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Objective

We are interested in studying the correct speci�cation of the following
model for an observable, M-variate time series process yt :

yt jξt , yt�1, ξt�1 . . . = A(ξt )yt�1 + εt ,

εt jξt , yt�1, ξt�1 . . . � N [ν(ξt ),Ω(ξt )],

ξt jyt�1, ξt�1 . . . � MC [P(yt�1)],

where P(yt�1) is the transition matrix of the latent Markov chain
(MC) process with K states ξt .

This model nests a broad class of models of interest in empirical work:

1 yt jξt , yt�1, ξt�1 . . . � N(ν,Ω)
�Multivariate Hermite polynomials and information matrix tests�,
forthcoming in Econometrics and Statistics
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Objective

2 yt jξt , yt�1, ξt�1 . . . � N(ν+Ayt�1,Ω)
�Tests for random coe¢ cient variation in vector autoregressive
models�, in J.J. Dolado, L. Gambetti and C. Matthes (eds.) Essays in
honour of Fabio Canova, Advances in Econometrics 44B, 1-35, 2022.

3 yt jξt , yt�1, ξt�1 . . . � N [ν(ξt ),Ω(ξt )],
ξt jyt�1, ξt�1 . . . � MN(π)
�IM tests for Gaussian mixtures�, CEMFI WP 2401.

4 ξt jyt�1, ξt�1 . . . � MN [π(yt�1)]
�IM tests for multinomial logit models�, CEMFI WP 2406.

5 yt jξt , yt�1, ξt�1 . . . � N [ν(ξt ) +A(ξt )yt�1,Ω(ξt )],
ξt jyt�1, ξt�1 . . . � MN [π(yt�1)]
�IM tests for switching regression models�.

6 ξt jyt�1, ξt�1 . . . � MC [P(yt�1)]
�IM tests for Markov chains�.
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The information matrix test

Consider a parametric model for y characterised by its (unconditional)
probability distribution/density function f (y;φ), with dim(φ) < ∞.
The information matrix (IM) test directly assesses the IM equality,
which states that the sum of the Hessian matrix and the outer
product of the score (OPS) vector should be zero in expected value
when the estimated model is correctly speci�ed.
As Newey (1985) and Tauchen (1985) showed, the IM test can be
regarded as a moment test based on the in�uence functions:

vech[hi (φ) + si (φ)s0i (φ)].

In practice, we evaluate these in�uence functions at the maximum
likelihood estimator (MLE), φ̂N , so we need the asymptotic
covariance matrix of

p
N
N ∑N

i=1 vech[hi (φ̂N ) + si (φ̂N )s
0
i (φ̂N )].
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The information matrix test

Chesher (1983) and Lancaster (1984) realised that one can use the
generalised information matrix equality to obtain the expected value
of the Jacobian of the in�uence functions with respect to φ from the
asymptotic covariance matrix between them and the score evaluated
at the true values of the parameters, φ0.

Thus, we simply need the residual covariance matrix from their least
squares projection onto the linear span of si (φ0):

R(φ0)�U (φ0)I�1(φ0)U 0(φ0),�
R(φ0) U (φ0)
U 0(φ0) I(φ0)

�
=

�
vech[hi (φ0) + si (φ0)s

0
i (φ0)]

∑N
i=1 si (φ0)

�
.
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The information matrix test

Therefore, the infeasible IM test statistic is the quadratic form

N
�
1
N ∑N

i=1 vech
0[hi (φ̂N ) + si (φ̂N )s

0
i (φ̂N )]

�
�[R(φ0)�U (φ0)I�1(φ0)U (φ0)]

�

�
�
1
N ∑N

i=1 vech[hi (φ̂N ) + si (φ̂N )s
0
i (φ̂N )]

�
.

A generalised inverse is often necessary because some of the in�uence
functions underlying the IM test may be an exact linear combination
of si (φ0) or appear multiple times.

As a result, the number of degrees of freedom of the asymptotic χ2

distribution under the null of correct speci�cation is
rank [R(φ0)�U (φ0)I�1(φ0)U (φ0)], which requires careful
derivation.
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The information matrix test

Chesher (1983) and Lancaster (1984) suggested a feasible version as
N times the R2 in the regression of a vector of N ones onto si (φ̂N )
and vech[hi (φ̂N ) + si (φ̂N )s

0
i (φ̂N )] using an OLS routine robust to

multicollinearity.

The inclusion of si (φ̂N ) as additional regressors makes the statistic
robust to the fact that the in�uence functions are evaluated at φ̂N .

Nevertheless, this OPS regression has very poor �nite sample
properties, as stressed by Horowitz (1994) among many others.

We apply the parametric bootstrap to an alternative feasible version
that evaluates the theoretical expressions for the asymptotic
covariance matrix at the MLE φ̂N .
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The case of incomplete data

We follow Dempster, Laird and Rubin (1977) in using �incomplete
data� to denote situations in which the observed data y is the output
of a mapping g(.) from the complete sample space Z to the observed
sample space Y, so that the complete data ζ is only known to lie in
R, the subset of Z implicitly de�ned by the equation y = g(ζ).

Let f (ζ;φ) denote the joint density of ζ given the parameters φ.

Basic probability theory implies that

f (y;φ) =
Z
R
f (ζ;φ)dζ.

We maintain the following regularity condition:

Assumption: The boundary of R does not depend on φ.
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The case of incomplete data

We can then prove the following result:

Proposition: The in�uence functions of the IM test of the model for
observed variables are

E
�
vech

�
∂2 ln f (ζ;φ)

∂φ∂φ0
+

∂ ln f (ζ;φ)
∂φ

∂ ln f (ζ;φ)
∂φ0

����� y� ,
where the expectation is taken with respect to the conditional
distribution of ζ given y over R.

Thus, we simply need to compute the expected value conditional on
the observed variables of the in�uence functions underlying the IM
test of the complete log-likelihood.
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The case of incomplete data

This relationship is very convenient in those set ups in which the
complete log-likelihood function adopts a particularly simple form,
such as in the limited dependent variable models considered by
Gouriéroux, Monfort, Renault and Trognon (1987), who proved a
special case of the previous result when f (ζ;φ) belongs to what they
called a �bilinear� exponential family, and y = g(ζ).

These include univariate probit and Tobit models among others, as
well as their simultaneous equation versions studied by Smith (1987).

Gaussian mixtures and their various generalisations mentioned at the
beginning of the talk provide another case in point.
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The case of incomplete data

To compute the IM test, we also need expressions for the di¤erent
elements that appear in the asymptotic covariance matrices.

Let n(ζ;φ) denote a vector in�uence functions of the complete data
ζ such that

Eζ [n(ζ;φ)] = 0

when both the expectation and the in�uence function are evaluated at
the same value of the model parameters, φ.

In addition, let
m(y;φ) = Eζjy[n(ζ;φ)].
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The case of incomplete data

We can prove the following result, which generalises Lemma 4 in
Gouriéroux et al. (1987), who focused on the case in which the latent
in�uence functions n(ζ;φ) coincide with ∂ ln f (ζ;φ)/∂φ when
f (ζ;φ) belongs to an exponential family:

Proposition:

Vy[m(y;φ)] = Vζ [n(ζ;φ)]� EyfVζjy[n(ζ;φ)]g

and

Ey

�
m(y;φ)

∂ ln f (y;φ)
∂φ0

�
= �Ey

�
∂m(y;φ)

∂φ0

�
= E

ζ

�
n(ζ;φ)

∂ ln f (ζ;φ)
∂φ

�
� Ey

�
covζjy

�
n(ζ;φ),

∂ ln f (ζ;φ)
∂φ

��
.
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The case of incomplete data

Thus, we can compute the di¤erent elements as:

I(φ)=Vζ

�
∂ ln f (ζ;φ)

∂φ

�
� Ey

�
Vζjy

�
∂ ln f (ζ;φ)

∂φ

��
,

U (φ)=covζ

�
vech

�
∂2 ln f (ζ;φ)

∂φ∂φ0
+

∂ ln f (ζ;φ)
∂φ

∂ ln f (ζ;φ)
∂φ0

�
,

∂ ln f (ζ;φ)
∂φ

�
�Ey

�
covζjy

�
vech

�
∂2 ln f (ζ;φ)

∂φ∂φ0
+

∂ ln f (ζ;φ)
∂φ

∂ ln f (ζ;φ)
∂φ0

�
,

∂ ln f (ζ;φ)
∂φ

��
,

R(φ)=Vζ

�
vech

�
∂2 ln f (ζ;φ)

∂φ∂φ0
+

∂ ln f (ζ;φ)
∂φ

∂ ln f (ζ;φ)
∂φ0

��
�Ey

�
Vζjy

�
vech

�
∂2 ln f (ζ;φ)

∂φ∂φ0
+

∂ ln f (ζ;φ)
∂φ

∂ ln f (ζ;φ)
∂φ0

���
.

Once again, the advantage of this procedure arises when the complete
model is much simpler to work with than the observed one.
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Multivariate Gaussian mixtures

If εjξ � N(0, IM ), νk is an M � 1 vector and Γk an M �M positive
de�nite matrix with γk = vech(Γk ), then y = ∑K

k=1 ξk (νk + Γ1/2
k ε)

is an M-variate, K -component mixture of normals.
The natural model parameters are the mean vectors and covariance
matrices of the components ν = (ν1, . . . , νk , . . . , νK )0 and
γ = (γ1, . . . ,γk , . . . ,γK )

0, respectively, and their probabilities
λ = (λ1, . . . ,λk , . . . ,λK ), which are subject to the unit simplex
restrictions λk � 0 8k and ∑K

k=1 λk = 1.
Observations belong to the components with posterior probabilities

P(ξk = 1jy ; ν,γ,λ) =
λk
γk

φ[εk (ν,γ)]

∑K
l=1

λl
γl

φ[εl (ν,γ)]
= wk (ν,γ,λ).

Boldea and Magnus (2009) obtained analytical expressions for the
score vector and Hessian matrix, and studied the OPS version of the
IM test, but their number of degrees of freedom is incorrect in the
multivariate case.
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Multivariate Gaussian mixtures

Proposition:

1) The IM matrix test of a multivariate Gaussian mixture numerically
coincides with a moment test based on the in�uence functions:

wk (φ)
�
H3[ε�(θk )]
H4[ε�(θk )]

�
, k = 1, . . . ,K

evaluated at the MLE, where

Hj (ε�) =

26664
Hj ,0,��� ,0(ε�)
Hj�1,1,��� ,0(ε�)

...
H0,��� ,0,j (ε�)

37775 =
26664

Hj (ε�1)
Hj�1(ε�1)H1(ε

�
2)

...
Hj (ε�M )

37775
is the (M+j�1j ) vector containing the distinct multivariate Hermite
polynomials of order j of a standardised random vector ε�, which can
be expressed as products of the corresponding univariate Hermite
polynomials of its elements.
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Multivariate Gaussian mixtures

Proposition (cont):

2) The asymptotic covariance matrix of these in�uence functions
corrected for the sampling uncertainty in estimating the model
parameters under the null is the residual covariance matrix in the
multivariate theoretical regression of them on

wk (φ)

8<:
1

H1[ε�(θk )]
H2[ε�(θk )]

9=; , k = 1, . . . ,K .

3) If the e¤ective number of components is K, then the asymptotic
distribution of the IM test will be a χ2 random variable with degrees
of freedom equal to

KM(M + 1)(M + 2)(M + 7)
24

.
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Simulation evidence

The asymptotic χ2 approximation of the IM test might not be very
reliable in �nite samples.

For that reason, we assess test sizes by simulating 10,000 samples of
length N = 100, N = 400 and N = 1600 for univariate and bivariate
models.

We also consider a parametric bootstrap procedure in which we
simulate B = 99 samples from the mixture model estimated under
the null.

It is also of interest to investigate the power properties of our test.

To do so, we simulate 2500 samples from three types of alternatives:
1 mixtures with the same number of non-Gaussian components,
2 mixtures with a larger number of Gaussian components, and
3 non-mixture distributions.
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Monte Carlo simulations: conclusions

Our Monte Carlo experiments con�rm that using the theoretical
expressions for the covariance matrices of the in�uence functions
involved leads to substantial reductions in the size distortions of our
testing procedures in �nite samples relative to the OPS versions.

In addition, the parametric bootstrap practically eliminates those size
distortions.

We also show that the IM test has power against various
misspeci�cation alternatives.
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Empirical illustration

Gaussian mixtures feature pre-eminently in the empirical literature on
�convergence clubs� in cross-country GDP per capita comparisons.

We revisit the empirical application in Pittau, Zelli and Johnson
(2010), who found that a Gaussian mixture with three components
provides a very good �t for the distributions of per capita income in
the Penn World Tables for 1960, 65, 70, 75, etc. all the way to the
year 2000.

In addition, they found that the within-group variances of both the
rich and poor groups of countries decreased over time, while the
distance between their means increased.

Finally, they found that the sizes of the di¤erent groups �uctuated
somewhat.
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Empirical illustration: parameter estimates

Sample µ1 µ2 µ3 σ1 σ2 σ3 λ1 λ2 λ3
1960 2.74 0.95 0.31 1.14 0.36 0.12 0.29 0.39 0.32
1965 2.84 1.01 0.28 1.05 0.39 0.11 0.27 0.40 0.33
1970 2.74 0.96 0.27 0.96 0.40 0.10 0.31 0.37 0.33
1975 3.08 1.07 0.26 0.65 0.47 0.10 0.24 0.45 0.31
1980 2.87 1.08 0.26 0.68 0.40 0.12 0.28 0.38 0.34
1985 2.86 0.92 0.20 0.69 0.43 0.07 0.27 0.49 0.24
1990 3.12 0.93 0.18 0.56 0.48 0.05 0.24 0.52 0.24
1995 3.02 0.89 0.15 0.49 0.48 0.05 0.25 0.50 0.25
2000 2.93 0.82 0.15 0.59 0.44 0.05 0.28 0.48 0.24

Amengual, Fiorentini and Sentana ()IM tests for Gaussian mixtures 28/08/2024 20 / 23



Convergence clubs in cross-country GDP
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Empirical illustration: IM test

(p-values)
Sample Asym. Boot.
1960 0.68 0.44
1965 0.63 0.37
1970 0.34 0.13
1975 0.47 0.24
1980 0.74 0.49
1985 0.40 0.20
1990 0.55 0.39
1995 0.70 0.56
2000 0.51 0.35
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Extensions to Bartlett identities

It would also interesting to extend the Bartlett identities test
proposed by Chesher, Dhaene, Gouriéroux and Scaillet (1999) to
incomplete data situations.

In the context of univariate �nite Gaussian mixtures, in particular, we
would expect the in�uence functions to coincide with the �fth- and
higher-order Hermite polynomials of the observed variable y
standardised as if it belonged to the k th component of the mixture
weighted by the appropriate posterior probability.
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