Model Uncertainty in the Cross Section

Jiantao Huang (HKU) Ran Shi (Colorado Boulder)

August 29, 2024

EEA-ESEM 2024

Motivation

Existing uncertainty measures regarding macroeconomy and asset markets

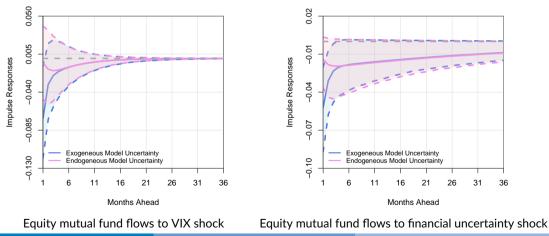
- VXO/VIX index: Bloom (2009)
- Macro/real/financial uncertainty: Jurado, Ludvigson, and Ng (2015); Ludvigson, Ma, and Ng (2021)
- Policy uncertainty: Baker, Bloom, and Davis (2016)

• • •

- Observation: time-varying and related to firms' investment and hiring activities
- ► Focus on time-series dimension, e.g., the extent to which financial outcomes fluctuate?
- Insufficient to capture uncertainty faced by equity investors

Motivation

- Existing uncertainty measures regarding macroeconomy and asset markets
 - Insufficient to capture uncertainty faced by equity investors



This paper

- Proposes cross-sectional uncertainty measure for Bayesian "investors"
 - ► Asset allocation (e.g., value or momentum funds) ⇒ Need an asset pricing (AP) model
 - Model uncertainty: Uncertainty regarding which AP model to use

This paper

- Proposes cross-sectional uncertainty measure for Bayesian "investors"
 - ► Asset allocation (e.g., value or momentum funds) ⇒ Need an asset pricing (AP) model
 - Model uncertainty: Uncertainty regarding which AP model to use
 - Model uncertainty is sizable, and heightened model uncertainty coincides with bad times
 - \star E.g., 2008 GFC, model uncertainty is maximized \implies A true AP model is elusive!
 - Model uncertainty shocks carry negative risk premium

This paper

- Proposes cross-sectional uncertainty measure for Bayesian "investors"
 - ► Asset allocation (e.g., value or momentum funds) ⇒ Need an asset pricing (AP) model
 - Model uncertainty: Uncertainty regarding which AP model to use
 - Model uncertainty is sizable, and heightened model uncertainty coincides with bad times
 - \star E.g., 2008 GFC, model uncertainty is maximized \implies A true AP model is elusive!
 - Model uncertainty shocks carry negative risk premium
- Documents strong correlations between model uncertainty shocks and fund flows
 - Heightened model uncertainty persistent flows out of equity to government bonds
 - ★ Outflows from small-cap and actively managed funds
 - NO such patterns for VIX & financial uncertainty in Ludvigson, Ma, and Ng (2021)

Econometric Theory

The framework: linear SDF models

- **1.** *N* test assets, $\mathbf{R} \in \mathbb{R}^N$, all excess returns
- **2.** *p* factors, $f \in \mathbb{R}^p$, all tradable long-short portfolios : $f \subseteq \mathbf{R}$
- **3.** Linear SDF model: $\mathbb{E}[\mathbf{R} \times m] = \mathbf{0}$ in which

$$m = 1 - (f - \mathbb{E}[f])^{\top} b$$

The framework: linear SDF models

- **1.** *N* test assets, $\mathbf{R} \in \mathbb{R}^N$, all excess returns
- **2.** p factors, $f \in \mathbb{R}^p$, all tradable long-short portfolios : $f \subseteq \mathbf{R}$
- **3.** Linear SDF model: $\mathbb{E}[\mathbf{R} \times m] = \mathbf{0}$ in which

$$m = 1 - (f_{\gamma} - \mathbb{E}[f_{\gamma}])^{\top} \boldsymbol{b}_{\gamma}$$

4. Model uncertainty: which elements of *f* determine $\mathbb{E}[R]$?

•
$$\gamma_j = 1$$
: the *j*-th factor is included ($b_j \neq 0$)

- $\gamma_j = 0$: $b_j \equiv 0$
- **5.** Data: $\mathcal{D} = \{R_1, \ldots, R_T\} \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \Sigma)$
- 6. Model: a restriction on this distribution through the moment condition

Under model
$$\mathcal{M}_{\gamma}$$
: $\mu = \operatorname{Cov}[R, f_{\gamma}]b_{\gamma}$

The framework: Bayesian inference, *g*-prior

1. Prior: a generalized version of Arnold Zellner's *g*-prior for b_{γ} :

Under model
$$\mathcal{M}_{\gamma}$$
: $\boldsymbol{b}_{\gamma} \sim \mathcal{N}\left(\boldsymbol{0}, \frac{g}{T}\left(\boldsymbol{C}_{\gamma}\boldsymbol{\Sigma}^{-1}\boldsymbol{C}_{\gamma}\right)^{-1}\right), \quad g > 0$

▶ Rotation invariant w.r.t. $Cov[R, f_{\gamma}] \triangleq C_{\gamma}$; g: "confidence" in prior information

The framework: Bayesian inference, g-prior

1. Prior: a generalized version of Arnold Zellner's *g*-prior for b_{γ} :

Under model
$$\mathcal{M}_{\gamma}$$
: $\boldsymbol{b}_{\gamma} \sim \mathcal{N}\left(\boldsymbol{0}, \, \frac{g}{T}\left(\boldsymbol{C}_{\gamma}\boldsymbol{\Sigma}^{-1}\boldsymbol{C}_{\gamma}\right)^{-1}\right), \quad g > 0$

- ▶ Rotation invariant w.r.t. $Cov[R, f_{\gamma}] \triangleq C_{\gamma}$; g: "confidence" in prior information
- 2. Assume equal prior model probabilities: $\pi[\mathcal{M}_{\gamma}] = \pi[\mathcal{M}_{\gamma'}]$
- **3.** The likelihood function:

$$\mathbb{P}[\mathcal{D} \mid \mathcal{M}_{\gamma}] \propto \exp\left\{-\frac{T}{2}\left(\mathrm{SR}_{\mathrm{max}}^{2} - \frac{g}{1+g}\mathrm{SR}_{\gamma}^{2}\right) - \frac{p_{\gamma}}{2}\log(1+g)\right\}$$

- In-sample Sharpe ratio vs model dimensionality
- GRS test (Gibbons, Ross, and Shanken, 1989) intuition in factor zoo

Model uncertainty in the cross section: definition

Our cross-sectional uncertainty measure:

$$\mathcal{E} = -\frac{1}{p \log 2} \sum_{\gamma} \left(\log \mathbb{P}[\mathcal{M}_{\gamma} \mid \mathcal{D}] \right) \mathbb{P}[\mathcal{M}_{\gamma} \mid \mathcal{D}]$$

- **1.** entropy $[\mathcal{M}_{\gamma} \mid \mathcal{D}] \in [0, 1]$
- **2.** minimized when \mathcal{D} favors one dominate model
 - for one dominate model to exist: large SR_{γ}^2 with small p_{γ}
- 3. maximized when ${\mathcal D}$ lends equal evidence across models

Posterior property: Pitfall of g-priors

Theorem

Assume that the observed return data are generated from a true linear SDF model \mathcal{M}_{γ_0} . If

 $\gamma_0 \neq \mathbf{0}$ (the SDF is not a constant) and $f_{\gamma_0} \subset f$ (the set of factors under consideration include all true factors), under the *g*-prior specification with $g \in (0, \infty)$, as $T \to \infty$,

• (factor selection consistency) if factor *j* belongs to the true model \mathcal{M}_{γ_0} , the posterior marginal probability of choosing it converges to one in probability:

$$\mathbb{P}[\gamma_j = 1 \mid \mathcal{D}] \xrightarrow{p} 1;$$

(model selection inconsistency) the posterior probability of the true model will always be strictly smaller than one, that is, $\mathbb{P}[\mathcal{M}_{\gamma_0} \mid \mathcal{D}] < 1$ with probability one.

• *g*-priors can avoid discarding true factors, at the cost of incorporating redundant ones Huang and Shi (2024) EEA-ESEM 2024 August 29, 2024 6/15

Restoring model selection consistency: mixture of *g***-priors**

• Adapt mixture of g-priors proposed by Liang et al. (2008) into SDF models:

$$\pi(g) = \frac{1}{(1+g)^2}, \quad g > 0$$

• Bayes factor for comparing model \mathcal{M}_{γ} with the null model \mathcal{M}_{0}

$$BF(\gamma, \mathbf{0}) = \exp\left(\frac{T}{2}SR_{\gamma}^{2}\right) \left(\frac{T}{2}SR_{\gamma}^{2}\right)^{-\frac{p_{\gamma}+2}{2}} \underline{\Gamma}\left(\frac{p_{\gamma}+2}{2}, \frac{T}{2}SR_{\gamma}^{2}\right)$$

• BF(γ , **0**) is increasing in SR²_{γ} but decreasing in p_{γ}

Restoring model selection consistency: mixture of *g***-priors**

• Adapt mixture of *g*-priors proposed by Liang et al. (2008) into SDF models:

$$\pi(g) = \frac{1}{(1+g)^2}, \quad g > 0$$

 $\bullet\,$ Bayes factor for comparing model \mathcal{M}_γ with the null model \mathcal{M}_0

$$BF(\boldsymbol{\gamma}, \boldsymbol{0}) = \exp\left(\frac{T}{2}SR_{\boldsymbol{\gamma}}^2\right) \left(\frac{T}{2}SR_{\boldsymbol{\gamma}}^2\right)^{-\frac{p_{\boldsymbol{\gamma}}+2}{2}} \underline{\Gamma}\left(\frac{p_{\boldsymbol{\gamma}}+2}{2}, \frac{T}{2}SR_{\boldsymbol{\gamma}}^2\right)$$

BF(γ, 0) is increasing in SR²_γ but decreasing in p_γ

Theorem

Under the mixture of g-priors specification, as
$$T \to \infty$$
, $\mathbb{P}[\mathcal{M}_{\gamma_0} \mid \mathcal{D}] \xrightarrow{p} 1$.

• Mixture of g-priors is to achieve posterior model selection consistency! • Simulations

A misspecified set of factors

• f_0 : the true set of factors, $f_0 \nsubseteq f \implies$ the studied factors omit some pricing factors

A misspecified set of factors

• f_0 : the true set of factors, $f_0 \nsubseteq f \implies$ the studied factors omit some pricing factors

Theorem

Assume that the observed return data are generated from a true linear SDF $m_0 = 1 - (f_0 - \mathbb{E}[f_0])^\top b_0$. Let $f_{\gamma_0} = f_0 \cap f$; that is, f_{γ_0} is the subset of f that includes only the true pricing factors. As $T \to \infty$,

1. for all *j* such that $\gamma_{0,j} = 1$, $\mathbb{P}[\gamma_j = 1 \mid \mathcal{D}] \xrightarrow{p} 1$;

2. model uncertainty measure \mathcal{E} satisfies $\mathcal{E} \leq (p - p_{\gamma_0})/p$ with probability one.

- True factors in f can always be selected \implies factor selection consistency Simulations
- If $\mathcal{E} \approx 1$, only two possibilities:
 - (1) $p_{\gamma_0} \approx 0$ (all factors under study are useless/no strong factors)
 - (2) Observed data entirely uninformative about the true SDF model

Empirics

Model uncertainty in US stock markets • Data • Examples

• Entropy $\in [0.27, 0.99]$: Average (standard dev) = 0.70 (0.21)

- Heightened model uncertainty coincides with economic downturns and stock market crashes
- Model uncertainty hits upper bounds during 2008-2011 & 2018-2020
 - Marginal probs of all factors are low Model/factor selection is elusive in these periods

Is Model Uncertainty Priced?

Number of PCs:	5	6	7	8	9	10
$\lambda_{\mathcal{E}}$	-0.066***	-0.067***	-0.067***	-0.065***	-0.062***	-0.060***
s.e.	0.017	0.017	0.017	0.017	0.018	0.018
Time-series R^2	5.8%	5.8%	5.8%	6.2%	6.2%	6.2%

Table 1: Risk Premia of Model Uncertainty Shocks: Monthly Estimates

The table reports the risk premia estimates of model uncertainty shocks (\mathcal{E}_t^{er1}) based on the three-pass method of Giglio and Xiu (2021). In all estimations, we standardize \mathcal{E}_t^{ar1} to have a unit variance. In particular, we project \mathcal{E}_t^{ar1} noto the space of large PCs of 275 Fama-French characteristic-sorted portfolios in the US market. The number of latent factors ranges from five to 10. If the 90% (95%, 99%) confidence interval of the risk premium does not contain zero, the risk premium estimate will be highlighted by * (****). We also report the time-series fit in each panel. Sample: 1975/07 - 2020/12.

- Investors willing to pay a premium to hedge against heightened model uncertainty
- To equate standard deviation of model uncertainty shocks to the market:

Annualized risk premium equals $(\sqrt{12})\lambda_{\mathcal{E}}\times 17\%\approx -4\%$

Model Uncertainty and Mutual Fund Flows

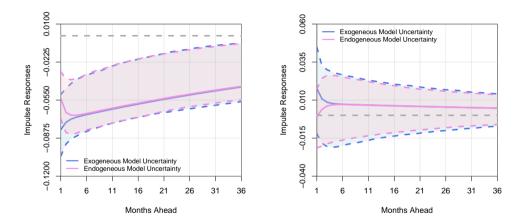
Study the dynamic responses of fund flows to uncertainty shocks using VAR:

 $Y_t = B_0 + B_1 Y_{t-1} + \dots + B_l Y_{t-l} + \text{controls}_t + S \epsilon_t, \quad \epsilon_t \sim WN(0, I)$

l denotes the lag order and is chosen by AIC/BIC (always equal to 1)

- Use Cholesky decomposition to identify the dynamic responses (S):
 - exogenous cause: uncertainty measure as the first element in Y_t
 - propagating mechanism: uncertainty measure as the last element

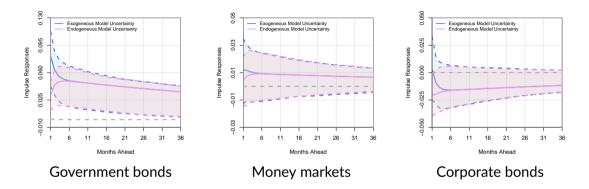
Relationships with aggregate fund flows



Equity Fund Flows

Fixed-Income Fund Flows

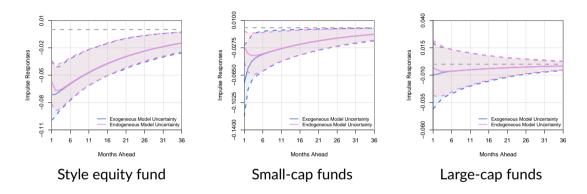
Fixed-income fund flows with different investment objective codes



- Following high model uncertainty, sharp dynamic inflows to government bond funds
- No such patterns in money market or corporate bond funds

Huang and Shi (2024)

Equity fund flows with different investment objective codes



 Following high model uncertainty shocks, equity outflows mainly from style and small-cap funds, instead of large-cap or sector funds

Conclusion

• Propose a measure of model uncertainty in the cross section that

- ► is based on rigorous Bayesian econometric framework
- is transparent with lower and upper bounds
- varies significantly over time and is persistently high in bad times
- commands a significantly negative risk premium
- Combined with low marginal factor probabilities: selecting SDF models is elusive
 - ► Example periods: 2008 GFC, recent years from 2018–2020
- Outflows from equity funds into US government bond funds under high uncertainty:
 - No such patterns detected using VIX or financial uncertainty VIX financial uncertainty

Appendix

- 14 prominent factors, from July 1972 to December 2020
 - Fama-French five factors (Fama and French, 2016)
 - Momentum factor (*Jegadeesh and Titman*, 1993)
 - Size, investment, and profitability factors (Hou, Xue, and Zhang, 2015)
 - Short and long-term behavioral factors (Daniel, Hirshleifer, and Sun, 2020)
 - HML devil (Asness and Frazzini, 2013)
 - Quality-minus-junk (Asness et al., 2019)
 - Betting-against-beta (Frazzini and Pedersen, 2014)
- Consider models that contain at most one factor from following categories:
 - Size (SMB or ME)
 - Profitability (RMW or ROE)
 - value (HML or HML Devil)
 - investment (CMA or IA)

Simulation study: posterior properties without misspecification

	T = 750			T = 1500			T = 15000					
scenario	g=2	g=4	g=16	mix. g	g=2	g=4	g=16	mix. g	g=2	g=4	g=16	mix. g
Posterior Probabilities of Factors $\mathbb{P}[\gamma_j = 1 \mid \mathcal{D}]$:												
$\gamma_{0,j}=1$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
$\gamma_{0,j}=0$	0.48	0.44	0.33	0.22	0.48	0.44	0.33	0.18	0.47	0.43	0.32	0.08
	(0.13)	(0.16)	(0.18)	(0.17)	(0.14)	(0.16)	(0.18)	(0.17)	(0.13)	(0.15)	(0.18)	(0.12)
Posterior Pro	Posterior Probabilities of Models $\mathbb{P}[\mathcal{M}_{\gamma} \mid \mathcal{D}]$:											
$\mathcal{M}_{m{\gamma}}=\mathcal{M}_{m{\gamma}_0}$	0.28	0.32	0.45	0.61	0.28	0.32	0.45	0.67	0.28	0.33	0.46	0.85
	(0.10)	(0.13)	(0.17)	(0.19)	(0.10)	(0.13)	(0.18)	(0.20)	(0.10)	(0.13)	(0.17)	(0.16)
$\mathcal{M}_\gamma \supset \mathcal{M}_{\gamma_0}$	0.24	0.23	0.18	0.13	0.24	0.23	0.18	0.11	0.24	0.22	0.18	0.05
	(0.09)	(0.11)	(0.13)	(0.13)	(0.10)	(0.11)	(0.13)	(0.13)	(0.09)	(0.11)	(0.13)	(0.10)
Model Uncertainty Measure \mathcal{E} :												
	0.38	0.37	0.32	0.26	0.38	0.36	0.32	0.23	0.38	0.37	0.32	0.12
	(0.03)	(0.03)	(0.04)	(0.05)	(0.03)	(0.03)	(0.04)	(0.06)	(0.03)	(0.03)	(0.04)	(0.06)

- f = carhart four factors, true factors = FF3
- 1,000 simulations with *T* = 750, 1, 500, 15, 000 trading days

Simulation study: model uncertainty under misspecification

- *f* = {MKT, SMB, HML, MOM, RMW, CMA, QMJ, FIN, PEAD, BAB} excluding the factor in each column
- True factors: FF3 plus the omitted factor (the name of which is at the top of each column)
- 1,000 simulations with T = 750 days, with standard deviations across simulations in parenthesis

Omitted factor:	МОМ	RMW	СМА	FIN	PEAD	QMJ	BAB		
Posterior Probabilities of Factors $\mathbb{P}[\gamma_j = 1 \mid \mathcal{D}]$:									
$\gamma_{0,j}=1$	0.94	1.00	1.00	1.00	1.00	0.99	1.00		
	(0.17)	(0.02)	(0.00)	(0.01)	(0.01)	(0.06)	(0.01)		
$\gamma_{0,j}=0$	0.49	0.35	0.27	0.43	0.29	0.36	0.38		
	(0.33)	(0.27)	(0.21)	(0.31)	(0.22)	(0.25)	(0.27)		
Model Uncertainty Measure \mathcal{E} :									
	0.46	0.46	0.46	0.43	0.46	0.49	0.47		
	(0.08)	(0.06)	(0.05)	(0.07)	(0.05)	(0.06)	(0.06)		
Upper bound = $(p - p_{\gamma_0})/p$	0.67	0.67	0.67	0.67	0.67	0.67	0.67		

Note: Extremely high model uncertainty should not be driven by model misspecification.

Regressions of Model Uncertainty on Contemporaneous Variables

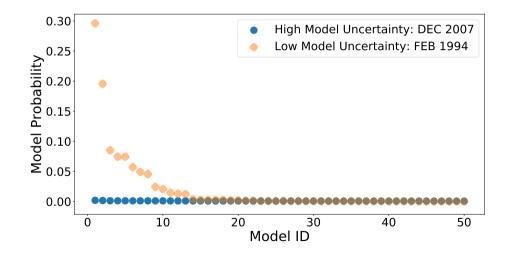
Х	FinU.	MacroU.	RealU.	EPUI	EPUII	VIX	TS	DS
β	0.21	0.17	0.14	0.00	0.00	0.01	-0.03	-0.00
	(1.95)	(1.53)	(1.20)	(0.33)	(1.07)	(2.20)	(-3.44)	(-0.09)
#obs.	546	546	546	432	432	420	546	546

The table reports results from the following regression:

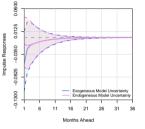
 $\mathcal{E}_t = \beta_0 + \beta X_t + \rho \mathcal{E}_{t-1} + \epsilon_t,$

where the variable X_t represents a) macro, financial, and real uncertainty measures from Jurado et al. (2015) and Ludvigson et al. (2021) (Fin U, Macro U, and Real U); b) two economic policy uncertainty (EPU) indices from Baker et al. (2016) (EPU I and EPU II); c) the CBOE VIX index (VIX); d) the term spread between ten-year and three-month treasuries (TS), e) the default spread between BAA and AAA corporate bond yields (DS). The *t*-statistics in parenthesis are computed based on Newey-West standard errors with 36 lags.

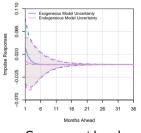
Model uncertainty in the cross section: two states Pack



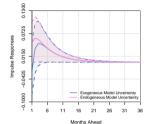
Equity fund flows to VIX shocks Back



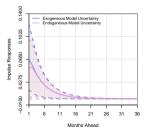
Style equity fund



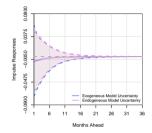
Government bonds



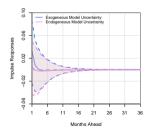
Small-cap funds



Money markets

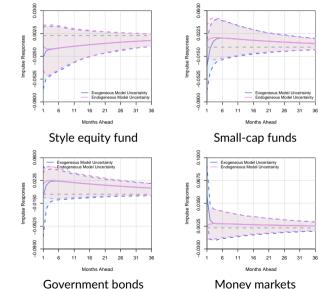


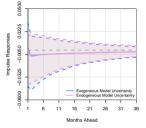
Large-cap funds



Corporate bonds

Equity fund flows to financial uncertainty shocks **Pack**





Large-cap funds



Corporate bonds