Debt, Default, and Commitment

Joost Röttger

Deutsche Bundesbank

76th European Meeting of the Econometric Society

August 27, 2024

Disclaimer: The views expressed in this presentation are those of the author and do not necessarily represent those of the Deutsche Bundesbank or the Eurosystem.

Outline

1. Introduction

2. Model

3. Quantitative Analysis

4. Conclusion

Motivation I/II

• Quantitative sovereign default literature (Aguiar et al. 2017)

- Rationalise typical emerging market features
- Evaluate public policy measures (e.g. austerity, third-party loans)
- Workhorse model based on Eaton and Gersovitz (1981)
 - 1. Incomplete financial markets
 - 2. Ability to default
 - 3. Complete lack of commitment
- This paper asks:
 - What is the role of (lack of) commitment?

Motivation II/II

• Why?

- Does commitment matter for model predictions?
- Degree of commitment matters for many policy measures
- Study welfare gains of commitment
- How?
 - Introduce loose commitment (see Debortoli and Nunes, 2010) into a model à la Arellano (2008)
 - Optimal ex-ante plan but re-optimisation ex post with prob. 1 $-\lambda$
 - Model nests full commitment ($\lambda = 1$) and no commitment ($\lambda = 0$)
 - Perform quantitative exercises to assess role of commitment

Preview

- Role of commitment for quantitative models of sovereign default?
 - Under commitment
 - Default risk / spread is countercyclical
 - Debt and deficit are countercyclical
 - Consumption is less volatile than income
 - Under loose commitment, new trade-offs arise
 - · Welfare gains of commitment mostly due to front-loading motive
- Predictions under commitment provide better fit for European debt crisis

Related literature

- Quantitative sovereign default literature
 - Aguiar and Gopinath (2006); Arellano (2008); Bocola et al. (2019)
 - Cuadra and Sapriza (2008); Hatchondo et al. (2009)
- Default models with commitment
 - Adam and Grill (2017); Pouzo and Presno (2022); Mateos-Planas et al. (2023)
- Loose commitment
 - Roberds (1987); Schaumburg and Tambalotti (2007); Debortoli and Nunes (2010; 2013)

Outline

1. Introduction

2. Model

3. Quantitative Analysis

4. Conclusion

• Small open economy is inhabited by household with objective

$$\mathbb{E}_{0}\left[\sum_{t=0}^{\infty}\beta^{t}u(c_{t})\right],$$

with
$$u(c) = (c^{1-\gamma} - 1)/(1 - \gamma)$$
, $0 < \gamma \neq 1$, and $\beta \in (0, 1)$.

- Economy receives income y_t which follows a first-order Markov process with
 - finite support $\mathbb{Y} = \{y_1, ..., y_Y\},\$
 - conditional transition probabilities $\pi(y_{t+1}|y_t)$.
- There is a minimum consumption level $\underline{c} \ge 0$.

Setting Government

- A benevolent government borrows from investors to smooth (and front-load) household consumption
 - Access to non-contingent one-period bond *b*_t at unit price *q*_t.
- Can default on debt payments $d_t \in \{0, 1\}$
- Costs of default $d_t = 1$ following Arellano (2008)
 - Exclusion from financial markets for $1/\theta$ periods on average
 - Income loss $\phi(y_t) \ge 0$
- Bonds are traded with risk-neutral investors who can borrow or save at real risk-free rate r

$$q_t = \frac{1 - \mathbb{E}_t \left[d_{t+1} \right]}{1 + r}$$

Time-inconsistency problem due to default decision

Ramsey problem

Recursive formulation

- As in Kydland and Prescott (1980) and Chang (1998)
 - Two sub-problems, one for t = 0 and one for $t \ge 1$
 - Recursive formulation via additional (co-)state variable
- Conditional on good credit status, problem is recursive in states
 - Debt $b \in \mathbb{B}$
 - Income $y \in \mathbb{Y}$
 - Default promise $d \in \{0, 1\}$
- Promise-keeping constraint,

$$\mathcal{V}^{c}(b, d, y) = (1 - d) \mathcal{V}^{r}(b, y) + d\mathcal{V}^{d}(y),$$

enforces state-contingent default default promises made in the past, $\mathbf{d}_{y'} = (d_{y_1}, d_{y_2}, ..., d_{y_Y}) \in \{0, 1\}^{Y}$.

Ramsey problem

Recursive formulation (cont'd)

In the repayment case, the government solves

$$\mathcal{V}^{r}(b,y) = \max_{b' \in \mathbb{B}, \, \mathbf{d}_{y'} \in \{0,1\}^{Y}} \left\{ \begin{array}{c} u\left(y + q\left(\mathbf{d}_{y'}, y\right)b' - b - \underline{c}\right) \\ +\beta \mathbb{E}_{y'|y}\left[\mathcal{V}^{c}(b', d_{y'}, y')\right] \end{array} \right\},$$

with bond price schedule

$$q\left(\mathbf{d}_{y'},y\right) = \frac{1 - \mathbb{E}_{y'|y}\left[d_{y'}\right]}{1 + r}.$$

• In the default case, the government solves

$$\mathcal{V}^{d}(\mathbf{y}) = \max_{\mathbf{d}_{\mathbf{y}'} \in \{0,1\}^{Y}} \left\{ \begin{array}{c} u\left(\mathbf{y} - \phi(\mathbf{y}) - \underline{c}\right) \\ + \left(1 - \theta\right) \beta \mathbb{E}_{\mathbf{y}'|\mathbf{y}} \left[\mathcal{V}^{d}(\mathbf{y}')\right] \\ + \theta \beta \mathbb{E}_{\mathbf{y}'|\mathbf{y}} \left[\mathcal{V}^{c}(0, \mathbf{d}_{\mathbf{y}'}, \mathbf{y}')\right] \end{array} \right\}.$$

First-period problem

- In the first period, there is no time-inconsistency problem.
- The government therefore solves

$$\mathcal{V}^o(b,y) = \max_{d\in\{0,1\}} \mathcal{V}^c(b,d,y),$$

with option value of default $\mathcal{V}^{o}(b, y)$.

• Let $\mathcal{D}(b, y)$ be the policy function that solves this problem.

Loose commitment

- Now government re-optimises ex-ante plan with probability 1λ .
- Conditional on good credit status:
 - Promise *d* determines repayment with probability λ
 - Function $\mathcal{D}(b, y)$ determines repayment with probability 1 λ
- Ramsey ($\lambda = 1$) and Markov ($\lambda = 0$) policies as special cases
- Under loose commitment (0 < λ < 1), government knows its promises might not be kept.

Loose commitment (cont'd)

• In the repayment case, the government now solves

$$\mathcal{V}^{r}(b,y) = \max_{b' \in \mathbb{B}, \mathbf{d}_{y'} \in \{0,1\}^{\gamma}} \left\{ \begin{array}{l} u\left(y + q\left(b', \mathbf{d}_{y'}, y\right)b' - b - \underline{c}\right) \\ +\lambda\beta\mathbb{E}_{y'|y}\left[\mathcal{V}^{c}(b', d_{y'}, y')\right] \\ +(1 - \lambda)\beta\mathbb{E}_{y'|y}\left[\mathcal{V}^{o}(b', y')\right] \end{array} \right\},$$

with bond price schedule

$$q(b',\mathbf{d}_{y'},y) = \frac{1 - \mathbb{E}_{y'|y}\left[\lambda d_{y'} + (1-\lambda)\mathcal{D}(b',y')\right]}{1+r}.$$

• In the default case, the government now solves

$$\mathcal{V}^{d}(\mathbf{y}) = \max_{\mathbf{d}_{\mathbf{y}'} \in \{0,1\}^{Y}} \left\{ \begin{array}{c} u\left(\mathbf{y} - \phi(\mathbf{y}) - \underline{c}\right) + (1 - \theta) \beta \mathbb{E}_{\mathbf{y}'|\mathbf{y}} \left[\mathcal{V}^{d}(\mathbf{y}')\right] \\ + \theta \lambda \beta \mathbb{E}_{\mathbf{y}'|\mathbf{y}} \left[\mathcal{V}^{c}(0, \mathbf{d}_{\mathbf{y}'}, \mathbf{y}')\right] \\ + \theta(1 - \lambda) \beta \mathbb{E}_{\mathbf{y}'|\mathbf{y}} \left[\mathcal{V}^{o}(0, \mathbf{y}')\right] \end{array} \right\}.$$

Outline

1. Introduction

2. Model

3. Quantitative Analysis

4. Conclusion

Outline

Two exercises

- First exercise
 - Standard calibration under no-commitment assumption ($\lambda = 0$)
 - Match short- and long-run properties for Argentina
 - What are the implications of different degrees of commitment?
- Second exercise
 - Application to European debt crisis
 - The role of commitment for debt and spread dynamics
 - Horse race between no- and full-commitment model

Functional forms

• Recursive preferences (*Epstein and Zin, 1991; Weil, 1990*):

$$\mathcal{V}_t = u(c_t) + \beta \frac{\left(\mathbb{E}_t\left[(1+(1-\beta)(1-\gamma)\mathcal{V}_{t+1})^{\frac{1-\alpha}{1-\gamma}}\right]\right)^{\frac{1-\gamma}{1-\alpha}} - 1}{(1-\beta)(1-\gamma)}$$

• Default costs as in *Chatterjee and Eyigungor (2012)*

$$\phi(\mathbf{y}) = \max\left\{\mathbf{0}, \phi_1 \mathbf{y} + \phi_2 \mathbf{y}^2\right\}$$

• Support \mathbb{Y} and transition probabilities $\pi(y'|y)$ are obtained by discretising the log-normal AR(1)-process

$$\ln y_t = \rho \ln y_{t-1} + \sigma \varepsilon_t, \ \varepsilon_t \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1),$$

via the method proposed by Tauchen (1986).

Model parameters

Baseline calibration for Argentina

Parameter	Description	Value
α	Coefficient of CRRA	2
eta	Discount factor	0.966
γ	Inverse of IES	2
ho	Persistence of income	0.945
σ	Std. dev. of income shock	0.025
ϕ_1	Default cost parameter	-1.187
ϕ_{2}	Default cost parameter	1.228
λ	Degree of commitment	0
θ	Probability of exiting autarky	0.250
\overline{b}	Debt limit	0.250
<u>b</u>	Saving limit	0
<u>C</u>	Minimum consumption level	0
r	Risk-free rate	0.010

Sample path without commitment ($\lambda = 0$)

Sample path with commitment ($\lambda = 1$)

Model statistics

	$\lambda = 0$	$\lambda=$ 0.4	$\lambda=$ 0.7	$\lambda=$ 0.9	$\lambda = 1$
Mean					
Def. prob. overall (annual)	0.030	0.026	0.049	0.113	0.000
Def. prob. comm. (annual)	-	0.000	0.001	0.000	0.000
Def. prob. no comm. (annual)	0.030	0.042	0.152	0.754	-
Debt-service-to-output	0.055	0.061	0.075	0.157	0.251
Interest rate spread (annual)	0.033	0.029	0.059	0.156	0.000
Standard deviation					
Output	0.079	0.079	0.079	0.079	0.079
Consumption	0.081	0.082	0.082	0.082	0.079
Surplus-to-output	0.012	0.013	0.014	0.018	0.000
Correlation with output					
Consumption	0.989	0.988	0.985	0.976	1.000
Interest rate spread (annual)	-0.506	-0.052	-0.320	-0.820	-
Debt-issuance-to-output	0.890	0.888	0.819	0.217	-0.998
Surplus-to-output	-0.167	-0.173	-0.161	-0.057	-0.602

Sample path without commitment ($\lambda = 0$) and with high risk aversion ($\alpha = 10$)

Sample path with commitment ($\lambda = 1$) and high risk aversion ($\alpha = 10$)

Model statistics ($\alpha = 10$)

	$\lambda = 0$	$\lambda =$ 0.4	$\lambda=$ 0.7	$\lambda=$ 0.9	$\lambda = 1$
Mean					
Def. prob. overall (annual)	0.030	0.036	0.067	0.141	0.020
Def. prob. comm. (annual)	-	0.007	0.024	0.042	0.020
Def. prob. no comm. (annual)	0.030	0.052	0.144	0.726	-
Debt-service-to-output	0.042	0.048	0.060	0.139	0.243
Interest rate spread (annual)	0.032	0.049	0.092	0.212	0.022
Standard deviation					
Output	0.079	0.079	0.079	0.079	0.079
Consumption	0.081	0.081	0.081	0.080	0.079
Surplus-to-output	0.009	0.010	0.012	0.018	0.010
Correlation with output					
Consumption	0.994	0.992	0.988	0.975	0.993
Interest rate spread (annual)	-0.385	-0.150	-0.234	-0.747	-0.674
Debt-issuance-to-output	0.878	0.861	0.763	0.246	-0.238
Surplus-to-output	-0.163	-0.163	-0.126	0.019	0.063

Summary of main findings

- Under commitment ($\lambda = 1$), no default with standard calibration.
 - With higher risk aversion, default occurs under (loose) commitment.
- Model economy under full commitment
 - Countercyclical default risk
 - Countercyclical debt and deficit
 - Consumption less volatile than income
- Role of degree of commitment λ
 - Hump-shaped effect of λ on average interest rate spread
 - Average debt increases with λ

Welfare gains of commitment

• Welfare-equivalent consumption variation Δ for different degrees of commitment λ

$$\Delta = \frac{\sum_{y} (1 + (1 - \beta)(1 - \gamma)\mathcal{V}_{\lambda}^{o}(0, y))^{1/(1 - \gamma)} \Pi(y)}{\sum_{y} (1 + (1 - \beta)(1 - \gamma)\mathcal{V}_{0}^{o}(0, y))^{1/(1 - \gamma)} \Pi(y)} - 1.$$

• Δ -values (in %) for baseline calibration

	$\lambda = 0.4$	$\lambda = 0.7$	$\lambda=$ 0.9	$\lambda=$ 0.97	$\lambda = 1$
$\alpha = 2$	0.006	0.018	0.114	0.318	0.484
$\alpha = 10$	0.004	0.018	0.129	0.341	0.508

European debt crisis

The role of commitment

- European debt crisis governments (Italy, Portugal, Spain, ...)
 - Government borrowing is countercyclical even at sizable default risk
 - Behaviour at odds with standard no-commitment model
- Bocola et al. (2019) propose recalibration with $\underline{c} > 0$
 - Make government more averse to low income states.
 - <u>c</u> as implicit (fixed) commitment device.
- No-commitment government is forced to behave like government naturally does under commitment.
 - How does model performance with $\lambda = 1$ compare to $\lambda = 0$?

European debt crisis

Recalibration

- c matters for natural debt limit (Adam and Grill, 2017)
 - $\overline{b} \equiv (1+r)(y_1-\underline{c})/r$
 - Set <u>c</u> to match debt service under commitment
- Calibrate model to Spain as in *Bocola et al. (2019)* for $\lambda = 1$
 - $(r, \gamma, \theta, \rho, \sigma) = (0.0045, 2, 0.282, 0.97, 0.01)$ as Bocola et al. (2019)
 - $(\beta, \underline{c}, \phi_1, \phi_2)$ chosen to match targets from *Bocola et al. (2019)*

European debt crisis

Model statistics

	Data	Bocola et al. (2019)	$\lambda = 1$
Average interest rate spread	0.32	0.09	0.19
Average debt-service-to-output	8.43	8.52	8.52
Interest rate spread volatility	0.88	0.83	0.88
Debt service cyclicality	-0.87	-0.29	-0.75

Outline

1. Introduction

2. Model

3. Quantitative Analysis

4. Conclusion

Conclusion

• Role of commitment for quantitative models of sovereign default?

- Under commitment
 - Default risk / spread is countercyclical
 - Debt and deficit are countercyclical
 - Consumption is less volatile than income
- Under loose commitment, new trade-offs arise.
- Welfare gains of commitment mostly due to front-loading motive.
- Predictions under commitment provide a better fit for European debt crisis countries
 - Alternative to no-commitment model version
 - Different welfare and policy implications!

Ramsey problem

Sequential formulation

$$\max_{\{b_l,c_l,d_l,h_l,q_l\}_{t=0}^{\infty}} \mathbb{E}_0\left[\sum_{t=0}^{\infty} \beta^t u(c_t)\right]$$

subject to

$$c_t = y_t - \underline{c} - h_t \phi(y_t) + (1 - h_t) \left(q_t b_t - b_{t-1} \right), \qquad (1)$$

$$h_t = (d_t\xi_t + 1 - \xi_t)h_{t-1} + d_t(1 - h_{t-1}), \qquad (2$$

$$q_t = \frac{1 - \mathbb{E}_t [d_{t+1}]}{1 + r},$$
(3)

$$b_t \in \mathbb{B}, c_t \geq \underline{c}, d_t \in \{0,1\}$$
 (4)

$$0 = b_t h_t, \ 0 = d_t (1 - \xi_t) h_{t-1}, \ 0 = q_t h_t, \tag{5}$$

given initial values $b_{-1} \in \mathbb{B}$ and $h_{-1} \in \{0, 1\}$.

Policy trade-offs

Debt

• The Euler equation for debt is

$$\underbrace{\lambda \mathbb{E}_{y'|y} \left[(1 - d_{y'}) \left(u_c(c) - \tilde{\beta} u_c(c') \right) \right]}_{\text{consumption smoothing (commitment part)}} + \underbrace{(1 - \lambda) \mathbb{E}_{y'|y} \left[(1 - d') \left(u_c(c) - \tilde{\beta} u_c(c') \right) \right]}_{\text{consumption smoothing (no-commitment part)}} = \underbrace{(1 - \lambda) u_c(c) \frac{\partial \mathbb{E}_{y'|y} \left[\mathcal{D}(b', y') \right]}{\partial b'} b'}_{\text{time inconsistency}} \underbrace{-\mu_{\underline{b}} + \mu_{\overline{b}}}_{\text{debt/savings constraints}}$$

where $\tilde{\beta} \equiv \beta (1 + r)$.

Policy trade-offs

Default

• Optimal default under discretion satisfies

$$\mathcal{D}(b',y') = \left\{egin{array}{ccc} 1, & ext{if} & \mathcal{V}^d(y') - \mathcal{V}'(b',y') > 0, \ 0, & ext{if} & \mathcal{V}^d(y') - \mathcal{V}'(b',y') \leq 0. \end{array}
ight.$$

• Optimal default under commitment satisfies

$$\underbrace{u_{c}(c)b'}_{\text{marginal cost}} = \underbrace{\tilde{\beta}\left[\mathcal{V}^{d}(\hat{y}) - \mathcal{V}^{r}(b', \hat{y})\right]}_{\text{marginal benefit}} \underbrace{-\mu_{\underline{y}} + \mu_{\overline{y}}}_{\text{inequality constraints}}$$

where

$$d_{y'} = \left\{egin{array}{ccc} 1, & ext{if} & y' < \hat{y}, \ 0, & ext{if} & y' \geq \hat{y}, \end{array}
ight.$$

for all $y' \in \mathbb{Y}$.