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Introduction

We let two independent reinforcement learning agents play repeatedly
a discretized version of the Crawford and Sobel (1982) (CS) game

We show agents converge to behaviour close to the ex-ante optimal or
second best equilibrium of the game

Results are robust to changes in the reinforcement learning
hyperparameters and to different specifications of the game

Motivation: (computational) learning-approach to equilibrium selection
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Relevant Literature

Other computational work:

- Evolutionary perspective on language (Skyrms, 2010);

- Communication games with aligned AI agents (Foerster et al., 2016;
Lazaridou et al., 2016; Havrylov and Titov, 2017);

- Communication with partially aligned AI agents (Noukhovitch et al., 2021)

Equilibrium Selection in Cheap Talk games:

- Reinforcement learning to model bounded rationality (Erev and Roth, 1998);

- Equilibrium selection in games of information transmission (Chen et al.
(2008), Blume et al. (1993), Gordon et al. (2022))
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Discretized Cheap Talk Game

Two agents, a sender (S) and a receiver (R)

Set of states, Θ, is formed by n linearly spaced points in [0, 1]

Set of messages, M , has n elements

Set of actions, A, is formed by 2n− 1 linearly spaced points in [0, 1]

Distribution of states, p, is known and has full support over Θ

Utilities are uS(θ, a) = −(a− θ − b)2 and uR(θ, a) = −(a− θ)2; b ≥ 0
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Discretized Cheap Talk Game (contd)

Timing:

A state θ ∈ Θ is drawn accordig to p

The sender observes θ and sends a message m ∈M to the receiver

The receiver observes message m and takes an action a ∈ A

Agents get their utilities uS(θ, a), uR(θ, a)

Equilibria:

Frug (2016): If utilities are concave and the sender is upwardly biased
the ex-ante receiver-optimal equilibrium is monotone partitional

In uniform-quadratic case, there is a single Pareto optimal equilibrium
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Simulations: Q-Learning

In each period t = 1, ..., T :

1) a state for S is independently drawn from Θ according to p

2) S chooses a message in M which represents the state for R

3) R takes an action from A

The choice πt(· | s) of an agent at period t in state s is determined by

πt(a | s) =
eQt(s,a)/τt∑

a′∈A e
Qt(s,a′)/τt

Qt+1(s, a) = Qt(s, a) + α [rt(s, a)−Qt(s, a)]

τt = e−λ(t−1)

where: rt(s, a) is the payoff in period t, α is the learning rate, λ is the
temperature decay rate and Q0(s, a) arbitrarily initialized.
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Illustration
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Figure: Softmax on Q(s3, · )/τ with τ = 1. The probability mass is almost
uniform over A.

7 / 19



Illustration (contd)
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Figure: Softmax on Q(s3, · )/τ with τ = 0.05. The probability mass is very
concentrated on the most rewarding action.
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Analysis

We analyze behavior at convergence: πS∞ and πR∞

- a simulation converges if policies exhibit relative deviations in L2,2

norm smaller than 0.1% for 104 consecutive periods;

- all simulations converged

We run 1000 simulations for each bias level b ∈ {0, 0.005, . . . , 0.495, 0.5}

We compare average outcomes against the equilibria for:

- ex-ante expected utilities;

- informativeness of the sender’s strategy.

We also look how close to equilibrium the agents play in strategy space
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Metrics

Ex-ante expected utility

Ex-ante expected utility of the agents at convergence is

US = −
∑
θ

p(θ)
∑
m

πS∞(m | θ)
∑
a

πR∞(a | m)(a− θ − b)2

UR = −
∑
θ

p(θ)
∑
m

πS∞(m | θ)
∑
a

πR∞(a | m)(a− θ)2
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Metrics (contd)

Informativness of the sender’s policy

Normalized mutual information between the distribution of messages,∑
θ π

S
∞(m | θ)p(θ), and the distribution of the states, p(θ)

I(πS) =

∑
θ

∑
m

πS∞(m | θ)p(θ) log

(
πS∞(m | θ)∑

θ π
S
∞(m | θ)p(θ)

)
∑
θ

p(θ) log

(
1

p(θ)

) .

When πS∞ is fully informative I(πS) = 1.

When πS∞ is completely uninformative I(πS) = 0.
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Baseline Setting

Game:

Θ = {0, 0.2, 0.4, 0.6, 0.8, 1} and A = {0, 0.1, 0.2, . . . , 0.8, 0.9, 1}

uS(θ, a) = −(a− θ − b)2, uR(θ, a) = −(a− θ)2

p(θ) = 1/6 for all θ ∈ Θ

Reinforcement learning:

α = 0.1 and λ = 5× 10−5

QS0 (θ,m) ∼ Uniform
(
− 7

60 , 0
)

and QR0 (m, a) ∼ Uniform
(
− 7

60 − b2, 0
)
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Simulation outcomes

Figure: The distribution of values of 1000 simulations is shown in shades of blue.
Grey shaded areas indicate where full information is optimal and when babbling is
the unique equilibrium.
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Simulation outcomes (contd)

Figure: Normalised mutual information of the sender’s modal policy across
simulations converged to an equilibrium (maximum mass on suboptimal actions
across states < 0.01 for both agents). The normalised mutual information of
monotone partitional equilibria that exist for a given bias is shown in grey.
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Partitional equilibria

Figure: Heathmap of the modal policies of sender (top) and receiver (top) for
different levels of bias over 1000 independent simulations.
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Robustness

We replicate the analysis with different

- number of states of the world: n ∈ {3, 9}

- utilities: absolute loss, fourth power loss

- distribution of states: (linearly) increasing, (linearly) decreasing

- learning hyperparameters: α ∈ {0.025, 0.050.1, 0.20.4},
λ ∈ {2, 1, 0.5, 0.25, 0.125} · 10−5
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Robustness: number of states
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Robustness: utilities
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Robustness: distribution of states
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