WELFARE EFFECTS OF INCREASING TRANSFERS TO YOUNG ADULTS: THEORY AND EVIDENCE FROM FRANCE

Marion Brouard

CREST

August 25, 2024

MARION BROUARD

MOTIVATION - WHY SINGLE OUT YOUNG ADULTS?

► Financial fragility:

- Highest poverty rate (22% vs 17%) and deprivation rate
- Same pattern for other poverty indicators (Sav) (Pay)
- ► Inequality: Evidence
 - Resources: Young adults income depends on parent's income
 - Education choice: High social reproduction Evidence
- Little social assistance: Age category receiving the least social assistance, even if: Level Ratio
 - Might help reducing financial fragility and inequalities
 - Can shape education decision (Fack and Grenet (2015))

MOTIVATION - WHY SINGLE OUT YOUNG ADULTS?

► Financial fragility:

- Highest poverty rate (22% vs 17%) and deprivation rate
- Same pattern for other poverty indicators (Sav) (Pay)
- ► Inequality: Evidence
 - Resources: Young adults income depends on parent's income
 - Education choice: High social reproduction Evidence
- Little social assistance: Age category receiving the least social assistance, even if: Level Ratio
 - Might help reducing financial fragility and inequalities
 - Can shape education decision (Fack and Grenet (2015))

 \Rightarrow Why so little assistance compare to other categories? Should it be increased?

MOTIVATION: CONCEPTUAL CHALLENGES

Shed light on the trade-off through **welfare analysis**: Two margins, **the benefits** VS **the costs**:

(1) What is the social utility:

Young adults are poor, so should value it a lot

- Interactions between parents and government transfers can decrease welfare effects
- weights that society put on young adults utility
- (2) What is the fiscal cost for the government:
 - Upfront cost of the policy
 - ?
 - Labor supply responses

Education decision responses

- (1) What is the **welfare effect** of increasing transfers to young adults financed by older individuals?
- 2 Should those transfers be tagged?

OUTLINE

1. Conceptual Framework

2. Social Utility of Transfers

- 2.1. MPC Estimation
- 2.2. Transfer derivatives estimation
- 2.3. Wrap-Up
- 2.4. Heterogeneity
- 3. FISCAL COST
- 4. Conclusion

OUTLINE

1. Conceptual Framework

2. Social Utility of Transfers

- 2.1. MPC Estimation
- 2.2. Transfer derivatives estimation
- 2.3. Wrap-Up
- 2.4. Heterogeneity
- 3. FISCAL COST
- 4. Conclusion

Setup - Preview

Setup - Preview

Setup: Wrap-up

Should the government change the benefit age-profile?

- ▶ Trade-off when implementing a policy:
 - Social marginal utility (SMU)
 - Pareto weights (ω)
 - Fiscal cost of the policy = 1 + Fiscal Externalities (FE)
- ► Comparing Policies: (rely on MVPF literature)
 - Compare **welfare effect** of small deviations from the actual policy for children vs parents via **cost-benefit ratios**:

$$\frac{\omega\times \mathsf{SMU}^k}{1+\mathsf{FE}^k} \ \stackrel{\textbf{?}}{\Rightarrow} \ \frac{\omega^P\times\mathsf{SMU}^P}{1+\mathsf{FE}^P}$$

• Compare benefit increase for children in **education** VS on **the labor market**.

OUTLINE

1. Conceptual Framework

2. Social Utility of Transfers

- 2.1. MPC Estimation
- 2.2. Transfer derivatives estimation
- 2.3. Wrap-Up
- 2.4. Heterogeneity
- 3. FISCAL COST
- 4. CONCLUSION

Social Marginal Utility

Components of SMU:

- For transfer to parents:
 - Utility gain of parents
 - Utility gain of children from the amount passed-through
- For transfer to children:
 - Utility gain of children
 - Accounting for possible **crowding-out effect** on parent transfer

Social Marginal Utility

Components of SMU:

- For transfer to parents:
 - Utility gain of parents
 - Utility gain of children from the amount passed-through
- For transfer to children:
 - Utility gain of children
 - Accounting for possible **crowding-out effect** on parent transfer

Need to estimate:

- (1) <u>Transfer derivatives:</u> Crowding-out and pass-through
- (2) Utility gain: Rely on Landais and Spinnewijn (2021)
 - The higher the MPC, the larger the transfer value
 - Ratio of parent-children mpc gives a lower bound of parent-children SMU ratio

SMU - Empirical Application

Challenges:

- (1) <u>MPC:</u> Need **comparable exogenous variation** in income for both children and parents.
- (2) <u>Transfer derivatives:</u> Identify parent-to-children transfer and its change

SMU - Empirical Application

Challenges:

- (1) <u>MPC:</u> Need **comparable exogenous variation** in income for both children and parents.
- (2) <u>Transfer derivatives:</u> Identify parent-to-children transfer and its change

Data: Crédit Mutuel Bank transaction data

- ▶ Granular information on flows and household balance-sheet:
 - Credit card expenditure at the transaction level
 - All incoming and outgoing transfers at a daily frequency
 - Balance of current and saving accounts, mutual funds and debt
- **Demographic characteristics** (Age, Sex, CSP, etc.)
- Period: 2019 Now
- ▶ Random sample of **300,000 households** (> 500,000 individuals)

MARION BROUARD

OUTLINE

1. Conceptual Framework

2. Social Utility of Transfers

2.1. MPC Estimation

- 2.2. Transfer derivatives estimation
- 2.3. Wrap-Up
- 2.4. Heterogeneity
- 3. FISCAL COST
- 4. Conclusion

SMU - EMPIRICAL APPLICATION MPC - INSTITUTIONAL

Exploit two one-shot transfers in 2020:

- ► Transfer to children (18-24):
 - Target: Entitled to housing benefits (APL) or students with $\frac{1}{\text{grant}}$
 - <u>Amount:</u> 150 euros
 - Number of treated in data: \simeq 4,000 individuals
- Transfer to parents: ARS (Allocation de Rentrée Scolaire)
 - Target: Parents with a child between 6 and 18.
 - <u>Amount:</u> \simeq 500 euros per child
 - Number of treated in data: \simeq 20,000 individuals

SMU - EMPIRICAL APPLICATION MPC - Estimation

Compute MPC using an DID event study:

 $C_{it} = \alpha_i + \boldsymbol{\delta} \mathsf{Treated}_i \cdot \mathbb{1}_{[t > t^*]} + \gamma \mathbb{1}_{[t > t^*]} + \beta X_{it} + \varepsilon_{it}$

- Weekly consumption (C_{it}), treatment week t^{*}, incoming transfer (X_{it})
- MPC retrieved from re-scaling δ Details
- Matching: Control group constructed using the one-to-one nearest-neighbor matching on pre-event characteristics:
 - Exactly matched on demographics characteristics
 - Mahalanobis distance on financial variables

SMU - EMPIRICAL APPLICATION MPC - Results

FIGURE: Children MPC (45%)

SMU - EMPIRICAL APPLICATION MPC - RESULTS

FIGURE: Parents' MPC (25%)

OUTLINE

1. Conceptual Framework

2. Social Utility of Transfers

2.1. MPC Estimation

2.2. Transfer derivatives estimation

2.3. Wrap-Up

2.4. Heterogeneity

3. FISCAL COST

4. Conclusion

TRANSFER DERIVATIVE - METHODOLOGY

Advantage:

- Data that pins down parent-child transfer
- Panel follows individuals over several months/years
- $\,\hookrightarrow\,$ Move away from standard survey cross-sectional analysis

▶ Regression: TWFE following individuals (*i*) over months (*t*):

$$G_{it} = \alpha_i + \alpha_t + \beta_1 Y_{it} + \gamma_1 Y_{it}^2 + \beta_2 Y_{it}^P + \gamma_2 Y_{it}^{P^2} + \varepsilon_{it}$$

With G_{it} parents-to-child transfer, Y_{it} children and Y_{it}^{P} parent's total incoming transfers

- Crowding-out recovered from eta_1 and γ_1
- Pass-through recovered from β_2 and γ_2

TRANSFER DERIVATIVES

(A) CROWDING-OUT (6%)

(B) PASS-THROUGH (1%)

Methodology 2: Take advantage of heterogeneity in the scholarship amount (8.5%) OLS (Non-Wire)

OUTLINE

1. Conceptual Framework

2. Social Utility of Transfers

2.1. MPC Estimation

2.2. Transfer derivatives estimation

2.3. Wrap-Up

2.4. Heterogeneity

3. FISCAL COST

4. Conclusion

SMU - TAKE AWAY

Wrap-Up:

- MPC significantly higher for young adults
- Low crowding-out
- Low pass-through

▶ Implication for SMU: Putting pieces back in the model

$$SMU_t^{b^k} \ge 2.05 \times SMU_t^{b^P}$$

• Social benefit of transferring to children twice bigger

OUTLINE

1. Conceptual Framework

2. Social Utility of Transfers

- 2.1. MPC Estimation
- 2.2. Transfer derivatives estimation
- 2.3. Wrap-Up
- 2.4. Heterogeneity
- 3. FISCAL COST
- 4. Conclusion

SMU - TAGGING CHILDREN

Idea: Replicates the analysis for the most two fragile groups

What about tagging low-income workers?

- <u>MPC</u>: 55% (0.1)
- Crowding-out: 7% (0.008)

$$\Rightarrow SMU_t^{b^w} \geq \mathbf{2.9} \times SMU_t^{b^P}$$

2) What about tagging students with low-income parents?

- <u>MPC</u>: 61% (0.15) Plot
- Crowding-out: 4.5% (0.017)

 $\Rightarrow SMU_t^{b^e} \geq 4.12 \times SMU_t^{b^P}$

SMU - TAGGING PARENTS

 So far the estimated effect is an upper bound (population of MPC with on average lower income)

FIGURE: Parents' MPC by Incoming Transfer

OUTLINE

1. Conceptual Framework

2. Social Utility of Transfers

- 2.1. MPC Estimation
- 2.2. Transfer derivatives estimation
- 2.3. Wrap-Up
- 2.4. Heterogeneity
- 3. FISCAL COST
- 4. Conclusion

FISCAL COST

Benefit Cost Ratio Analysis:

Benefit Cost Ratio Analysis:

Increasing transfer to parents:

Labor supply

FISCAL COST

Benefit Cost Ratio Analysis:

Increasing transfer to parents:

- Labor supply \Rightarrow Hendren (2016) FE = 0.14

FISCAL COST

Benefit Cost Ratio Analysis:

Increasing transfer to parents:

- Labor supply \Rightarrow Hendren (2016) FE = 0.14

Increasing transfer to children in education:

Education decision (\checkmark)

Return to education of pivotal children (\simeq)

Increasing transfer to children in labour market:

Education decision (\checkmark)

Return to education of pivotal children (\simeq)

🚽 Labor supply (🗡)

MARION BROUARD

FISCAL COST - STUDENT

Children in education vs. parents:

• Fiscal cost = 0.9 Plot

$$\frac{\mathsf{SMU}^e}{1+\mathsf{FE}^e} \geq \mathbf{6} \times \frac{\mathsf{SMU}^P}{1+\mathsf{FE}^P}$$

• Redistribution is highly welfare enhancing

FISCAL COST - STUDENT

Children in education vs. parents:

• Fiscal cost = 0.9 Plot

$$\frac{\mathsf{SMU}^e}{1 + \mathsf{FE}^e} \geq \mathbf{6} \times \frac{\mathsf{SMU}^P}{1 + \mathsf{FE}^P}$$

- Redistribution is highly welfare enhancing
- "Poor" children in the labor market vs. parents:
 - If labor supply elasticity is the same for parents and children:

$$\frac{\mathsf{SMU}^w}{1 + \mathsf{FE}^w} \ge \mathbf{2} \times \frac{\mathsf{SMU}^P}{1 + \mathsf{FE}^P}$$

- The social utility of increasing transfer to young adult is at least two times higher than targeting older individuals
- Fiscal cost depends on whether targeting students or workers, but never justify such low assistance
- ▶ Higher welfare effect when targeting:
 - Students with low income parents
 - Young workers with low income

⇒ Redistribution from older to younger individual would be highly welfare enhancing

Thank you!

APPENDIX

MOTIVATION - FINANCIAL FRAGILITY

MOTIVATION - FINANCIAL FRAGILITY

FIGURE: Share Card Purchase Rejected

MOTIVATION - INEQUALITY

$\ensuremath{\operatorname{Figure:}}$ Income of Young Adults

MOTIVATION - INEQUALITY

FIGURE: Share of 18-24 in Education

MOTIVATION - SOCIAL ASSISTANCE

FIGURE: Social Assistance by Age

MOTIVATION - SOCIAL ASSISTANCE

DID, MPC COMPUTATION

MPC Computation:

$$C_{it} = \alpha_0 + \alpha_i + \gamma \mathbb{1}_{[t > t^*]} + \beta \mathsf{Treated}_i \cdot \mathbb{1}_{[t > t^*]} + X_{it} + \varepsilon_{it}$$

$$MPC = \frac{\beta \cdot 5}{\text{Transfer Amount}}$$

DID runs to plot graphs

$$C_{it} = \alpha_0 + \alpha_i + \gamma \sum_{t \neq -1} Week_t + \beta \sum_{t \neq -1} Week_t \cdot \mathsf{Treated}_i + X_{it} + \epsilon_{it}$$

 $C_{it} = \mbox{Weekly consumption}, \ t^* = \mbox{Treatment week}, \ X_{it} = \mbox{Incoming transfer }$

MARION BROUARD

MPC - Robustness

FIGURE: MPC by Amount of Transfer

MPC - Robustness

Back

MPC HETEROGENEITY

(b) Students Grant (0.61)

Back

CROWDING-OUT - SCHOLARSHIP

;;			
	(1)	(2)	
1. Scolarship			
Scholarship Amount	-0.095*** (0.027)	- 0.085*** (0.028)	
Parent Ref Wage	0.0002*** (7e-5)	0.2e-4 (0.7e-4)	
2. Covariates			
Age		3.3 (4.05)	
Nb Siblings ¡18yo		-11.01** (4.3)	
Gender		-19** (8.18)	
Incoming Transfers Parents		0.0005*** (0.8e-5)	
Number of Observations	2,833	2,833	

TABLE: OLS Estimates Crowding-out of Scholarship

MARION BROUARD

NON-WIRE TRANSFER

$\ensuremath{\mathbf{Figure:}}$ Decomposition Parent's Assistance

NON-WIRE TRANSFER

$\ensuremath{\mathbf{Figure:}}$ Decomposition Parent's Assistance

BEHAVIOURAL RESPONSES - ESTIMATES

	Parameters	Estimates
1. Labor Supply		
Cesarini et al (2017)	Wealth elasticity	0.01
Hendren (2016)	Labor Supply FC	0.14
2. Education distortion		
Fack et Huillery (2021)	Return to education	0.10
Fack and Grenet	Education responses wrt \boldsymbol{b}^e	0.07/1500
Blundell et al (2016)	Education responses wrt $\boldsymbol{b}^{\boldsymbol{w}}$	0.01/270

TABLE: Estimates used

Back