The Global Water Cycle and Climate Policies in a General Equilibrium Model

Elmar Hillebrand, Marten-Hillebrand

EEA/ESEM 2024 August 28, Rotterdam

Stylized facts I: emissions and water use

Figure: Fossil fuel emissions and fresh-water withdrawals 1900-2010

Stylized facts II: water stress

Figure: Water stress levels by country

Stylized facts III: water use in energy production

Table: Fuel types and water consumption factors

Motivation

- \triangleright Transition to 'clean' energy essentially implies substitution of fossil fuel by fresh water in energy production
- \triangleright Studies from natural sciences show that carbon cycle is closely intertwined with water cycle and both are disrupted by global economy
- \blacktriangleright Trade-off: increasing water use to fight climate change vs. increasing water pollution from climate change
- ▶ Research questions centered around climate change and climate policy impacts on water cycle, economy and vice versa, requires a climate-economy model with a global water cycle
- ▶ Literature: Golosov et al. (2014), Inglezakis et al. (2016), Archer (2010), Overpeck & Updall (2010), Trenberth et al. (2007) etc.

Model setup

- \triangleright Deterministic dynamic single-world climate-economy model in infite discrete time with two natural resources
- \blacktriangleright Model is highly stylized but based on much-used standard assumptions about preferences and technology
- \blacktriangleright Model features two externalities and is composed of:
	- \blacktriangleright A. Carbon cycle
	- \blacktriangleright B. Water cycle
	- \triangleright C. Economic model

A. Carbon cycle

- ▶ Denote fossil fuel X_t , measured in units of CO_2
- \triangleright We adopt standard three-layer carbon cycle model:
	- Atmospheric carbon M_t^A ,
	- \blacktriangleright Upper oceans M^U_t ,
	- \blacktriangleright Lower oceans M_t^L

 \blacktriangleright Carbon cycle described by linear three-layer system:

$$
M_{t+1}^A = \phi_{11} M_t^A + \phi_{21} M_t^U + \phi_{31} M_t^L + X_t \tag{1a}
$$

$$
M_{t+1}^U = \phi_{12} M_t^A + \phi_{22} M_t^U + \phi_{32} M_t^L \tag{1b}
$$

$$
M_{t+1}^{L} = \phi_{13} M_{t}^{A} + \phi_{23} M_{t}^{U} + \phi_{33} M_{t}^{L}
$$
 (1c)

 \blacktriangleright Temperature dynamics given by

$$
T_{t+1} = T_t + \theta_1 (\Delta_t - \theta_2 T_t - \theta_3 (T_t - T_t^L))
$$
 (2a)

$$
T_{t+1}^L = T_t^L + \theta_4 (T_t - T_t^L). \tag{2b}
$$

Rising global temperature T_t affects consumer utility

B. Water cycle

- \blacktriangleright Debote water use Z_t , water circles across three reservoirs:
	- \blacktriangleright surface and groundwater W_t^F , salt water W_t^O , atmospheric water vapor W_t^A
- \blacktriangleright Water cycle described by linear three dimensional system:

$$
W_{t+1}^F = \omega_{11} W_t^F + \omega_{21} W_t^A + \omega_{31} W_t^O - (1 - \xi_1) Z_t, \qquad (3a)
$$

$$
W_{t+1}^A = \omega_{12} W_t^F + \omega_{22} W_t^A + \omega_{32} W_t^O + \xi_2 Z_t, \tag{3b}
$$

$$
W_{t+1}^{O} = \omega_{13} W_{t}^{F} + \omega_{23} W_{t}^{A} + \omega_{33} W_{t}^{O} + \xi_{3} Z_{t}, \qquad (3c)
$$

- Introduce pollution index P_t which measures decline in fresh water quality due to economic activity and climate change
- \blacktriangleright Water pollution changes over time according to:

$$
P_t = \underbrace{(1 - \delta)P_{t-1}}_{\text{natural water}} + \underbrace{\chi Z_t}_{\text{direct water}} + \underbrace{\psi T_t}_{\text{indirect water pollution}} \tag{4}
$$

$$
P_t = \underbrace{(1 - \delta)P_{t-1}}_{\text{quality regeneration}} + \underbrace{\chi Z_t}_{\text{plution}} + \underbrace{\psi T_t}_{\text{through climate change}}
$$

Rising water pollution P_t affects consumer utility

C. Economic model

- ▶ Consumption:
	- \blacktriangleright Standard infinitely lived representative consumer
	- \blacktriangleright Supplies capital and decides about consumption and capital formation and receives profits from all firms and transfers from the government

$$
U((C_t, T_t, P_t)_{t \ge 0}) = \sum_{t=0}^{\infty} \beta^t \bigg(u(C_t) - v(P_t, T_t) \bigg) \tag{5}
$$

- ▶ Production:
	- \blacktriangleright Final output commodity Y_t produced using capital K_t and two natural resource inputs X_t , Z_t using standard aggregate production technology:

$$
Y_t = F(K_t, X_t, Z_t)
$$
 (6)

 \triangleright Standard fossil fuel resource extraction problem with feasibility constraint:

$$
\sum_{t=0}^{\infty} X_t \le R_0. \tag{7}
$$

9 / 15

Planning problem

- ► Consider a planner choosing an allocation $(C_t, K_t, X_t, Z_t)_{t>0}$ which accounts for both externalities in consumer utility
- \blacktriangleright The planner takes initial capital K_0 , fossil resources R_0 , initial water pollution P_0 , and initial states of the two natural cycles W_0, M_0 as given
- \blacktriangleright Plannning problem (PP) is constrained optimization problem
- \blacktriangleright Adopt standard infinite-dimensional Lagrangian approach to obtain explicit conditions which completely characterize the social optimum which is solution to PP
- ► Beside the 'efficient' solution, we consider two types of constrained policy interventions by social planner:
	- ▶ 'Sub-optimal' solution which corrects only for direct but not indirect climate externality and not water pollution externality
	- ▶ 'Laissez-faire' solution whithout any environmental policy

Optimal water extraction

Proposition Let \hat{v}_t denote the (shadow) price for fresh water and $\hat{p}_{z,t} := \hat{v}_{z,t} - c_z$ denote prices net of extraction costs. Then, (PP) has an interior solution

$$
0 < Z_t^* < W_{t+1}^F \quad \text{for all } t = 0, 1, 2, \dots \tag{8}
$$

if and only if fresh water resource prices satisfy

$$
\hat{p}_{z,t+1} = r_{t+1}\hat{p}_{z,t} \quad \forall t \ge 0.
$$
\n
$$
(9)
$$

In this case, any sequence $(Z_t)_{t\geq 0}$ satisfying [\(8\)](#page-10-0) is a solution.

- (i) If the water cycle (3) is closed $(\sum_{i\in\{1,2,3\}}\xi_i=1)$, the initial price satisfies $\hat{p}_{z,0} = 0 \iff \hat{v}_{z,t} = c_z$.
- (ii) If the water cycle [\(3\)](#page-7-0) is semi-closed $(\sum_{i\in\{1,2,3\}}\xi_i\leq 1)$, the initial price satisfies $\hat{p}_{z,0} > 0 \iff \hat{v}_{z,t} > c_z$.

Social cost of carbon (SCC)

- \blacktriangleright Denote total costs of emitting one additional unit of CO₂ in period t by Λ_t^{MA}
- \blacktriangleright Λ_t^{MA} corresponds to discounted sum of all future marginal climate damages caused by this emission (SCC):

- ► Key difference compared to literature: SCC contains a direct and a novel indirect climate externality component
- $\blacktriangleright \Rightarrow$ Integration of recent findings from natural sciences leads to upward adjustment of SCC

A basic quantitative example

Figure: Evolution under optimal and sub-optimal taxation

13 / 15

Summary and model extensions

- ▶ Summary
	- \blacktriangleright This work introduced a global water cycle into an otherwise standard climate-economy model
	- \blacktriangleright If global hydrological cycle is a closed system, fresh water is abundant and has no scarcity rent
	- \triangleright Considering the water cycle as part of the climate problem increases the social cost of carbon
	- \blacktriangleright A climate tax reduces emissions significantly but comes at cost of temporary reduced output, increase in water consumption and potentially negative effects on water quality levels
	- ▶ Coordination of climate and environmental policies needed
- \blacktriangleright Model extensions:
	- \blacktriangleright Endogenous and directed technological change, akin to the approaches of Acemoglu et al. (2012) and Hassler et al. (2021)
	- \blacktriangleright Explicit formulation of an energy sector as in Golosov et al. (2014)
	- \blacktriangleright Multi-country model with integrated global water cycle alongside environmental constraints (Hillebrand & Hillebrand (2019))

Thank you for your attention! :-)