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Introduction

We let two independent reinforcement learning agents play repeatedly
a discretized version of the Crawford and Sobel (1982) (CS) game

We show agents converge to behaviour close to the ex-ante optimal or
second best equilibrium of the game

Results are robust to changes in the reinforcement learning
hyperparameters and to different specifications of the game

Motivation: (computational) learning-approach to equilibrium selection
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Relevant Literature

Other computational work:

- Evolutionary perspective on language (Skyrms, 2010);

- Communication games with aligned AT agents (Foerster et al., 2016;
Lazaridou et al., 2016; Havrylov and Titov, 2017);

- Communication with partially aligned AI agents (Noukhovitch et al., 2021)

Equilibrium Selection in Cheap Talk games:
- Reinforcement learning to model bounded rationality (Erev and Roth, 1998);

- Equilibrium selection in games of information transmission (Chen et al.
(2008), Blume et al. (1993), Gordon et al. (2022))
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Discretized Cheap Talk Game

Two agents, a sender (S) and a receiver (R)

Set of states, O, is formed by n linearly spaced points in [0, 1]

Set of messages, M, has n elements

Set of actions, A, is formed by 2n — 1 linearly spaced points in [0, 1]
Distribution of states, p, is known and has full support over ©

Utilities are ug(f,a) = —(a — 6 — b)? and ug(d,a) = —(a — )% b>0

4/19



Discretized Cheap Talk Game (contd)
Timing:
A state 0 € O is drawn accordig to p
The sender observes 6 and sends a message m € M to the receiver
The receiver observes message m and takes an action a € A

Agents get their utilities ug(6,a), ur(0,a)

Equilibria:

Frug (2016): If utilities are concave and the sender is upwardly biased
the ex-ante receiver-optimal equilibrium is monotone partitional

In uniform-quadratic case, there is a single Pareto optimal equilibrium
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Simulations: Q-Learning

In each period t =1,...,T"
1) a state for S is independently drawn from © according to p
2) S chooses a message in M which represents the state for R

3) R takes an action from A

The choice (- | ) of an agent at period ¢ in state s is determined by

th(S,a)/Tt
m(a | s) = Za'eA 0Qu(s,a") /7t
Qer1(s,a) = Qu(s,a) + a[ri(s, a) — Qi(s, a)]
T = e—/\(t—l)

where: 7(s,a) is the payoff in period ¢, « is the learning rate, A is the
temperature decay rate and Qo(s, a) arbitrarily initialized.
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Figure: Softmax on Q(ss,-)/T with 7 = 1. The probability mass is almost

uniform over A.
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[ustration (contd)
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Figure: Softmax on Q(ss,-)/7 with 7 = 0.05. The probability mass is very

concentrated on the most rewarding action.
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Analysis

S

R
S, and wiy

We analyze behavior at convergence: 7

- a simulation converges if policies exhibit relative deviations in Ls o
norm smaller than 0.1% for 10* consecutive periods;

- all simulations converged
We run 1000 simulations for each bias level b € {0,0.005,...,0.495,0.5}

We compare average outcomes against the equilibria for:

- ex-ante expected utilities;

- informativeness of the sender’s strategy.

We also look how close to equilibrium the agents play in strategy space
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Metrics

Ex-ante expected utility

Ex-ante expected utility of the agents at convergence is
Us=—> p0) > 75m|6)> 7 (a| m)(a—6—1b)?
0 m -

Ur = _ZP(H>Z7T§O(m ‘ G)Zﬂ'i(a ‘ m)(a _ 9)2
6 m a
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Metrics (contd)

Informativness of the sender’s policy

Normalized mutual information between the distribution of messages,
S o (m | 0)p(#), and the distribution of the states, p(f)

%:;wfo(m | 6)p(8) log (Ze :%E:;L || g))p(g)> |
2 pe o (5)

I(7%) =

When 73 is fully informative I(7%) = 1.

When 75 is completely uninformative I(7%) = 0.
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Baseline Setting

Game:

© =1{0,0.2,04,0.6,0.8,1} and A={0,0.1,0.2,...,0.8,0.9,1}
uS(Qaa) = _(a_e_b)zv UR(970') = _(G_H)Q

p(@)=1/6 forallfec®

Reinforcement learning:

a=0land A=5x10"°

Q5 (6, m) ~ Uniform (—%, 0) and Q& (m,a) ~ Uniform (—6—70 —b%,0)
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Simulation outcomes

ex-ante expected reward (sender) ex-ante expected reward (receiver)
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Figure: The distribution of values of 1000 simulations is shown in shades of blue.
Grey shaded areas indicate where full information is optimal and when babbling is
the unique equilibrium.
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Simulation outcomes (contd)

modal normalised mutual information
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Figure: Normalised mutual information of the sender’s modal policy across
simulations converged to an equilibrium (maximum mass on suboptimal actions
across states < 0.01 for both agents). The normalised mutual information of
monotone partitional equilibria that exist for a given bias is shown in grey.
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Partitional equilibria

modal policies at convergence
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Figure: Heathmap of the modal policies of sender (top) and receiver (top) for
different levels of bias over 1000 independent simulations.

15/ 19



Robustness

We replicate the analysis with different

number of states of the world: n € {3,9}

utilities: absolute loss, fourth power loss

distribution of states: (linearly) increasing, (linearly) decreasing

learning hyperparameters: a € {0.025,0.050.1,0.20.4},
A €{2,1,0.5,0.25,0.125} - 1075
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Robustness: number of states
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Robustness: utilities

ui(8,a) = —(-)!

u;i(0,a) = —|
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Robustness: distribution of states

p(Ok) = 2k/(n(n + 1))

2(n — k+1)/(n(n +1))

P(0x)
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