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Moment inequalities in economics

Conditional and unconditional moment inequalities appear naturally in economic/econometric models.

▶ Measurement issues/incomplete data: interval-censored data

▶ Sample selection: treatment effect models with endogenous selection

▶ Games with multiple equilibria: entry games, network formation games

Two solutions for empirical research:

1. Add more structure to recover moment equalities =⇒ standard estimation procedures.

2. Directly use the moment inequalities to estimate the set of parameters that can generate the observed data.

This paper: we propose a new inference procedure for moment inequalities that combines good statistical

properties and ease of implementation.
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Challenges in the estimation of models featuring moment inequalities

1. Selection and derivation of the moment inequalities

2. Inference for unconditional moment inequalities:

▶ The asymptotic distribution of the test statistic under the null depends on the set of binding moments, which is

unknown.

▶ The commonly used test statistics are non-pivotal =⇒ complicates the derivation of the critical value.

▶ The current methods rely on simulation-based methods (sub-sampling, GMS, bootstrap) or upper bounds on the

test statistic.

▶ Most methods are both conservative and computationally intensive.

other challenges
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Challenges in the estimation of models featuring moment inequalities (II)

3. Inference for conditional moment inequalities:

▶ The asymptotic distribution of the test statistic depends on the set of binding conditional moments for each

x ∈ X

▶ If conditioning variable X is continuous, the identified set is characterized by an infinite number of inequalities.

▶ Conditional moment inequalities are non-parametric objects that are harder to estimate with slower convergence

rates and a usually unknown asymptotic distribution.

4. Implementation: the estimation of the confidence region is done by inverting a test over a grid =⇒ curse

of dimensionality

▶ One needs to repeat the test for each point in a grid of tested points!

5. Subvector inference
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Unconditional moment inequalities
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General Setup

We observe an i.i.d. sample {Wi}ni=1 where Wi ∈ W ⊂ RdW is distributed according to P ∈ P.

We consider an economic model where the parameter of interest is characterized by the following p

unconditional moment inequalities.

E[m(Wi , θ)] ≥ 0p,

where m : RdW ×Θ → Rp is a known measurable function.

The identified set ΘI is defined as follows:

ΘI =
{
θ ∈ Θ | E[m(Wi , θ)] ≥ 0p

}
.

Notation: mθ ≡ E[m(Wi , θ)]
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Inference

In practice, the econometrician doesn’t observe the true moment mθ but an empirical counterpart mθ,n:

mθ,n =
1

n

n∑
i=1

m(Wi , θ)

The objective for the econometrician is to construct a confidence region CRn that satisfies the following two

properties:

Asymptotic validity: ∀θ ∈ ΘI , liminf
n→∞

P(θ ∈ CRn) ≥ 1− α.

Consistency: ∀θ /∈ ΘI , lim
n→∞

P(θ ∈ CRn) = 0.

Additional desirable properties: uniform validity over (P,ΘI (P)) and non-conservativeness
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Canonical estimation procedure

The traditional inference procedure usually relies on a test statistic of the form:

ξn(θ) = min
j=1,...,p

√
n

1
n

∑n
i=1 mj(Wi , θ)√

v̂ar(mj(Wi , θ))

▶ Other test statistics are possible: MMM, QLR, ...

Confidence region: CRn(θ) = {θ ∈ Θ | ξn(θ) ≥ c∗}

with c∗ a critical value chosen to recover asymptotic validity.

Main challenge in deriving c∗: the asymptotic distribution of the test statistic depends on the identity of

the binding moments, which is unknown to the econometrician.
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Computation of the critical value in the literature

There are three strands of methods to compute the critical value:

1. Simulation-based methods that seek to approximate the asymptotic distribution: [Chernozhukov et al.,

2007], [Andrews and Soares, 2010], [Andrews and Barwick, 2012], [Romano et al., 2014], [Chen et al., 2018]

▶ The most established procedure is the generalized moment selection (GMS) in [Andrews and Soares, 2010]:

empirical selection of the binding moments.

▶ critical values must be simulated for each candidate parameter in the grid.

3. Upper bounds on the exact or asymptotic distribution: [Chernozhukov et al., 2018b], [Rosen, 2008]

▶ Simpler implementation but can be conservative.

3. Conditional tests: [Cox and Shi, 2022]
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The smoothed min approach

For z = (z1, z2, ..., zp) ∈ Rp, we consider the following smooth approximation of the minimum between the

elements of z and 0:

gρ(z) =

∑p
j=1 zj exp(−ρzj)

1 +
∑p

j=1 exp(−ρzj)
,

ρ is the smoothing parameter: it controls the level of approximation.

Following [Chernozhukov et al., 2015], we have:

|min(0, z1, z2, . . . , zp)− gρ(z)| ≤
1

ρ
log

(
p − 1

e

)
, forp > 1

The larger ρ, the closer the approximation is to the minimum
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The smoothed min approach: A pivotal test statistic

We define our smooth test statistic as follows:

ξn(θ) =
√
n

gρn (mθ,n)√
∇gρn (mθ,n)TΣn∇gρn (mθ,n)

with Σn a consistent estimator of Σ0 the variance of the moments and ∇gρn the gradient of gρn .

Our confidence region of confidence level 1− α is defined as follows:

CRn(1− α) = {ξn(θ) ≥ zα}

with zα the α-quantile of the standard normal distribution.
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The smoothed min approach: Regularity assumptions

Assumption (Regularity assumption on the moments)

1 ∃C such that ∀θ ∈ Θ, ∀j , E
[
mj(Wi , θ)

2
]
< C

2 ∀θ ∈ Θ, Σθ ≡ E
[
(m(Wi , θ)− E[m(Wi , θ)]) (m(Wi , θ)− E[m(Wi , θ)])

T
]
is positive definite

Regularity conditions that are very common when conducting inference in parametric models

They allow us to write a CLT for the vector of moments with a positive definite asymptotic

variance-covariance matrix.
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The smoothed min approach: Asymptotic expansion

Proposition (Asymptotic expansion of the test statistic)

Assumption 1 holds. Let ρn a divergent sequence of positive number such that ρn = cnα + o(1), 0 < α < 1/2,

then
√
ngρn (mθ,n) =

√
ngρn (mθ)︸ ︷︷ ︸

(1)

+∇gρn (mθ)
√
n(mθ,n −mθ)︸ ︷︷ ︸
(2)

+OP

(
ρn√
n

)
,

Term (1) converges to 0 if θ ∈ ΘI and −∞ otherwise.

Term (2) is asymptotically normal.

The constraint on ρn implies that the amount of smoothing cannot decrease faster than the parametric

convergence rate.
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Let J0(θ) = {j ∈ {1, . . . , p} : mθ,j = 0}.

Proposition (Asymptotic properties of the test statistic)

Assumption 1 holds. Let ρn a divergent sequence of positive numbers such that ρn = cnα + o(1), then the

following holds:

(i) θ ∈ ΘI and J0 = card(J0(θ)) = 0:

Pr(ξn(θ) > zα) −→
n→∞

1.

(ii) θ ∈ ΘI and J0 = card(J0(θ)) > 0:

ξn(θ)
d−→

n→∞
N (0, 1).

(iii) θ /∈ ΘI :

Pr(ξn(θ) > zα) −→
n→∞

0.



Additional remarks

Choice of the smoothing parameter is crucial. We propose a method to calibrate ρn.

=⇒ Trade-off between (i) the ”bias” implied by the difference between the min and its smooth

approximation and (ii) the accuracy of the first-order approximation.

A variant of our test statistic is to standardize all the moments beforehand =⇒ yields better results in our

simulations

We show uniform validity over (P,ΘI (P)) under mild additional restrictions.

calibration uniformity
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Conditional moment inequalities
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General set-up

We observe an i.i.d. sample {Yi ,Xi}ni=1 where Yi ∈ Y ⊂ RdY and Xi ∈ X ⊂ RdX are distributed according to

a probability distribution P ∈ P.

We consider a model where the parameter of interest θ is characterized by the following p conditional

moment inequalities.

E[m(Wi , θ)|Xi ] ≥ 0p a.s.

where m : RdW ×Θ → Rp is a known measurable function and Wi = (Yi ,Xi ).

The identified set ΘI is defined as follows:

ΘI = {θ ∈ Θ | E[m(Wi , θ)|Xi ] ≥ 0p a.s.}

Objective for the econometrician: construct a consistent and asymptotically valid confidence region for

ΘI
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The canonical estimation procedure

Additional Challenges on top of the ones outlined in the unconditional moment inequalities case:

▶ X is continuous =⇒ the identified set is characterized by an infinite number of inequalities.

▶ Conditional moments are non-parametric objects that are harder to estimate and display non-standard

asymptotic properties (eg: no CLT, curse of dimensionality,...).

Preeminent methods: [Andrews and Shi, 2013], [Chernozhukov et al., 2013]

▶ The leading method in [Andrews and Shi, 2013] transforms the conditional moment inequalities into a growing

number of unconditional ones.

▶ They consider a collection N of non-negative functions of Xi , denoted ν(Xi ):

θ ∈ ΘI =⇒ E
[
mj (Wi , θ)ν(Xi )

]
≥ 0, ∀j ∈ {1, . . . , p}, ∀ν ∈ N

▶ Under strong conditions on N (eg: N contains an infinite number of elements), the implication becomes an

equivalence

challenges

Max Lesellier Smoothed inference for moment inequality models August 28, 2024 15 / 26



The canonical estimation procedure

Additional Challenges on top of the ones outlined in the unconditional moment inequalities case:

▶ X is continuous =⇒ the identified set is characterized by an infinite number of inequalities.

▶ Conditional moments are non-parametric objects that are harder to estimate and display non-standard

asymptotic properties (eg: no CLT, curse of dimensionality,...).

Preeminent methods: [Andrews and Shi, 2013], [Chernozhukov et al., 2013]

▶ The leading method in [Andrews and Shi, 2013] transforms the conditional moment inequalities into a growing

number of unconditional ones.

▶ They consider a collection N of non-negative functions of Xi , denoted ν(Xi ):

θ ∈ ΘI =⇒ E
[
mj (Wi , θ)ν(Xi )

]
≥ 0, ∀j ∈ {1, . . . , p}, ∀ν ∈ N

▶ Under strong conditions on N (eg: N contains an infinite number of elements), the implication becomes an

equivalence

challenges

Max Lesellier Smoothed inference for moment inequality models August 28, 2024 15 / 26



The canonical estimation procedure

Additional Challenges on top of the ones outlined in the unconditional moment inequalities case:

▶ X is continuous =⇒ the identified set is characterized by an infinite number of inequalities.

▶ Conditional moments are non-parametric objects that are harder to estimate and display non-standard

asymptotic properties (eg: no CLT, curse of dimensionality,...).

Preeminent methods: [Andrews and Shi, 2013], [Chernozhukov et al., 2013]

▶ The leading method in [Andrews and Shi, 2013] transforms the conditional moment inequalities into a growing

number of unconditional ones.

▶ They consider a collection N of non-negative functions of Xi , denoted ν(Xi ):

θ ∈ ΘI =⇒ E
[
mj (Wi , θ)ν(Xi )

]
≥ 0, ∀j ∈ {1, . . . , p}, ∀ν ∈ N

▶ Under strong conditions on N (eg: N contains an infinite number of elements), the implication becomes an

equivalence

challenges

Max Lesellier Smoothed inference for moment inequality models August 28, 2024 15 / 26



The canonical estimation procedure

Additional Challenges on top of the ones outlined in the unconditional moment inequalities case:

▶ X is continuous =⇒ the identified set is characterized by an infinite number of inequalities.

▶ Conditional moments are non-parametric objects that are harder to estimate and display non-standard

asymptotic properties (eg: no CLT, curse of dimensionality,...).

Preeminent methods: [Andrews and Shi, 2013], [Chernozhukov et al., 2013]

▶ The leading method in [Andrews and Shi, 2013] transforms the conditional moment inequalities into a growing

number of unconditional ones.

▶ They consider a collection N of non-negative functions of Xi , denoted ν(Xi ):

θ ∈ ΘI =⇒ E
[
mj (Wi , θ)ν(Xi )

]
≥ 0, ∀j ∈ {1, . . . , p}, ∀ν ∈ N

▶ Under strong conditions on N (eg: N contains an infinite number of elements), the implication becomes an

equivalence

challenges

Max Lesellier Smoothed inference for moment inequality models August 28, 2024 15 / 26



An alternative characterization of the identified set

Our approach relies on the following characterization of the sharp identified set:

θ ∈ ΘI ⇐⇒ mθ,j(Xi ) ≡ E (mj(Wi , θ)|Xi ) ≥ 0, ∀ j = 1, . . . , p, a.s

⇐⇒ min

{
0, min

j=1,...,p
mθ,j(Xi )

}
= 0, a.s.

⇐⇒ E
[
min

{
0, min

j=1,...,p
mθ,j(Xi )

}]
= 0

We transform p conditional moment inequalities into one unconditional moment equality without losing any

identification power.

Characterization akin to the one used in [Lee et al., 2013].
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The smoothed-min approach for conditional moments

Main idea: use the smooth approximation of the minimum to recover asymp. normal estimator for

E
[
min{0, min

j=1,...,p
mθ,j(Xi )}

]
.

A pivotal test statistic:

ξn(θ) =
√
n

1
√
Vn

 1

n

n∑
i=1

gρn (mθ,n(Xi ))︸ ︷︷ ︸
(1)

+∇gρn (mθ,n(Xi ))
⊤(m(Wi , θ)−mθ,n(Xi ))︸ ︷︷ ︸

(2)


where

▶ mθ,n(Xi ) is a non-parametric estimator E (m(Wi , θ)|Xi )

▶ (1) is the smoothed min operator and (2) is an orthogonalization term that ensures that the test statistic is

”locally insensitive” to the fact that mθ(Xi ) is estimated.

▶ Vn a consistent estimator of the variance of: V0 = lim
n→∞

Var[(1) + (2)]
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Confidence region

Our confidence region is as follows:

CRn(1− α) = {θ ∈ Θ | ξn(θ) ≥ zα}, with zα the α-quantile of N (0, 1)

Remarks on the estimation of E (m(Wi , θ)|Xi )

▶ This step is the most demanding one in our procedure.

▶ In most cases, E (m(Wi , θ)|Xi ) only needs to be estimated once for all the candidates θ in the grid.

Sample splitting: following [Chernozhukov et al., 2018a], we use sample splitting for the estimation of mθ(·)

▶ We split the data into K samples and estimate mθ(Xi ) using all the sub-samples that don’t contain observation i .

▶ Sample splitting improves the finite sample performance and allows us to relax some regularity conditions likely

violated when dim(Xi ) large.
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Asymptotic properties of the test statistic

Proposition (Asymptotic properties of the test statistic)

Let ρn a diverging sequence such that ρn = cnα + o(1) with 0 < α < 2γ − 1
2
, Under mild regularity conditions ,

CRn(1− α) is asymptotically valid and consistent, i.e.,

(i) Asymptotic validity:

∀θ ∈ ΘI , lim inf
n→∞

Pr(θ ∈ CRn(1− α)) ≥ 1− α.

(ii) Consistency:

∀θ /∈ ΘI , Pr(θ ∈ CRn(1− α)) −→
n→∞

0.

Remark: our asymptotic results don’t place any restrictions on the methods to be used to estimate mθ(Xi )

proof

regularity conditions
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Monte Carlo simulations
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Simulation setup conditional moment inequalities

ΘI = {θ ∈ Θ | E
[
mj (θ,Wi )|Xi

]
≥ 0 for j = 1, ..., 6 }

where the moment functions are defined as follows:

m1(Wi , θ) = −θ2 + (Yij + 3)

m2(Wi , θ) = θ2 + Yij

m3(Wi , θ) = θ2 + 4− (1 + Yij )θ1

m4(Wi , θ) = −θ2 + 1 + (1 + Yij )θ1

m5(Wi , θ) = θ2 − 3 + (1 + Yij )θ1

m6(Wi , θ) = −θ2 + 6− (1 + Yij )θ1

Yij =
1

2
(−

1

4
− Xi + X 2

i ) + εij a.s.with E[εij |Xi ] = 0 a.s.

Xi ∼ U[−0.5, 0.5] and εi ∼ N (0, 0.5) ∀j .

Methods: [Andrews and Shi, 2013], smoothed-min, a subset of the methods used for unconditional moment inequalities
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The identified set

Figure 1: Identified set in experimental design 4
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The identified set (II)

Figure 2: Identified set in experimental design 4
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First stage estimator

Figure 3: First-stage kernel estimator
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Empirical size

Table 1: Null Rejection Probability (5000 replications)

Test statistic critical value n=250 n=500 n=1000 n=5000

smoothed min (ρ = 1) zα 0 0 0 0

smoothed min (ρ = 5) zα 0 0 0 0

smoothed min (ρ = 10) zα 0.013 0.009 0.004 0

smoothed min (ρ = 50) zα 0.048 0.039 0.036 0.024

smoothed min (ρ = 100) zα 0.052 0.042 0.045 0.036

smoothed min (ρ = 200) zα 0.052 0.042 0.047 0.043

CVM modified method of moments (r1,n) GMS 0.001 0.001 0 0

CVM standardized min (r1,n) GMS 0 0 0 0

CVM modified method of moments (r2,n) GMS 0 0.001 0 0

CVM standardized min (r2,n) GMS 0 0 0 0

CVM modified method of moments (r3,n) GMS 0 0 0 0

CVM standardized min (r3,n) GMS 0 0 0 0

The empirical size is the average of the empirical rejection probability over 10 points on the boundary of the

identified set (5000 replications).
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Empirical power

Table 2: Average power against fixed alternatives (5000 replications)

Test statistic critical value n=250 n=500 n=1000 n=5000

smoothed min (ρ = 1) zα 0 0 0 0

smoothed min (ρ = 5) zα 0.028 0.046 0.079 0.146

smoothed min (ρ = 10) zα 0.083 0.145 0.228 0.428

smoothed min (ρ = 50) zα 0.171 0.267 0.406 0.752

smoothed min (ρ = 100) zα 0.179 0.276 0.422 0.777

smoothed min (ρ = 200) zα 0.181 0.279 0.427 0.786

CVM modified method of moments (r1,n) GMS 0.076 0.147 0.259 0.608

CVM standardized min (r1,n) GMS 0.063 0.11 0.197 0.569

CVM modified method of moments (r2,n) GMS 0.067 0.139 0.259 0.606

CVM standardized min (r2,n) GMS 0.053 0.102 0.187 0.568

CVM modified method of moments (r3,n) GMS 0.058 0.129 0.247 0.596

CVM standardized min (r3,n) GMS 0.045 0.09 0.171 0.555

The empirical power is the average of the rejection probability over 10 points on the boundary of the identified

set (5000 replications).
Max Lesellier Smoothed inference for moment inequality models August 28, 2024 23 / 26



Power against local alternatives on vertices

Figure 4: Power against local alternatives of the form θv2 + 1√
n
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Power against local alternatives on edges

Figure 5: Identified set in experimental design 4
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Conclusion
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Conclusion

In this paper, we introduce a novel testing procedure for models characterized by conditional and

unconditional moment inequalities.

We derive a test statistic that is asymptotically normal by considering a smooth approximation of the

minimum of the empirical moments.

We show that our method can be easily adapted to handle conditional moment inequalities and remains

consistent and asymptotically valid under weak regularity conditions.

What remains to be done: propose a way to calibrate ρn in the case with conditional moment inequalities.
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A regression model where the outcome variable is partially observed

Example taken from [Manski and Tamer, 2002].

Assume that a latent outcome variable Y ∗
i satisfies the following conditional mean restriction:

Y ∗
i = θ1 + Xiθ2 + Ui where E[Ui |Xi ] = 0 a.s.

The econometrician only observes [YL,i ;YU,i ] that contains Y
∗
i . YL,i = ⌊Yi⌋ and YU,i = ⌊Yi⌋+ 1.

Without additional restrictions, one can show that θ must satisfy the following two conditional moment

inequalities.

E[θ1 + Xiθ2 − YL,i |Xi ] ≥ 0 a.s.

E[YU,i − θ1 − Xiθ2|Xi ] ≥ 0 a.s.

back
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Other challenges

1. Selection and derivation of the moment inequalities:

▶ Selection: in many contexts (eg: games), the number of inequalities implied by the model quickly becomes

intractable.

How to select a subset of inequalities while limiting the information loss?

▶ Derivation: inequalities may come from equilibrium conditions that need to be simulated...

5. Subvector inference: how to do inference efficiently on one of the parameters (not the full vector of

parameters) or a known function of the parameters?

back
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Our contribution

We provide a novel inference method based on a smooth approximation of the minimum across the empirical

moments (and we let the smoothing decrease with n)

1. Good statistical properties.

▶ The test statistic behaves asymptotically as the sum of a weighted sum of normals and a deterministic drift

Under H0: the drift converges to 0 =⇒ Asymptotic normality

Under Ha, the drift diverges to −∞ =⇒ consistency

2. Ease of implementation

▶ Test statistic and the critical value are straightforward to derive: no minimization, no simulations.

▶ One tuning parameter: the smoothing parameter.

3. Our test statistic can be adapted to handle conditional moment inequalities

▶ Asymptotic normality

▶ Consistency example
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Calibration of ρ: Bias

Smoothing creates an identification bias: gρn (mθ) ≥ min{0,mθ,1, ...mθ,p}.

For a fixed ρ, we can define the outer set Θo
I (ρ)

Θo
I (ρ) =

{
θ ∈ Rdim(θ)| gρ(mθ) =

∑p
j=1 mθ,je

−ρmθ,j

1 +
∑p

j=1 e
−ρmθ,j

≥ 0

}
,

▶ For any ρ > 0, ΘI ⊂ Θo
I (ρ)

▶ limρ→+∞ dH(ΘI ,Θ
o
I (ρ)) = 0, where dH is the Hausdorff distance.

Asymptotically, smoothing has no effect because we let ρn diverge

In finite sample, excessive smoothing negatively affects the power of our test.

To quantify this effect, we define a local measure of the distance between ΘI and Θo
I (ρn) at θ.

▶ we take the largest deviation cn < 0 s.t. if θ were at the frontier of ΘI , (mθ, cn) ∈ Θo
I (ρn).
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calibration of ρ: size distortion

We show that the asymptotic expansion at the second order can be expressed as follows:

√
ngρn (mθ,n) =

√
ngρn (mθ) +∇gρ(mθ)

√
n(mθ,n −mθ) + Un + op

(
ρn√
n

)
,

▶ with E [Un] =
ρn√
n
K0(θ)

▶ and K0(θ) a negative constant that depends on the set of binding moments and the variance-covariance matrix

Σθ.

K0(θ) can be estimated.
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Calibration of ρ: loss function

To solve the trade-off between the identification bias and the size distortion, we choose ρ∗n

ρn = argmin
ρ>0

{
ρn√
n
λsize(|K0(θ)|) +

1

ρn
λpower (LD(θ))

}
where λsize and λpower are increasing functions chosen by the researchers, LD(θ) is an upper bound on the

local distance.

ρ∗n = n1/4

√
λpower (LD(θ))

λsize(|K0(θ)|)

The “optimal” choice of ρn increases with the number of non-binding moments and decreases with the

number of binding moments and the variance of these moments.

The ”optimal” speed of divergence α∗ = 1
4
is also contained in (0, 1/2)

back
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Asymptotic Uniform validity

CRn is asymptotically uniformly valid over the family of distributions P and over the points θ ∈ ΘI if:

liminf
n→∞

inf
P∈P

inf
θ∈ΘI (P)

Pr(θ ∈ CRn) ≥ 1− α.

where ΘI (P) =
{
θ ∈ Θ | EP [m(Wi , θ)] ≥ 0

}
.

The uniform validity requirement is motivated by the observation that the asymptotic distributions of test

statistics employed in moment inequality models often exhibit discontinuities

▶ Confidence sets that are only valid pointwise can be deceptive in finite samples (on this topic, see [Andrews and

Guggenberger, 2009] and [Andrews and Guggenberger, 2010])

We show that if the moments have finite moments of order 2 + δ, then our confidence regions are

asymptotically uniformly valid

back
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Implementation and challenges in [Andrews and Shi, 2013]

Implementation:

(i) ∀ν ∈ N , one compute the test statistic associated with the unconditional moments generated by ν

(ii) One must integrate the test statistics derived for each ν over a certain measure µ to construct the final CvM or

KS test statistic

(iii) Derivation of the critical value

a) ∀ν ∈ N , select the set of binding moments following a form of GMS procedure.

b) Use this information to simulate the asymptotic distribution of CvM or KS test statistic under the null

Practical and theoretical Challenges:
▶ Curse of dimensionality with dim(Xi ): in theory, card(ν) must increase exponentially with dim(Xi ) ( increase in

computational times, too few observations per ν).

▶ Curse of dimensionality with p: total number of moments ≈ p × card(N )

▶ Many tuning parameters: selection of the binding moments, N , µ,...

▶ Repeat the procedure for every θ in the grid!

back
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Regularity conditions

Assumption (Regularity conditions on the moments)

1 ∃ C , ∀θ ∈ Θ, ∀j , E[mj(Wi , θ)
2] < C .

Assumption (Regularity conditions for the non-parametric estimator)

For all θ ∈ Θ, The estimator m̂θ,−k belongs to the class Mθ that satisfies:

1 E
[
∥m̂θ,−k(Xi )−mθ(Xi )∥22

]1/2
= o(n−γ) with γ > 1/4

2 Zi,n = (nγ∥m̂θ,−k(Xi )−mθ(Xi )∥2)2 ∥m(Wi , θ)∥22 is uniformly integrable. That is:

∀n, ∀ε, ∃K > 0 such that: E(Zi,n1{Zi,n > K}) ≤ ε

back
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Overview of the results: unconditional moment inequalities

We consider 2 simulation designs: the one in [Andrews and Soares, 2010] and a static entry game.

We compare our method with [Andrews and Soares, 2010] (min, MMM), [Chernozhukov et al., 2018b]

(min), [Romano et al., 2014] (min, MMM)

Results: calibration matters!

▶ Size: calibrated smoothed-min slightly over-sized in some configurations (majority of binding moments+ small

sample, n = 250, 500). Rejection probability converges to the nominal size when n increases

▶ Power: Smoothed min outperforms [Chernozhukov et al., 2018b] and [Romano et al., 2014], similar to [Andrews

and Shi, 2013] (min) in most conf.

When negative correlation between the moments, smoothed min beats all the methods.

▶ Speed of implementation: [Chernozhukov et al., 2018b]> smoothing> [Andrews and Soares, 2010]>> [Romano

et al., 2014]

Max Lesellier Smoothed inference for moment inequality models August 28, 2024 10 / 11



Overview of the results: unconditional moment inequalities

We consider 2 simulation designs: the one in [Andrews and Soares, 2010] and a static entry game.

We compare our method with [Andrews and Soares, 2010] (min, MMM), [Chernozhukov et al., 2018b]

(min), [Romano et al., 2014] (min, MMM)

Results: calibration matters!

▶ Size: calibrated smoothed-min slightly over-sized in some configurations (majority of binding moments+ small

sample, n = 250, 500). Rejection probability converges to the nominal size when n increases

▶ Power: Smoothed min outperforms [Chernozhukov et al., 2018b] and [Romano et al., 2014], similar to [Andrews

and Shi, 2013] (min) in most conf.

When negative correlation between the moments, smoothed min beats all the methods.

▶ Speed of implementation: [Chernozhukov et al., 2018b]> smoothing> [Andrews and Soares, 2010]>> [Romano

et al., 2014]

Max Lesellier Smoothed inference for moment inequality models August 28, 2024 10 / 11



Overview of the results: unconditional moment inequalities

We consider 2 simulation designs: the one in [Andrews and Soares, 2010] and a static entry game.

We compare our method with [Andrews and Soares, 2010] (min, MMM), [Chernozhukov et al., 2018b]

(min), [Romano et al., 2014] (min, MMM)

Results: calibration matters!

▶ Size: calibrated smoothed-min slightly over-sized in some configurations (majority of binding moments+ small

sample, n = 250, 500). Rejection probability converges to the nominal size when n increases

▶ Power: Smoothed min outperforms [Chernozhukov et al., 2018b] and [Romano et al., 2014], similar to [Andrews

and Shi, 2013] (min) in most conf.

When negative correlation between the moments, smoothed min beats all the methods.

▶ Speed of implementation: [Chernozhukov et al., 2018b]> smoothing> [Andrews and Soares, 2010]>> [Romano

et al., 2014]

Max Lesellier Smoothed inference for moment inequality models August 28, 2024 10 / 11



Sketch of the proof

To prove our result, we use the decomposition below:

1√
n

n∑
i=1

g̃ρn (Wi ,mθ,n) =
√
n

(
1

n

n∑
i=1

g̃ρn (Wi ,mθ,n)−
n∑

i=1

g̃ρn (Wi ,mθ)

)
︸ ︷︷ ︸

An

+

√
n

(
1

n

n∑
i=1

g̃ρn (Wi ,mθ)− E [gρn (mθ(Xi ))]

)
︸ ︷︷ ︸

Bn

+
√
nE [gρn (mθ(Xi ))]︸ ︷︷ ︸

Cn

First, we leverage key results in the literature on semi-parametric estimation( [Newey, 1994], [Andrews,

1994], [Ackerberg et al., 2014], [Chernozhukov et al., 2018a]) to show that An = op(1).

Second, we show that Bn
d→ N (0,V0) by proving that the characteristic function of Bn converges to the

characteristic function of N (0,V0).

Third, we prove that Cn is almost surely non-negative when θ ∈ ΘI and Cn
P→ −∞ when θ /∈ ΘI . back
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