The role of human capital for AI adoption: Evidence from French firms

F. Calvino¹ C. Criscuolo² L. Fontanelli^{3, 4} L. Nesta^{5, 4} E. Verdolini^{3, 4}

¹OECD, ²IFC, ³University of Brescia, ⁴RFF-CMCC, ⁵University of Côte d'Azur

EEA, Rotterdam, August 27, 2024

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 853487). The views expressed here are those of the authors and cannot be attributed to the OECD or its member countries, nor to the IFC/World Bank Group.

Introduction

Artificial intelligence (AI) has a ground-breaking potential to spur innovation and productivity across the economy, and for diverse applications in several sectors (Cockburn *et al.*, 2018; Agrawal *et al.*, 2022; Brynjolfsson *et al.*, 2018)

Artificial intelligence (AI) has a ground-breaking potential to spur innovation and productivity across the economy, and for diverse applications in several sectors (Cockburn *et al.*, 2018; Agrawal *et al.*, 2022; Brynjolfsson *et al.*, 2018)

Understanding the firm-level drivers of AI adoption is a crucial research question with important policy consequences

Artificial intelligence (AI) has a ground-breaking potential to spur innovation and productivity across the economy, and for diverse applications in several sectors (Cockburn *et al.*, 2018; Agrawal *et al.*, 2022; Brynjolfsson *et al.*, 2018)

Understanding the firm-level drivers of AI adoption is a crucial research question with important policy consequences

Human capital is a key asset for technology adoption (Nelson & Phelps, 1966; Benhabib & Spiegel, 2005; Harrigan *et al.*, 2021)

- Particularly for what concerns advanced technologies such as AI (Goos & Savona, 2024)
- The rapid diffusion of AI may restructure the demand for skills and labour markets (Alekseeva *et al.*, 2021; Borgonovi *et al.*, 2023; Albanesi *et al.*, 2023)

Artificial intelligence (AI) has a ground-breaking potential to spur innovation and productivity across the economy, and for diverse applications in several sectors (Cockburn *et al.*, 2018; Agrawal *et al.*, 2022; Brynjolfsson *et al.*, 2018)

Understanding the firm-level drivers of AI adoption is a crucial research question with important policy consequences

Human capital is a key asset for technology adoption (Nelson & Phelps, 1966; Benhabib & Spiegel, 2005; Harrigan *et al.*, 2021)

- Particularly for what concerns advanced technologies such as AI (Goos & Savona, 2024)
- The rapid diffusion of AI may restructure the demand for skills and labour markets (Alekseeva *et al.*, 2021; Borgonovi *et al.*, 2023; Albanesi *et al.*, 2023)

Yet, limited evidence:

- Firm-level studies on the links between AI and workers' characteristics/firms' skills composition/labour demand and mostly focused on the United States (Babina et al., 2023; Alekseeva et al., 2021)
- Exposure of occupations to AI (e.g., among the others Felten *et al.*, 2021; Eloundou *et al.*, 2023; Brynjolfsson *et al.*, 2023; Prytkova *et al.*, 2024)

We leverage a unique combination of data sources to study the human capital of a representative sample of French firms

We leverage a unique combination of data sources to study the human capital of a representative sample of French firms

We explore which occupations foster the use of AI using Probit and IV Probit models

- · Focus on higher intellectual and intermediate occupations
- Non-technical vs technical non-ICT vs ICT human capital

We leverage a unique combination of data sources to study the human capital of a representative sample of French firms

We explore which occupations foster the use of AI using Probit and IV Probit models

- Focus on higher intellectual and intermediate occupations
- Non-technical vs technical non-ICT vs ICT human capital

ICT engineers emerge as the key occupation fostering AI adoption by firms

The stock of ICT engineers may not be sufficient to foster the diffusion of AI technologies

We leverage a unique combination of data sources to study the human capital of a representative sample of French firms

We explore which occupations foster the use of AI using Probit and IV Probit models

- Focus on higher intellectual and intermediate occupations
- Non-technical vs technical non-ICT vs ICT human capital

ICT engineers emerge as the key occupation fostering AI adoption by firms

The stock of ICT engineers may not be sufficient to foster the diffusion of AI technologies

A nuanced picture of Al-human capital relations emerges from heterogeneity/robustness analysis, beyond ICT engineers

Data

Data - ICT survey

We match four data sources: ICT survey, LEED (i.e., linked employer-employee data), balance-sheets and business registry

Data - ICT survey

We match four data sources: ICT survey, LEED (i.e., linked employer-employee data), balance-sheets and business registry

Representative information of firm-level AI use is sourced from the 2019 French ICT survey

- \sim 9k firms with 10+ persons employed from manufacturing, utilities, construction and non-financial market services relative to 2018
- Early period of AI diffusion & Predictive AI (e.g., text mining, ML data analysis)
- Al is a dummy variable Questions from the survey + Al buyers/developers
- Weighted estimations \rightarrow the analysis is representative for France

Data - ICT survey

We match four data sources: ICT survey, LEED (i.e., linked employer-employee data), balance-sheets and business registry

Representative information of firm-level AI use is sourced from the 2019 French ICT survey

- \sim 9k firms with 10+ persons employed from manufacturing, utilities, construction and non-financial market services relative to 2018
- Early period of AI diffusion & Predictive AI (e.g., text mining, ML data analysis)
- Al is a dummy variable Questions from the survey + Al buyers/developers
- Weighted estimations \rightarrow the analysis is representative for France

Other information on the use of digital complementary assets provided by the ICT survey

• Use of business digital technologies (CRM, ERP, e-commerce); Digital infrastructure (presence of a fast broadband connection)

We source the shares of employees by occupation from French LEED

- Measure of human capital
- Occupation classes are based on the French 2003 PCS classification

We source the shares of employees by occupation from French LEED

- Measure of human capital
- Occupation classes are based on the French 2003 PCS classification

We focus on the shares of employees by occupation from higher intellectual (e.g., managers, executives, engineers) and intermediate (e.g., supervisors, foremen, technicians) occupations

- ICT vs Non-ICT technical vs Non-technical occupations
- Remaining shares (clerical and manual occupations) are not correlated with AI use
 Regressions

We source the shares of employees by occupation from French LEED

- Measure of human capital
- Occupation classes are based on the French 2003 PCS classification

We focus on the shares of employees by occupation from higher intellectual (e.g., managers, executives, engineers) and intermediate (e.g., supervisors, foremen, technicians) occupations

- ICT vs Non-ICT technical vs Non-technical occupations
- Remaining shares (clerical and manual occupations) are not correlated with AI use
 Regressions

These occupational classes broadly reflect the level and type of human capital of French firms

	ICT	Technical non-ICT	Non-technical human capital
Higher intellectual occupations	ICT engineers	Non-ICT engineers	Non-technical (e.g., executives)
Intermediate occupations	ICT technicians	Non-ICT technicians	Non-technical (e.g., supervisors)

We source the shares of employees by occupation from French LEED

- Measure of human capital
- Occupation classes are based on the French 2003 PCS classification

We focus on the shares of employees by occupation from higher intellectual (e.g., managers, executives, engineers) and intermediate (e.g., supervisors, foremen, technicians) occupations

- ICT vs Non-ICT technical vs Non-technical occupations
- Remaining shares (clerical and manual occupations) are not correlated with AI use
 Regressions

These occupational classes broadly reflect the level and type of human capital of French firms

	ICT	Technical non-ICT	Non-technical human capital
Higher intellectual occupations	ICT engineers	Non-ICT engineers	Non-technical (e.g., executives)
Intermediate occupations	ICT technicians	Non-ICT technicians	Non-technical (e.g., supervisors)

We retrieve info on firm characteristics from administrative and business registry data (i.e., tangible and intangible capital, size, age, region, industry, exporter/multiplant status)

Which occupations spur AI use by firms?

We explore the human capital of AI users in the following Probit specification using 2018 data:

 $Pr(AI \ User_i) = \Phi(Occupation \ Share_i, Firm \ Characteristics_i, Digital \ Controls_i, Industry_i, Region_i)$

We explore the human capital of AI users in the following Probit specification using 2018 data:

 $Pr(AI User_i) = \Phi(Occupation Share_i, Firm Characteristics_i, Digital Controls_i, Industry_i, Region_i)$

AI User $_i$ is the dummy variable indicating the use of AI by firm i

We explore the human capital of AI users in the following Probit specification using 2018 data:

 $Pr(AI User_i) = \Phi(Occupation Share_i, Firm Characteristics_i, Digital Controls_i, Industry_i, Region_i)$

Al User $_i$ is the dummy variable indicating the use of Al by firm i

Occupation Share_i is the proxy for human capital \rightarrow firm-level shares by occupation

We explore the human capital of AI users in the following Probit specification using 2018 data:

 $Pr(AI User_i) = \Phi(Occupation Share_i, Firm Characteristics_i, Digital Controls_i, Industry_i, Region_i)$

Al User $_i$ is the dummy variable indicating the use of Al by firm i

Occupation Share_i is the proxy for human capital \rightarrow firm-level shares by occupation

Firm Characteristics; include a series of firm-level controls

 Log of sales, age, physical capital, PIK (physical to intangible capital) and PKL (physical capital to employment) ratios, multi plant and exporter status

We explore the human capital of AI users in the following Probit specification using 2018 data:

 $Pr(AI User_i) = \Phi(Occupation Share_i, Firm Characteristics_i, Digital Controls_i, Industry_i, Region_i)$

Al User $_i$ is the dummy variable indicating the use of Al by firm i

Occupation Share_i is the proxy for human capital \rightarrow firm-level shares by occupation

Firm Characteristics; include a series of firm-level controls

 Log of sales, age, physical capital, PIK (physical to intangible capital) and PKL (physical capital to employment) ratios, multi plant and exporter status

Digital Controls; are dummy variables gauging the level of digitalisation of the firm

• Dummies for fast broadband, CRM, ERP, E-commerce

We explore the human capital of AI users in the following Probit specification using 2018 data:

 $Pr(AI User_i) = \Phi(Occupation Share_i, Firm Characteristics_i, Digital Controls_i, Industry_i, Region_i)$

Al User $_i$ is the dummy variable indicating the use of Al by firm i

Occupation Share; is the proxy for human capital \rightarrow firm-level shares by occupation

Firm Characteristics; include a series of firm-level controls

 Log of sales, age, physical capital, PIK (physical to intangible capital) and PKL (physical capital to employment) ratios, multi plant and exporter status

Digital Controls; are dummy variables gauging the level of digitalisation of the firm

• Dummies for fast broadband, CRM, ERP, E-commerce

Industry; and Region; represent industry and regional fixed effects

The identification strategy

Notwithstanding in early phase of diffusion, AI use may affect the employment of firms

• Endogenous AI-employment relation

The identification strategy

Notwithstanding in early phase of diffusion, AI use may affect the employment of firms

Endogenous AI-employment relation

We estimate the following IV probit model:

$$\begin{aligned} \text{AI User}_{i}^{*} &= \alpha + \beta_{s} \text{Occupation Share}_{i,2018} + \beta_{\mathbf{X}} \mathbf{X}_{i} + \epsilon_{i} \\ \text{Occupation Share}_{i,2018} &= \gamma + \beta_{z} \text{Occupation Share}_{i,2011} + \beta_{\mathbf{X}} \mathbf{X}_{i} + \omega_{i} \\ \text{AI User}_{i} &= \begin{cases} 1, & \text{if AI User}_{i}^{*} > 0 \\ 0, & \text{otherwise} \end{cases} \end{aligned}$$
(1)

Where each 2018 share is instrumented with its 2011 value

The identification strategy

Notwithstanding in early phase of diffusion, AI use may affect the employment of firms

Endogenous AI-employment relation

We estimate the following IV probit model:

AI User_i^{*} =
$$\alpha + \beta_s$$
Occupation Share_{i,2018} + $\beta_{\mathbf{X}}\mathbf{X}_i + \epsilon_i$
Occupation Share_{i,2018} = $\gamma + \beta_z$ Occupation Share_{i,2011} + $\beta_{\mathbf{X}}\mathbf{X}_i + \omega_i$
AI User_i =
$$\begin{cases} 1, & \text{if AI User}_i^* > 0\\ 0, & \text{otherwise} \end{cases}$$
(1)

Where each 2018 share is instrumented with its 2011 value

2011 shares are very unlikely to be endogenous on AI

- In 2012, machine learning algorithms started to outperform state-of-the-art non-AI techniques in statistical analyses (e.g., AlexNet neural network)
- The boom in AI use by firms very likely started after 2012 in the U.S. (see also here, here and Babina et al., 2021)
- Likely even later in France

Results - Probit & IV Probit Results

	Probit	IV Probit						
		Second Stage			First S	itages		
	Margins	Margins	ICT Engineers	Non-ICT Engineers	Non-Technical Higher Intellectual Occ.	ICT Technicians	Non-ICT Technicians	Non-Technical Intermediate Occ.
ICT Engineers 2018	0.170*** (0.0394)	0.134** (0.056)						
Non-ICT Engineers 2018	-0.00777 (0.0430)	0.004 (0.076)						
Non-Tech. Higher Intellectual Occ. 2018	0.0218 (0.0331)	-0.066 (0.057)						
ICT Technicians 2018	-0.0481 (0.0743)	-0.162 (0.105)						
Non-ICT Technicians 2018	(0.0428) (0.0428)	-0.086 (0.072)						
Non-Tech. Intermediate Occ. 2018	0.00198 (0.0296)	-0.015 (0.048)						
ICT Engineers 2011			0.808*** (0.039)	0.058*** (0.018)	-0.086*** (0.023)	0.011 (0.013)	0.006 (0.016)	-0.062*** (0.016)
Non-ICT Engineers 2011			-0.005 (0.008)	0.696*** (0.040)	0.020 (0.033)	-0.007 (0.006)	0.107*** (0.028)	0.005 (0.023)
Non-Tech. Higher Intellectual Occ. 2011			0.021* (0.012)	0.027** (0.014)	0.603*** (0.026)	-0.004 (0.006)	0.001 (0.012)	0.057*** (0.020)
ICT Technicians 2011			0.046 (0.034)	0.043** (0.020)	-0.047** (0.023)	0.646*** (0.059)	0.025 (0.018)	-0.001 (0.024)
Non-ICT Technicians 2011			-0.008* (0.004)	0.110*** (0.019)	-0.072*** (0.013)	0.025*** (0.009)	0.694*** (0.038)	-0.018 (0.014)
Non-Tech. Intermediate Occ. 2011			-0.002 (0.004)	-0.004 (0.007)	0.070*** (0.012)	0.001 (0.003)	0.010 (0.006)	0.664*** (0.022)
Industry + Region FE + Additional controls Observations	Yes 8,531	Yes 7,381	Yes 7,381	Yes 7,381	Yes 7,381	Yes 7,381	Yes 7,381	Yes 7,381

Results - Probit & IV Probit Results

	Probit	IV Probit						
		Second Stage			First S	itages		
	Margins	Margins	ICT Engineers	Non-ICT Engineers	Non-Technical Higher Intellectual Occ.	ICT Technicians	Non-ICT Technicians	Non-Technical Intermediate Occ.
ICT Engineers 2018	0.170*** (0.0394)	0.134** (0.056)						
Non-ICT Engineers 2018	-0.00777 (0.0430)	0.004 (0.076)						
Non-Tech. Higher Intellectual Occ. 2018	0.0218 (0.0331)	-0.066 (0.057)						
ICT Technicians 2018	-0.0481 (0.0743)	-0.162 (0.105)						
Non-ICT Technicians 2018	(0.0428) (0.0428)	-0.086 (0.072)						
Non-Tech. Intermediate Occ. 2018	0.00198 (0.0296)	-0.015 (0.048)						
ICT Engineers 2011			0.808*** (0.039)	0.058*** (0.018)	-0.086*** (0.023)	0.011 (0.013)	0.006 (0.016)	-0.062*** (0.016)
Non-ICT Engineers 2011			-0.005 (0.008)	0.696*** (0.040)	0.020 (0.033)	-0.007 (0.006)	0.107*** (0.028)	0.005 (0.023)
Non-Tech. Higher Intellectual Occ. 2011			0.021* (0.012)	0.027** (0.014)	0.603*** (0.026)	-0.004 (0.006)	0.001 (0.012)	0.057*** (0.020)
ICT Technicians 2011			0.046 (0.034)	0.043** (0.020)	-0.047** (0.023)	0.646*** (0.059)	0.025 (0.018)	-0.001 (0.024)
Non-ICT Technicians 2011			-0.008* (0.004)	0.110*** (0.019)	-0.072*** (0.013)	0.025*** (0.009)	0.694*** (0.038)	-0.018 (0.014)
Non-Tech. Intermediate Occ. 2011			-0.002 (0.004)	-0.004 (0.007)	0.070*** (0.012)	0.001 (0.003)	0.010 (0.006)	0.664*** (0.022)
Industry + Region FE + Additional controls Observations	Yes 8,531	Yes 7,381	Yes 7,381	Yes 7,381	Yes 7,381	Yes 7,381	Yes 7,381	Yes 7,381

ICT engineers play a key role for AI adoption by firms

Raising the share of ICT engineers of non users to the one of AI users

Raising the share of ICT engineers of non users to the one of AI users

% Change Probability	Additional ICT Engineers
10.89%	463191.6
8.68%	370484.3
	% Change Probability 10.89% 8.68%

How does the probability to use AI change when the share of ICT engineers of non users (1.67%) is raised to the one of AI users (6.7%)?

We estimate an increase of \sim 10% in the probability to use AI (see Table 12)

But additional \sim 400k of ICT engineers, i.e. \sim 2 times the existing supply of ICT engineers in our sample

Distinguishing ICT engineers by specialisation

Distinguishing ICT engineers by specialisation

	Model 1
ICT Engineers - R&D	0.186*** (0.0484)
ICT Engineers - Admin. & Support	0.0139 (0.166)
ICT Engineers - Manager	0.146* (0.0803)
ICT Engineers - Sales	0.229 (0.145)
ICT Engineers - Telecom.	0.219 (0.171)
Non-ICT Engineers	-0.00620 (0.0429)
Non-Tech. Higher Intellectual Occupations	0.0229 (0.0331)
ICT Technicians	-0.0426 (0.0741)
Non-ICT Technicians	-0.0186 (0.0429)
Non-Tech. Intermediate Occupations	0.00180 (0.0296)
Observations Industry + Region FE + Additional controls Pseudo R2	8,531 Yes .048

We distinguish 5 types of ICT engineers based on their specialisation and estimate the above probit model

• R&D, Administration & Support, Managers, Sales, Telecommunications

Distinguishing ICT engineers by specialisation

	Model 1
ICT Engineers - R&D	0.186*** (0.0484)
ICT Engineers - Admin. & Support	0.0139 (0.166)
ICT Engineers - Manager	0.146* (0.0803)
ICT Engineers - Sales	0.229 (0.145)
ICT Engineers - Telecom.	0.219 (0.171)
Non-ICT Engineers	-0.00620 (0.0429)
Non-Tech. Higher Intellectual Occupations	0.0229 (0.0331)
ICT Technicians	-0.0426 (0.0741)
Non-ICT Technicians	-0.0186 (0.0429)
Non-Tech. Intermediate Occupations	0.00180 (0.0296)
Observations Industry + Region FE + Additional controls Pseudo R2	8,531 Yes .048

We distinguish 5 types of ICT engineers based on their specialisation and estimate the above probit model

 R&D, Administration & Support, Managers, Sales, Telecommunications

R&D and managerial ICT occupations at the basis of the ICT engineers-AI relation

• Both R&D and specialised managerial capabilities are crucial to use AI

The human capital of AI buyers vs developers

AI buyers and developers

We distinguish between firms sourcing AI from external providers (AI buyers) from those developing their own AI systems (AI developers)

AI buyers and developers

We distinguish between firms sourcing AI from external providers (AI buyers) from those developing their own AI systems (AI developers)

Crucial for understanding whether AI is differently implemented by different types of users

- Al developers already experiment significant productivity returns from Al use (Calvino & Fontanelli, 2023a)
- But developing Al systems in-house may require different type of human capital than buying them externally

AI buyers and developers

We distinguish between firms sourcing AI from external providers (AI buyers) from those developing their own AI systems (AI developers)

Crucial for understanding whether AI is differently implemented by different types of users

- Al developers already experiment significant productivity returns from Al use (Calvino & Fontanelli, 2023a)
- But developing Al systems in-house may require different type of human capital than buying them externally

As buying and developing decisions could be related, we estimate the following biprobit model:

$$\mathsf{AI \ Buyer} = \begin{cases} 1 & \text{if } \beta_1 X + \varepsilon_1 > 0, \\ 0 & \text{otherwise}, \end{cases}, \ \mathsf{AI \ Developer} = \begin{cases} 1 & \text{if } \beta_2 X + \varepsilon_2 > 0, \\ 0 & \text{otherwise}, \end{cases}, \ \mathsf{Corr}(\varepsilon_1; \ \varepsilon_2) = \rho$$

Where X includes the same controls of previous regressions, and ρ takes into account unobservables' correlation in make-vs-buy choices

AI buyers vs developers

	M	odel 1	M	Model 2		
	AI Buyer	AI Developer	AI Buyer	AI Developer		
ICT Engineers	0.0741**	0.0869***				
	(0.0376)	(0.0152)				
ICT Engineers - R&D			0.0785*	0 0006***		
Ter Engineers Traco			(0.0447)	(0.0177)		
107 F 1 1 1 1 1 1 1						
ICI Engineers - Admin. & Support			-0.00486	0.0549		
			(0.100)	(0.0500)		
ICT Engineers - Manager			0.129	0.0642**		
			(0.0821)	(0.0288)		
ICT Engineers - Sales			-0.155	0.136***		
			(0.135)	(0.0475)		
ICT Engineers - Telecom.			0.254	0.141**		
			(0.178)	(0.0583)		
Non ICT Engineers	0.0724	0.0422***	0.0725	0.0422***		
Non-ICT Engineers	(0.0466)	(0.0159)	(0.0469)	(0.0158)		
N. T. L. K. L. K. LO. K.	0.00150	0.024088	0.00100	0.005188		
Non-Tech. Higher Intellectual Occupations	-0.00156	(0.0144)	-0.00109	(0.0144)		
	(0.0509)	(0.0144)	(0.0509)	(0.0144)		
ICT Technicians	-0.0643	0.0161	-0.0625	0.0172		
	(0.0814)	(0.0212)	(0.0820)	(0.0211)		
Non-ICT Technicians	-0.0246	0.0283	-0.0236	0.0278		
	(0.0415)	(0.0183)	(0.0415)	(0.0184)		
Non-Tech Intermediate Occupations	-0.00307	0.00156	-0.00348	0.00170		
	(0.0282)	(0.0148)	(0.0281)	(0.0147)		
	,		,	,		
Observations	8,531	8,531	8,531	8,531		
Industry FE + Region FE + Additional Controls	Yes	Yes	Yes	Yes		

Al buyers only rely on ICT engineers, and less intensively than developers

Al developers more broadly rely on higher intellectual occupations

> ICT and non-ICT engineers, higher level administrative/managerial occupations

AI buyers vs developers

	M	odel 1	M	odel 2
	AI Buyer	AI Developer	AI Buyer	AI Developer
ICT Engineers	0.0741**	0.0869***		
	(0.0376)	(0.0152)		
ICT Engineers R&D			0.0795*	0.0006***
Ter Englicers Tracs			(0.0447)	(0.0177)
107 F 1 1 1 1 1 1 1			((
ICT Engineers - Admin. & Support			-0.00486	0.0549
			(0.100)	(0.0500)
ICT Engineers - Manager			0.129	0.0642**
			(0.0821)	(0.0288)
ICT Engineers - Sales			-0.155	0.136***
-			(0.135)	(0.0475)
ICT Engineers - Telecom			0.254	0 141**
			(0.178)	(0.0583)
			()	()
Non-ICT Engineers	-0.0724	(0.0150)	-0.0735	(0.0158)
	(0.0400)	(0.0159)	(0.0409)	(0.0156)
Non-Tech. Higher Intellectual Occupations	-0.00156	0.0348**	-0.00109	0.0351**
	(0.0309)	(0.0144)	(0.0309)	(0.0144)
ICT Technicians	-0.0643	0.0161	-0.0625	0.0172
	(0.0814)	(0.0212)	(0.0820)	(0.0211)
Non-ICT Technicians	-0.0246	0.0283	-0.0236	0.0278
	(0.0415)	(0.0183)	(0.0415)	(0.0184)
N TILL IN COLOR	0.00007	0.00155	0.000.40	0.00170
Non-Tech. Intermediate Occupations	-0.00307	0.00150	-0.00348	(0.0147)
	(0.0202)	(0.0140)	(0.0201)	(0.0147)
Observations	8.531	8.531	8.531	8.531
Industry FE + Region FE + Additional Controls	Yes	Yes	Yes	Yes

Al buyers only rely on ICT engineers, and less intensively than developers

Al developers more broadly rely on higher intellectual occupations

> ICT and non-ICT engineers, higher level administrative/managerial occupations

Key role of R&D-related ICT engineers

 Several types of ICT engineers involved in the development of AI systems

Sectoral analysis

	Manufacturing	Wholesale & Retail	Media & Telecommunications	ICT Business Services	Prof., Scient. And Techn.	Other Service Sectors
ICT Engineers	0.229	0.425**	-0.0478	0.349*	0.280***	0.00827
	(0.204)	(0.194)	(0.164)	(0.202)	(0.0968)	(0.153)
Non-ICT Engineers	-0.0434 (0.0795)	0.204** (0.100)	0.0220 (0.316)	-0.704 (0.510)	-0.00679 (0.0879)	0.0414 (0.182)
Non-Tech. Higher Intellectual Occupations	0.167	0.0559	-0.145	0.130	0.00516	-0.00649
	(0.126)	(0.0618)	(0.153)	(0.250)	(0.0782)	(0.0742)
ICT Technicians	-0.251 (0.308)	-0.244 (0.266)	-0.0114 (0.170)	-0.275 (0.255)	-0.537* (0.313)	0.592*** (0.174)
Non-ICT Technicians	0.120**	-0.0184	-0.273	-0.188	-0.162	-1.096**
	(0.0581)	(0.0927)	(0.253)	(1.280)	(0.104)	(0.434)
Non-Tech. Intermediate Occupations	-0.167*	0.0116	-0.454*	0.255	-0.0139	0.0842
	(0.0953)	(0.0462)	(0.269)	(0.486)	(0.0831)	(0.0619)
Observations	2,199	2,156	352	233	706	1,821
Pseudo R2	.065	.061	.165	.193	.105	.077
Region FE + Additional Controls	Yes	Yes	Yes	Yes	Yes	Yes

Sector	NACE 2-digit code
Manufacturing	10-33
Wholesale & Retail	45-47
Media & Telecommunications	58-61, 951
ICT Business Services	62-63
Other Services	49-56, 68, 77-82
Professional, Scientific And Technical Activities	69-75

Very nuanced picture at the sectoral level

	Manufacturing	Wholesale & Retail	Media & Telecommunications	ICT Business Services	Prof., Scient. And Techn.	Other Service Sectors
ICT Engineers	0.229	0.425**	-0.0478	0.349*	0.280***	0.00827
	(0.204)	(0.194)	(0.164)	(0.202)	(0.0968)	(0.153)
Non-ICT Engineers	-0.0434 (0.0795)	0.204** (0.100)	0.0220 (0.316)	-0.704 (0.510)	-0.00679 (0.0879)	0.0414 (0.182)
Non-Tech. Higher Intellectual Occupations	0.167	0.0559	-0.145	0.130	0.00516	-0.00649
	(0.126)	(0.0618)	(0.153)	(0.250)	(0.0782)	(0.0742)
ICT Technicians	-0.251	-0.244	-0.0114	-0.275	-0.537*	0.592***
	(0.308)	(0.266)	(0.170)	(0.255)	(0.313)	(0.174)
Non-ICT Technicians	0.120**	-0.0184	-0.273	-0.188	-0.162	-1.096**
	(0.0581)	(0.0927)	(0.253)	(1.280)	(0.104)	(0.434)
Non-Tech. Intermediate Occupations	-0.167*	0.0116	-0.454*	0.255	-0.0139	0.0842
	(0.0953)	(0.0462)	(0.269)	(0.486)	(0.0831)	(0.0619)
Observations	2,199	2,156	352	233	706	1,821
Pseudo R2	.065	.061	.165	.193	.105	.077
Region FE + Additional Controls	Yes	Yes	Yes	Yes	Yes	Yes

Sector	NACE 2-digit code
Manufacturing	10-33
Wholesale & Retail	45-47
Media & Telecommunications	58-61, 951
ICT Business Services	62-63
Other Services	49-56, 68, 77-82
Professional, Scientific And Technical Activities	69-75

Very nuanced picture at the sectoral level

ICT engineers key for advanced services and wholesale & retail (due to big data?)

	Manufacturing	Wholesale & Retail	Media & Telecommunications	ICT Business Services	Prof., Scient. And Techn.	Other Service Sectors
ICT Engineers	0.229	0.425**	-0.0478	0.349*	0.280***	0.00827
	(0.204)	(0.194)	(0.164)	(0.202)	(0.0968)	(0.153)
Non-ICT Engineers	-0.0434 (0.0795)	0.204** (0.100)	0.0220 (0.316)	-0.704 (0.510)	-0.00679 (0.0879)	0.0414 (0.182)
Non-Tech. Higher Intellectual Occupations	0.167	0.0559	-0.145	0.130	0.00516	-0.00649
	(0.126)	(0.0618)	(0.153)	(0.250)	(0.0782)	(0.0742)
ICT Technicians	-0.251	-0.244	-0.0114	-0.275	-0.537*	0.592***
	(0.308)	(0.266)	(0.170)	(0.255)	(0.313)	(0.174)
Non-ICT Technicians	0.120**	-0.0184	-0.273	-0.188	-0.162	-1.096**
	(0.0581)	(0.0927)	(0.253)	(1.280)	(0.104)	(0.434)
Non-Tech. Intermediate Occupations	-0.167*	0.0116	-0.454*	0.255	-0.0139	0.0842
	(0.0953)	(0.0462)	(0.269)	(0.486)	(0.0831)	(0.0619)
Observations	2,199	2,156	352	233	706	1,821
Pseudo R2	.065	.061	.165	.193	.105	.077
Region FE + Additional Controls	Yes	Yes	Yes	Yes	Yes	Yes

Sector	NACE 2-digit code
Manufacturing	10-33
Wholesale & Retail	45-47
Media & Telecommunications	58-61, 951
ICT Business Services	62-63
Other Services	49-56, 68, 77-82
Professional, Scientific And Technical Activities	69-75

Very nuanced picture at the sectoral level

ICT engineers key for advanced services and wholesale & retail (due to big data?)

Less advanced services rely on ICT technicians

	Manufacturing	Wholesale & Retail	Media & Telecommunications	ICT Business Services	Prof., Scient. And Techn.	Other Service Sectors
ICT Engineers	0.229	0.425**	-0.0478	0.349*	0.280***	0.00827
	(0.204)	(0.194)	(0.164)	(0.202)	(0.0968)	(0.153)
Non-ICT Engineers	-0.0434 (0.0795)	0.204** (0.100)	0.0220 (0.316)	-0.704 (0.510)	-0.00679 (0.0879)	0.0414 (0.182)
Non-Tech. Higher Intellectual Occupations	0.167	0.0559	-0.145	0.130	0.00516	-0.00649
	(0.126)	(0.0618)	(0.153)	(0.250)	(0.0782)	(0.0742)
ICT Technicians	-0.251	-0.244	-0.0114	-0.275	-0.537*	0.592***
	(0.308)	(0.266)	(0.170)	(0.255)	(0.313)	(0.174)
Non-ICT Technicians	0.120**	-0.0184	-0.273	-0.188	-0.162	-1.096**
	(0.0581)	(0.0927)	(0.253)	(1.280)	(0.104)	(0.434)
Non-Tech. Intermediate Occupations	-0.167*	0.0116	-0.454*	0.255	-0.0139	0.0842
	(0.0953)	(0.0462)	(0.269)	(0.486)	(0.0831)	(0.0619)
Observations	2,199	2,156	352	233	706	1,821
Pseudo R2	.065	.061	.165	.193	.105	.077
Region FE + Additional Controls	Yes	Yes	Yes	Yes	Yes	Yes

Sector	NACE 2-digit code
Manufacturing	10-33
Wholesale & Retail	45-47
Media & Telecommunications	58-61, 951
ICT Business Services	62-63
Other Services	49-56, 68, 77-82
Professional, Scientific And Technical Activities	69-75

Very nuanced picture at the sectoral level

ICT engineers key for advanced services and wholesale & retail (due to big data?)

Less advanced services rely on ICT technicians

Manufacturing on non-ICT technicians

Conclusion

Discussion & Conclusion

We carried out an in-depth analysis of the relation between human capital and AI use, employing a combination of uniquely comprehensive sources of data for France

Discussion & Conclusion

We carried out an in-depth analysis of the relation between human capital and AI use, employing a combination of uniquely comprehensive sources of data for France

ICT engineers play a key role for the adoption of AI by firms

- Additional 400k ICT engineers are needed to get a 10% raise in the probability to use AI
- R&D capabilities and specialised coordinators are relevant for implementing AI systems

However, very nuanced picture of the human capital of AI users when studying cross users/sectors heterogeneity

- Beyond ICT human capital
- Evidence suggests that these groups of firms use and implement AI differently

Discussion & Conclusion

We carried out an in-depth analysis of the relation between human capital and AI use, employing a combination of uniquely comprehensive sources of data for France

ICT engineers play a key role for the adoption of AI by firms

- Additional 400k ICT engineers are needed to get a 10% raise in the probability to use AI
- R&D capabilities and specialised coordinators are relevant for implementing AI systems

However, very nuanced picture of the human capital of AI users when studying cross users/sectors heterogeneity

- Beyond ICT human capital
- Evidence suggests that these groups of firms use and implement AI differently

The human capital needed by AI users depends on the use that firms make of AI systems

- Significant investments in ICT/STEM human capital are necessary for fostering the diffusion of AI technologies
- However, these may not be enough, as non-ICT and non-technical skills may be needed for AI applications (see also Borgonovi *et al.*, 2023)

Thank you for the attention!

References I

- Agrawal, Ajay, Gans, Joshua, & Goldfarb, Avi. 2022. Power and Prediction: the Disruptive Economics of Artificial Intelligence. *Harvard Business Review Press.*
- Albanesi, Stefania, Dias da Silva, António, Jimeno, Juan F, Lamo, Ana, & Wabitsch, Alena. 2023 (June). New Technologies and Jobs in Europe. Working Paper 31357. National Bureau of Economic Research.
- Alekseeva, Liudmila, Azar, José, Giné, Mireia, Samila, Sampsa, & Taska, Bledi. 2021. The demand for Al skills in the labor market. *Labour Economics*, **71**(C).
- Babina, Tania, Fedyk, Anastassia, He, Alex Xi, & Hodson, James. 2021. Artificial Intelligence, Firm Growth, and Product Innovation. *Forthcoming on the Journal of Finance*.
- Babina, Tania, Fedyk, Anastassia, He, Alex X, & Hodson, James. 2023. Firm Investments in Artificial Intelligence Technologies and Changes in Workforce Composition. Working Paper 31325. National Bureau of Economic Research.
- Benhabib, Jess, & Spiegel, Mark M. 2005. Human capital and technology diffusion. *Handbook* of economic growth, 1, 935–966.
- Borgonovi, Francesca, Calvino, Flavio, Criscuolo, Chiara, Samek, Lea, Seitz, Helke, Nania, Julia, Nitschke, Julia, & O'Kane, Layla. 2023. *Emerging trends in AI skill demand across* 14 OECD countries. OECD Artificial Intelligence Papers No. 2. OECD Publishing, Paris.
- Brynjolfsson, Erik, Rock, Daniel, & Syverson, Chad. 2018. Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics. Pages 23–57 of: The Economics of Artificial Intelligence: An Agenda. NBER Chapters.

References II

- Brynjolfsson, Erik, Li, Danielle, & Raymond, Lindsey. 2023. *Generative AI at Work*. Working Paper 31161. National Bureau of Economic Research.
- Calvino, Flavio, & Fontanelli, Luca. 2023a. Artificial intelligence, complementary assets and productivity: evidence from French firms. LEM Papers Series 2023/35. Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Calvino, Flavio, & Fontanelli, Luca. 2023b. A portrait of AI adopters across countries: Firm characteristics, assets' complementarities and productivity. OECD Science, Technology and Industry Working Papers No. 2023/02. OECD Publishing, Paris.
- Cockburn, Iain M., Henderson, Rebecca, & Stern, Scott. 2018. The Impact of Artificial Intelligence on Innovation: An Exploratory Analysis. *Pages 115–146 of: The Economics of Artificial Intelligence: An Agenda*. NBER Chapters.
- Eloundou, Tyna, Manning, Sam, Mishkin, Pamela, & Rock, Daniel. 2023. GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models. *arXiv.org.*
- Felten, Edward, Raj, Manav, & Seamans, Robert. 2021. Occupational, industry, and geographic exposure to artificial intelligence: A novel dataset and its potential uses. *Strategic Management Journal*, **42**(12), 2195–2217.
- Goos, Maarten, & Savona, Maria. 2024. The governance of artificial intelligence: Harnessing opportunities and mitigating challenges. *Research Policy*, **53**(3), 104928.
- Harrigan, James, Reshef, Ariell, & Toubal, Farid. 2021. The March of the Techies: Job Polarization Within and Between Firms. *Research Policy*, **50**(7).

References III

- Nelson, Richard R, & Phelps, Edmund S. 1966. Investment in humans, technological diffusion, and economic growth. The American economic review, 56(1/2), 69–75.
- Prytkova, Ekaterina, Petit, Fabien, Li, Deyu, Chaturvedi, Sugat, & Ciarli, Tommaso. 2024. The Employment Impact of Emerging Digital Technologies. Tech. rept.

Question on AI use

Module VI : Utilisation des technologies d'intelligence artificelle

L'intelligence artificielle désigne, sous un terme unique, l'ensemble des technologies visant à réaliser par l'informatique des tâches cognitives traditionnellement effectuées par l'humain : reconnaissance vocale, biométrie, reconnaissance d'images, aide à la décision, etc.

➡1. En 2018, votre entreprise a-t-elle eu recours à des logiciels et/ou des équipements intégrant des technologies d'intelligence artificielle ?

Ces log principa (y comp filiales)	jiciels et/ou équipements ont été développés alement par les employés de votre entreprise oris ceux provenant de la maison-mère ou de	Oui	Non	\sim
Ces log principa spécific	jiciels et/ou équipements ont été développés alement par un prestataire externe, pour répondre quement aux besoins de votre entreprise.	🗌 Oui	Non	$\langle \rangle \rangle / \rangle$
Ces log étagère	jiciels et/ou équipements font partie d'offres "sur "" de fournisseurs.	Oui	Non	

Figure 1: From 2019 ICT survey.

Artificial intelligence (AI) refers, under a single term, to all technologies aimed at carrying out cognitive tasks traditionally performed by humans using computers: speech recognition, biometrics, image recognition, decision support, etc.

In 2018, did your company use software and/or equipment incorporating AI technologies?

- 1. These software and/or equipment were primarily developed by employees of your company (including those from the parent company or subsidiaries).
- These software and/or equipment were primarily developed by an external provider, specifically to meet the needs of your company.
- 3. These software and/or equipment are part of "off-the-shelf" offerings from suppliers.

Results - Aggregate occupations

	Higher Intellectual Occupations		Intermediate Occupations		Clerical Occupations		Manual Occupations	
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7	Model 8
Share	0.0784*** (0.0238)	0.0579** (0.0246)	-0.0172 (0.0236)	-0.0252 (0.0239)	-0.0126 (0.0195)	-0.00938 (0.0197)	-0.0191 (0.0190)	-0.00447 (0.0193)
Log Sales	0.00908*** (0.00307)	-0.00448 (0.00685)	0.0125*** (0.00295)	-0.00112 (0.00676)	0.0120*** (0.00297)	-0.00182 (0.00678)	0.0117*** (0.00297)	-0.00192 (0.00683)
Log Age	-0.0112* (0.00643)	-0.0117* (0.00670)	-0.0125* (0.00644)	-0.0127* (0.00669)	-0.0126* (0.00644)	-0.0128* (0.00668)	-0.0123* (0.00645)	-0.0127* (0.00670)
PIK Ratio		-0.00345 (0.00420)		-0.00389 (0.00419)		-0.00378 (0.00420)		-0.00379 (0.00421)
PKL ratio		-0.00646 (0.00754)		-0.00464 (0.00747)		-0.00486 (0.00748)		-0.00509 (0.00752)
Log Physical Capital		0.00888 (0.00774)		0.00673 (0.00771)		0.00715 (0.00771)		0.00743 (0.00778)
Multi Plant		0.00163 (0.00977)		0.000557 (0.00979)		0.000686 (0.00979)		0.000201 (0.00981)
Exporter		0.00353 (0.0108)		0.00756 (0.0106)		0.00695 (0.0106)		0.00769 (0.0106)
Fast Broadband		0.0275** (0.0120)		0.0312*** (0.0120)		0.0305** (0.0120)		0.0306** (0.0120)
CRM		0.0399*** (0.00988)		0.0421*** (0.00986)		0.0418*** (0.00984)		0.0414*** (0.00984)
ERP		0.0194* (0.0102)		0.0213** (0.0103)		0.0206** (0.0102)		0.0209** (0.0102)
E-Commerce		0.00858 (0.0124)		0.00616 (0.0124)		0.00754 (0.0125)		0.00604 (0.0125)
Observations Industry + Region FE Pseudo R2	8,531 Yes .033	8,531 Yes .044	8,531 Yes .031	8,531 Yes .043	8,531 Yes .031	8,531 Yes .042	8,531 Yes .031	8,531 Yes .042

Only higher intellectual occupations are significantly related to the use of AI by firms

Al use related to other ICT technologies and fast broadband (Calvino & Fontanelli, 2023a,b) Back