)

)
, j = 1, 2

with (u(1), u(2)) ∼ N(0, I2).

• H0 : θ
(j) = 0 for both players against H1 : θ

(j) < 0 for some j .

• We set θ(j) = −h, j = 1, 2, h ≥ 0 to evaluate power. Yi = (1, 0) is

selected w/ prob 0.5.

Tests:

1. Cross-fit LR test with θ̂1 maximizing a likelihood-based criterion

function

2. Cross-fit LR test with θ̂1 minimizing a moment-based criterion

function. 33



Design 1

Table 1: Size and Power of the Cross-Fit Tests for testing H0 : θ
(j) = 0, j = 1, 2

Size Power (values of h below)

0.069 0.138 0.207 0.276 0.345 0.414 0.483 0.552 0.621 0.690 0.759 0.828 0.897 0.966

Panel A: (n = 100)

LR-test (MLE θ̂1) 0 0.001 0.011 0.073 0.196 0.370 0.576 0.760 0.885 0.948 0.973 0.992 0.996 1.000 1.000

LR-test (CHT θ̂1) 0 0.002 0.016 0.081 0.209 0.383 0.582 0.762 0.877 0.942 0.976 0.988 0.993 0.998 1.000

Panel B: (n = 200)

LR-test (MLE θ̂1) 0.001 0.007 0.060 0.235 0.522 0.794 0.948 0.988 0.997 1 1 1 1 1 1

LR-test (CHT θ̂1) 0.002 0.008 0.066 0.246 0.521 0.776 0.940 0.988 0.996 1 1 1 1 1 1
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Monte Carlo experiments

Design 2:

Similar to Design 1, but

π(j) = y (j)
(
x (j)′δ(j) + β(j)y (−j) + u(j)

)

• x (j) ∈ {−2,−1, 0, 1, 2}: player specific covariates

• Test H0 : δ
(j) = 0, j = 1, 2 against H1 : δ

(j) ̸= 0 for some j .

Tests:

1. Cross-fit LR test (for n ∈ {50, 100, 200, 300, 5000, 7500})
2. Moment-based test by Bugni, Canay, and Shi (17) (for

n = 5000, 7500).
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Design 2

n Size Power (values of h below)

0.105 0.211 0.316 0.421 0.526 0.632 0.737 0.842 0.947 1.053 1.158 1.263 1.368 1.474

50 0 0.000 0.005 0.030 0.100 0.222 0.354 0.493 0.612 0.732 0.834 0.894 0.940 0.972 0.982

100 0 0.000 0.011 0.070 0.194 0.375 0.499 0.631 0.748 0.864 0.926 0.963 0.978 0.989 0.998

200 0 0.000 0.056 0.252 0.504 0.665 0.790 0.867 0.929 0.965 0.981 0.987 0.991 0.994 0.997

300 0 0.006 0.158 0.558 0.809 0.912 0.954 0.973 0.989 0.998 0.996 0.996 0.998 0.997 0.997

Note: The size and power are calculated based on S = 1000 simulations. DGP with

covariates taking 25 different values. The average sample size in each bin is at most

12.
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Design 2

0 0.05 0.1 0.15

h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cross-fit LR test (n=5000)
cross-fit LR test (n=7500)
moment-based test (n=5000)
moment-based test (n=7500)

Figure 1: Power of the Cross-fit LR and Moment-based Tests:

(n ∈ {5000, 7500}, S = 1000 replications)
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Design 2

Cross-fit LR test Moment-based test

4 cores 8 cores 16 cores

13.75 111.65 56.64 41.84

Table 2: Median computation time (in seconds)

Note: The median computation time is calculated based on S = 1000 simulations for

the cross-fit LR test. For the moment-based test, we parallelized bootstrap

replications (B = 500) with 4, 8, and 16 cores. The median computation time is

calculated based on S = 100 simulation repetitions.
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Appendix



Comparison

Split LRT:

2 ln

(
L0(θ̂1)

L0(θ̂0)

)
> cα

• cα = 2 ln(1/α)

• L0(θ̂1): out-of-sample

likelihood

• L0(θ) =
∏

i∈D0
qθ(Zi )

→ cα is due to Markov’s inequality

applied to exp(t ln
(

L0(θ̂1)

L0(θ̂0)

)
) with

t = 1 (poorman’s Chernoff bound)

Standard LRT:

2 ln

(
Lfull(θ̂1)

Lfull(θ̂0)

)
> cd,α

• cd,α: 1− α quantile of χ2
d,α

• Lfull(θ̂1): full-sample likelihood

• Lfull(θ) =
∏n

i=1 qθ(Zi )

→ cd,α is due to Wilks’ thereom.

39



LFP-based density

U(1)

U(2)

−X (2)β(2) −∆(2)

−X (1)β(1) −∆(1)

−X (2)β(2) −∆(2)

−X (2)β(2)

−X (1)β(1)

η1(x ; θ) = 1− Fθ(a|x)− Fθ(d |x)
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LFP-based density

U(1)

U(2)

−X (2)β(2) −∆(2)

−X (1)β(1) −∆(1)

−X (2)β(2) −∆(2)

−X (2)β(2)

−X (1)β(1)

η2(x ; θ) = Fθ(c|x) + Fθ(e|x)
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LFP-based density

U(1)

U(2)

−X (2)β(2) −∆(2)

−X (1)β(1) −∆(1)

−X (2)β(2) −∆(2)

−X (2)β(2)

−X (1)β(1)

η3(x ; θ) = Fθ(c|x)
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Examples

Panel Dynamic Discrete Choice (Heckman, 78, Honore & Tamer,

09)

Binary decisions across multiple periods, according to

Yit = 1{X ′
itλ+ Yit−1β + αi + ϵit ≥ 0}, i = 1, . . . , n, t = 1, . . . ,T .

The model admits state dependence through Yit−1β.

The initial value Yi0 is not observed.

Multiple outcome sequences (Yi1, . . . ,YiT ) ∈ {0, 1}T can satisfy the

model restrictions.
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Example: Panel Dynamic Discrete Choice (T = 2)

If β > 0 ,

Ui1

Ui2

−X ′
i2λ

−X ′
i1λ

−X ′
i2λ− β

−X ′
i1λ− β

G (U|X ; θ) =

{(0, 0)}

G (U|X ; θ) =

{(0, 1)}

G (U|X ; θ) =

{(0, 0), (1, 1)}

G (U|X ; θ) =

{(0, 1), (1, 1)}

G (U|X ; θ) =

{(0, 0), (1, 0)}

G (U|X ; θ) = {(1, 1)}

G (U|X ; θ) = {(1, 0)}



Implementation

Option 1 (Test inversion)

For each φ∗ in a grid over φ(Θ), compute Sn(φ
∗) and keep the ones that

pass the test.

Option 2 (Bayesian optimization/Response-surface method)

The endpoints of CSn are

min /max φ∗

s.t. Sn(φ
∗) ≤ 1

α

where φ∗ 7→ Sn(φ
∗) is a black-box function.

Can use global optimization algorithms for solving a problem w/

black-box constraints (Jones, et. al., 98).
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Core-determining class

A sub-collection A of C is core-determining (Galichon & Henry, 11) if

qθ,x = {q(·|x) :
∑
y∈A

q(y |x) ≥ νθ(A|x), A ∈ C}

= {q(·|x) :
∑
y∈A

q(y |x) ≥ νθ(A|x), A ∈ A}

There is a minimal core determining class A∗, which is determined by the

graph representation of G (Luo & Wang, 18, Ponomarev 23).

• For applications with relatively high |Y|, we recommend reducing the

number of constraints to a manageable size.
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Confidence intervals

Corollary:

For any n,

inf
(φ∗,Pn)∈Fn

Pn
(
φ∗ ∈ CSn

)
≥ 1− α,

where Fn =
{
(φ∗,Pn) : φ(θ) = φ∗,Pn ∈ Pn

θ , for some θ ∈ Θ
}
.

• The sharp identification region for φ(θ) under Pn is

HPn [φ] = {φ∗ : φ(θ) = φ∗,Pn ∈ Pn
θ , for some θ ∈ Θ}.

• The result above ensures that CSn covers elements of HPn [φ] across

Pn.
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Getting θ̂1

A natural choice θ̂1 is an extremum estimator that minimizes a sample

criterion function θ 7→ Q̂1(θ).

Examples:

• Q̂1(θ) = supj,x
{νθ(Aj |x)−P̂1(Aj |x)}+

ŝθ,1(Aj |x) , where ŝθ,1(Aj |x) is an estimator

of the standard error of P̂1(·|x) (Chernozhukov, et. al., 07, 13)

• Q̂1(θ) =
∑

i∈D1
− ln pθ(Yi |Xi ; p̂n), where pθ is the KLIC projection

of a nonparametric estimator p̂n of p0(·|x) = P0(Y = ·|x)
(Kaido/Molinari, 24)

46



Finding p

One can obtain p(·|x) in qθ,x by solving a linear feasibility problem.

Find p(·|x) ∈ ∆Y

s.t.
∑
y∈A

p(y |x) ≥ νθ̂1(A|x), A ∈ C.

Any solution p(·|x) (positive density) can be used.
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Proof sketch

Suppose, for the moment, the model is complete so that qθ = {qθ}. We

proceed with Wasserman et. al.’s argument.

Let θ∗ be the true value. It is straightforward to show Eqθ∗

[
L0(θ

′)
L0(θ∗)

]
≤ 1

for any θ′ ∈ Θ.

By Markov’s inequality

Pθ∗(Tn >
1

α
) ≤ αEqθ∗

[L0(θ̂1)

L0(θ̂0)

]
≤ αEqθ∗

[L0(θ̂1)

L0(θ∗)

]
.

Conditioning on D1,

αEqθ∗

[L0(θ̂1)

L0(θ∗)

]
= αEqθ∗

(
Eqθ∗

[L0(θ̂1)

L0(θ∗)

∣∣∣D1

])
≤ α.

We extend this argument by replacing qθ with the LFP-based parametric

model.
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Proof sketch

Let θ1 ∈ Θ and let Qθ1 ∈ Pθ1 .

For each θ ∈ Θ0, consider distinguishing Pθ1 against a singleton set

{Qθ1}.

There exists a least-favorable pair (LFP) (Qθ,Qθ1) ∈ Pθ × {Qθ1} such

that for all t ∈ R

sup
P∈Pθ

P(Λ > t) = Qθ(Λ > t)

inf
P∈Pθ1

P(Λ > t) = Qθ1(Λ > t),

where Λ = dQθ1/dQθ (due to Pθ = core(νθ), Huber & Stranssen, 73).
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Proof sketch

Pn(Tn(θ1) >
1

α
) ≤ αEPn

[L0(θ1)

L0(θ̂0)

]
≤ α sup

P̃n∈Pn
θ

EP̃n

[L0(θ1)

L0(θ)

]
,

The supremum is attained by the product of the least-favorable

distribution Qθ at θ.

Using this,

EQn
θ

[L0(θ1)

L0(θ)

]
≤ 1.

The rest of the argument is similar to the complete case.
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Critical values
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