Cheap Talking Algorithms

Daniele Condorelli and Massimiliano Furlan

University of Warwick

June 12, 2024

Introduction

We let two independent reinforcement learning agents play repeatedly a discretized version of the Crawford and Sobel (1982) (CS) game

We show agents converge to behaviour close to the ex-ante optimal or second best equilibrium of the game

Results are robust to changes in the reinforcement learning hyperparameters and to different specifications of the game

Motivation: (computational) learning-approach to equilibrium selection

Relevant Literature

Other computational work:

- Evolutionary perspective on language (Skyrms, 2010);
- Communication games with aligned AI agents (Foerster et al., 2016; Lazaridou et al., 2016; Havrylov and Titov, 2017);
- Communication with partially aligned AI agents (Noukhovitch et al., 2021)

Equilibrium Selection in Cheap Talk games:

- Reinforcement learning to model bounded rationality (Erev and Roth, 1998);
- Equilibrium selection in games of information transmission (Chen et al. (2008), Blume et al. (1993), Gordon et al. (2022))

Discretized Cheap Talk Game

Two agents, a sender (S) and a receiver (R)

Set of states, Θ , is formed by *n* linearly spaced points in [0, 1]

Set of messages, M, has n elements

Set of actions, A, is formed by 2n - 1 linearly spaced points in [0, 1]

Distribution of states, p, is known and has full support over Θ

Utilities are $u_S(\theta, a) = -(a - \theta - b)^2$ and $u_R(\theta, a) = -(a - \theta)^2$; $b \ge 0$

Discretized Cheap Talk Game (contd)

Timing:

A state $\theta \in \Theta$ is drawn according to p

The sender observes θ and sends a message $m \in M$ to the receiver

The receiver observes message m and takes an action $a \in A$

Agents get their utilities $u_S(\theta, a), u_R(\theta, a)$

Equilibria:

Frug (2016): If utilities are concave and the sender is upwardly biased the ex-ante receiver-optimal equilibrium is monotone partitional

In uniform-quadratic case, there is a single Pareto optimal equilibrium

Simulations: Q-Learning

In each period t = 1, ..., T:

- 1) a state for S is independently drawn from Θ according to p
- 2) S chooses a message in M which represents the state for R
- 3) R takes an action from A

The choice $\pi_t(\cdot \mid s)$ of an agent at period t in state s is determined by

$$\pi_t(a \mid s) = \frac{e^{Q_t(s,a)/\tau_t}}{\sum_{a' \in A} e^{Q_t(s,a')/\tau_t}}$$
$$Q_{t+1}(s,a) = Q_t(s,a) + \alpha \left[r_t(s,a) - Q_t(s,a) \right]$$
$$\tau_t = e^{-\lambda(t-1)}$$

where: $r_t(s, a)$ is the payoff in period t, α is the learning rate, λ is the temperature decay rate and $Q_0(s, a)$ arbitrarily initialized.

Illustration

Q(s, a)

	a_1	a_2	a_3	a_4	a_5	_	
s_1	0.7	0.2	0.4	0.9	0.1		1 [
s_2	0.2	0.4	0.1	0.7	0.6		0.8
s_3	0.3	0.6	0.8	0.5	0.7	$(\cdot s_3)$	0.6 0.4
s_4	0.9	0.3	0.6	0.2	0.8	μ(.	0.2
s_5	0.5	0.1	0.7	0.4	0.3		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
s_6	0.8	0.5	0.2	0.4	0.9]	

Figure: Softmax on $Q(s_3, \cdot)/\tau$ with $\tau = 1$. The probability mass is almost uniform over A.

Illustration (contd)

Q(s, a)

	a_1	a_2	a_3	a_4	a_5	_	
s_1	0.7	0.2	0.4	0.9	0.1		1 [
s_2	0.2	0.4	0.1	0.7	0.6	$s_3)$	0.8
s_3	0.3	0.6	0.8	0.5	0.7	$ \longrightarrow -$	0.6 0.4
s_4	0.9	0.3	0.6	0.2	0.8	$\pi(\cdot$	0.2 -
s_5	0.5	0.1	0.7	0.4	0.3		$0 \begin{array}{c} & & \\ & a_1 \\ & a_2 \\ & a_3 \\ & a_4 \\ & a_5 \end{array}$
s_6	0.8	0.5	0.2	0.4	0.9]	

Figure: Softmax on $Q(s_3, \cdot)/\tau$ with $\tau = 0.05$. The probability mass is very concentrated on the most rewarding action.

Analysis

We analyze behavior at convergence: π_{∞}^{S} and π_{∞}^{R}

- a simulation converges if policies exhibit relative deviations in $L_{2,2}$ norm smaller than 0.1% for 10⁴ consecutive periods;
- all simulations converged

We run 1000 simulations for each bias level $b \in \{0, 0.005, ..., 0.495, 0.5\}$

We compare average outcomes against the equilibria for:

- ex-ante expected utilities;
- informativeness of the sender's strategy.

We also look how close to equilibrium the agents play in strategy space

Metrics

Ex-ante expected utility

Ex-ante expected utility of the agents at convergence is

$$U_{S} = -\sum_{\theta} p(\theta) \sum_{m} \pi_{\infty}^{S}(m \mid \theta) \sum_{a} \pi_{\infty}^{R}(a \mid m)(a - \theta - b)^{2}$$
$$U_{R} = -\sum_{\theta} p(\theta) \sum_{m} \pi_{\infty}^{S}(m \mid \theta) \sum_{a} \pi_{\infty}^{R}(a \mid m)(a - \theta)^{2}$$

Metrics (contd)

Informativness of the sender's policy

Normalized mutual information between the distribution of messages, $\sum_{\theta} \pi_{\infty}^{S}(m \mid \theta) p(\theta)$, and the distribution of the states, $p(\theta)$

$$I(\pi^S) = \frac{\sum_{\theta} \sum_{m} \pi_{\infty}^S(m \mid \theta) p(\theta) \log\left(\frac{\pi_{\infty}^S(m \mid \theta)}{\sum_{\theta} \pi_{\infty}^S(m \mid \theta) p(\theta)}\right)}{\sum_{\theta} p(\theta) \log\left(\frac{1}{p(\theta)}\right)}.$$

When π_{∞}^{S} is fully informative $I(\pi^{S}) = 1$. When π_{∞}^{S} is completely uninformative $I(\pi^{S}) = 0$.

Baseline Setting

Game:

 $\Theta = \{0, 0.2, 0.4, 0.6, 0.8, 1\} \text{ and } A = \{0, 0.1, 0.2, \dots, 0.8, 0.9, 1\}$ $u_S(\theta, a) = -(a - \theta - b)^2, \quad u_R(\theta, a) = -(a - \theta)^2$ $p(\theta) = 1/6 \text{ for all } \theta \in \Theta$

Reinforcement learning:

 $\alpha = 0.1$ and $\lambda = 5 \times 10^{-5}$

 $Q_0^S(\theta,m) \sim \text{Uniform}\left(-\frac{7}{60},0
ight) \quad \text{and} \quad Q_0^R(m,a) \sim \text{Uniform}\left(-\frac{7}{60}-b^2,0
ight)$

Simulation outcomes

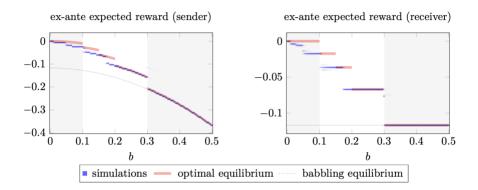


Figure: The distribution of values of 1000 simulations is shown in shades of blue. Grey shaded areas indicate where full information is optimal and when babbling is the unique equilibrium.

Simulation outcomes (contd)

modal normalised mutual information

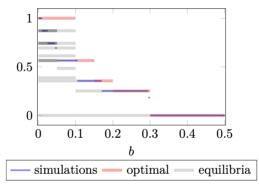


Figure: Normalised mutual information of the sender's modal policy across simulations converged to an equilibrium (maximum mass on suboptimal actions across states < 0.01 for both agents). The normalised mutual information of monotone partitional equilibria that exist for a given bias is shown in grey.

Partitional equilibria

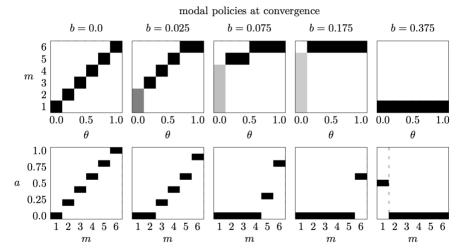


Figure: Heathmap of the modal policies of sender (top) and receiver (top) for different levels of bias over 1000 independent simulations.

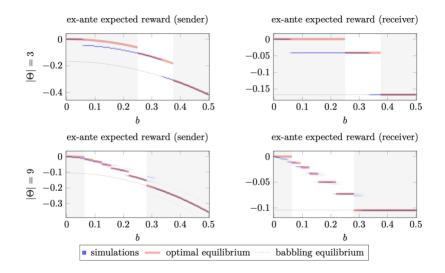
Robustness

We replicate the analysis with different

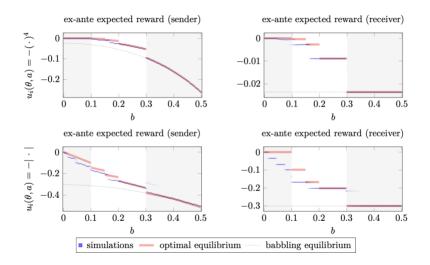
- number of states of the world: $n \in \{3, 9\}$
- utilities: absolute loss, fourth power loss
- distribution of states: (linearly) increasing, (linearly) decreasing
- learning hyperparameters: $\alpha \in \{0.025, 0.050.1, 0.20.4\},\$

 $\lambda \in \{2, 1, 0.5, 0.25, 0.125\} \cdot 10^{-5}$

Robustness: number of states



Robustness: utilities



Robustness: distribution of states

