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Overview

• Motivation

• Empirical example

• Synthetic IV estimator

• Bias, consistency and inference

• Simulations

• Empirical checks
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Motivation

• IV-DiD Design: (Y ,R,Z ) + pre-treatment period

• Common problem: worried about DiD due to unmeasured

confounding (PT may not hold).

• Solution: find an IV

• Example: Shift-share IV methods compare groups or regions more-

and less-exposed to a treatment.

• But: What to do if the instrument is also correlated with

unobserved confounders? (e.g. reduced-form has pre-trends)

• This paper: a synthetic IV estimator

• Combines IV and SCs to address unmeasured confounding

• Biased, but consistent under assumptions when TSLS is not

• Bias depends on pre-treatment fit and instrument strength

• Can be combined with other estimators to become ‘doubly-robust’

• Exhibits good properties in empirical applications and simulations
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An Example

• Question: What is the impact of immigrants on natives’ labor

market outcomes?

• Setting: Syrian Refugees in Turkey

• Syrian Civil war started in March 2011

• By 2017, 6 million Syrians had sought shelter outside of Syria

• Primarily in Turkey (3.5 million)

• Time span studied 2004–2016.

• Outcome Y: employment rate of natives (at region-year level)

• Treatment R: Refugee/native ratio

• Instrument Z: Weighted-distance from the border

• Confounder U: region economic trends
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Time-series of the number of refugees in Turkey
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Figure 1: Number of refugees in Turkey
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Distribution of Syrian refugees in Turkey
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Figure 2: Number of refugees per 100 natives in 2015

Instrument construction
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First-stage

Rjt =
∑

k ̸=2010

θk(1{t = k} × Zj) + fj + ft + ηjt
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Figure 3: First-stage
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Reduced-form: Employment rate

• Reduced form exhibits pre-trends (confounder U matters)

Yjt =
∑

k ̸=2010

βk(1{t = k} × Zj) + fj + ft + ϵjt
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Figure 4: RF wage-employment rate 8



Common problem in shift-share designs

• Example from Autor, Dorn and Hanson (2013).

Figure 5: Percent manufacturing employment, treatment in 1990
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Potential solutions

Common solutions in empirical papers

• Adding two-way FEs (Uit = αi + δt), region FEs (Uit = αg × δt)

• Estimating a linear trend (Uit = αi × t).

• Using observed covariates (Uit = g(Xit)).

• But, in many economic examples agents make decisions on time varying

unobservables (e.g. Llull 2017).

Current papers addressing related concerns:

1. Boryusak and Hull 2023: identification and counterfactual inference in

shift-share designs when instruments mechanically depends on covariates.

2. Arkhangelsky and Korovkin 2023: IV with unobserved confounding

when exogeneous variation is given by aggregate time-series shocks

3. Danieli et al. 2024: negative controls for IV. Show IV-DiD unbiased

under PT (Uit = αi + δt).

In this paper: address unmeasured confounding (Uit = µ′
iFt) in the framework

of IV-DiD using SC.
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General idea

• What to do when Zit is correlated with Uit = µ′
iFt?

• If we could control for Uit we would be done

• Idea: in a pre-period we create a proxy for Uit then use IV on the

”debiased” data

Figure 6: Triangular system with proxy 11



The Synthetic Estimator

SC program: for each j ∈ {1, . . . , J} we find the synthetic control

weights ŵj by solving the following program for t ∈ {1, . . . ,T0}. For
each j ,

ŵSC
j ∈ argminw∈W∥Y T0

j − Y T0

−j
′w∥2,

Today: W = ∆J−1.

However, our results follow for any estimator in

W = {w ∈ RJ | ∥w∥1 ≤ C}.

• Nests the standard SC program with simplex constraint: C = 1.

• Allows for a variety of SC procedures (e.g. with l1 penalties).

• While our results are valid for W estimators, in practice simplex

regularization performs well.

• If Rit exists in pre-period we compute the weights on the residual of

Y on R or match R.
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The Synthetic IV

Step 2: Given {Ỹit , R̃it , Z̃it}Tt>T0
, we estimate the first stage and reduced

form by OLS

π̃ ∈ argminπ(Ỹ − Z̃π)′(Ỹ − Z̃π),

β̃ ∈ argminβ(R̃ − Z̃β)′(R̃ − Z̃β),

where Z̃ includes an intercept.

Then, the estimated average marginal effect is given by:

θ̃TSLS =

(∑
it

Z̃it R̃it

)−1∑
it

Z̃itỸit .

• Also possible to not debias Z , θ̃TSLSYR , or to only debias Z , θ̃TSLSZ .

• But, debiasing both will help in finite samples.

• Intuition from TSLS with covariates differs because we are

estimating PU .
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Reduced-form re-visited I
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Figure 7: RF wage-employment rate
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Reduced-form re-visited II

(a) Men: salaried employment (b) Women: formal salaried employment

Figure 8: Additional examples of IV vs SIV
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Treatment effects

• Using SIV can matter in practice

Figure 9: RF wage-employment rate
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Setting

Linear Triangular System: J units, T = T0 + T1 time periods

Yit = θRit + µ′
iFt + ϵit ,

Rit = γZit + Ait + ηit ,

where Zit = 0 for t < T0.

Assumptions

• Partial independence condition: ϵit , ηit ⊥ Zit

• Bounded primitives: µi , Ft , Ait , Zit are bounded

• Strong instrument and enough residual variation

1

JT
Z ′(I − PU)Z

p→ Q > 0

• Errors: ϵit and ηit are i .i .d mean zero, with bounded variance, covariance

and fourth moments

• Stable rank:
∥YT0∥2F
∥YT0∥22

≤ r̄ and λ1(Y
T0) ≤ σ̄1 (signal to noise assumption)

more detail
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The Synthetic TSLS identification

As in FE models,

Ỹit = Yit − Ŷ SC
it

= θRit + µ′
iFt + ϵit −

∑
j ̸=i

ŵSC
ij Yjt

= θR̃it + (µi −
∑
j ̸=i

ŵSC
ij µj)

′Ft + ϵit −
∑
j ̸=i

ŵSC
ij ϵjt .

The synthetic TSLS is given by

θ̃TSLS =

(∑
it

Z̃it R̃it

)−1∑
it

Z̃itỸit

= θ +

(∑
it

Z̃it R̃it

)−1∑
it

Z̃it

µi −
∑
j ̸=i

ŵSC
ij µj

′

Ft

+

(∑
it

Z̃it R̃it

)−1∑
it

Z̃it

ϵit −
∑
j ̸=i

ŵSC
ij ϵjt

 .
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Bound on factor term

In general, it need not be op(1), the expected fit in the pre-treatment

period plays a key role.

Theorem (Bound - MAD)

Under assumptions, for t > T0 the following bound holds for all J,T

and T0

1

JT1

∣∣∣∣∣E
[∑

it

Z̃it µ̃
′
iFt

]∣∣∣∣∣ ≤
(
F̄ 2k

ξ

)
cz

(
2

√
J

T0
σϵ + E

 1

JT0

∑
i,t≤T0

|Ỹjt |


+ E

 1

JT0

∑
i,t≤T0

|R̃jt |

)
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Bound on factor term

Theorem (Bound)

Under assumptions, for t > T0 the following bound holds for all J,T1

and T0

1

JT1

∣∣∣∣∣E
[∑

it

Z̃it µ̃
′
iFt

]∣∣∣∣∣ ≤
(
F̄ 2k

ξ

)
cz

(
2

√
J

T0
σϵ + r̄ σ̄1

[
1√
T0J

+

√
J

T0

])

Furthermore, as JT1 → ∞ and r̄ σ̄1

√
J
T0

→ 0,

1

JT1

∑
it

Z̃it µ̃
′
iFt

p→ 0.
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Consistency result

Theorem (Consistency)

Under assumptions, as JT1 → ∞ and r̄ σ̄1

√
J
T0

→ 0,

θ̃TSLS − θ
p→ 0,

θ̃TSLSZ − θ
p→ 0,

θ̃TSLSYR − θ
p→ 0

Finite sample bias increases with

• Noise: σϵ vs. µ′
iFt , worse fit

• Short pre-periods:
√

J
T0
, worse over-fitting

• Correlation with confounder: first stage gets worse

1

JT1

∑
it

Z̃it R̃it
p→ Q,

for θ̃TSLS , θ̃TSLSYR and θ̃TSLSZ
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Asymptotic normality

Theorem (Asymptotic normality)

Under assumptions, for t > T0, if
√

T1

T0
(1 + J)r̄ σ̄1 → 0 as

√
J
T1

→ 0,

then
√
JT1(θ̃

SIV − θ)

vJT

d→ N(0, 1)

where vJT1 = (EZ̃ ′R̃)−2
(
E
[∑

it var(Z̃it ϵ̃it | Z ,w)
])

and∑
it

var(Z̃it ϵ̃it | Z ,w) = σ2
∑
it

∆it(Z ,w)

• We require large number of pre and post periods J
T1

→ 0

• Condition on weight sequence such that ∥w i∥1 ≤ C , then we do not need

J/T1 → 0

• Alternatively, we also explore randomization inference
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Additional estimators

• The instrument can remove some of the noise!

Suppose we can decompose Zit = Ziλt

Projected synthetic estimator

1. ”de-noise” by projecting: Yz = Z (Z ′Z )−1Z ′Y , where Z is J × 1

2. Use the de-noised outcomes to get the SC

wP
j ∈ argminw∈∆J−1∥Y T0

z,j − Y T0

z,−j
′w∥2

3. Compute θ̃TSLSP using the projected debiased data Ỹ P , R̃P , and Z .
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Bound comparison

• Baseline synthetic estimator biased when σϵ high.

• Projected estimator less biased when σϵ, but otherwise could fit

unobserved worse.

SIV

1

JT1

∣∣∣∣∣E
[∑

it

Z̃it µ̃
′
iFt

]∣∣∣∣∣ ≤
(
F̄ 2k

ξ

)
cz

2

√
J

T0
σϵ + E

 1

JT0

∑
i,t≤T0

|Ỹjt |


Projected SIV

1

JT1

∣∣∣∣∣E
[∑

it

Z̃it µ̃
′
iFt

]∣∣∣∣∣ ≤
(
F̄ 2k

ξ

)
cz

2

√
1

T0
σϵ + E

 1

JT0

∑
i,t≤T0

|Ỹ P
jt |


Ensemble estimator for α ∈ [0, 1]

θ̃E (α) = αθ̃ + (1− α)θ̃P ,
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Simulation design

Yit = βRit + µ′
i ft + ϵit ,

Rit = (γZit + ηit) ∗ 1(t ≥ T0)

Zit = Z ′
i gt ∗ 1(t ≥ T0)

Time series structure:

ft = κf ft−1 + uft ,

gt = κggt−1 + ugt ,

Error structure: (
uft

gft

)
∼ N

(
0,

[
σ2
f ρgσf σg

ρgσf σg σ2
g

])
(
Zi

µi

)
∼ N

(
0,

[
σ2
z ρzσzσµ

ρzσzσµ σ2
µ

])
,(

ϵit

ηit

)
∼ N

(
0,

[
σ2
ϵ ρσϵσλ

ρσϵσλ σ2
λ

])
.
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Calibrated simulation

Simulation based on Syrian example:

• T = 16, T0 = 10, J = 26

• Target θ = −0.16

• Noise level: σ2
ϵ = σ2

η = 0.035

• Instrument strength: match F-stat of 153; σ2
Z = 0.54, γ = 3.16

• Signal level: σ2
µ = 0.25, k = 2 (from PCA)

Simulations designs for 10000 draws, we vary:

1. ρs to change degree of confounding

2. σϵ to change noise level
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Baseline
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Figure 10: ρ = ρz = ρg = 0, 95% coverage is 0.96
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Endogeneity
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Figure 11: ρ = 0.5, ρz = ρg = 0, 95% coverage is 0.96
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Endogeneity + OVB

-1 -0.5 0 0.5
0

1

2

3

4

5

6

OLS
TSLS
Synthetic IV

Figure 12: ρ = ρz = ρg = 0.5, 95% coverage is 0.94
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Increasing the correlation with U
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Figure 13: ρ = ρz = ρg = 0.7, 95% coverage is 0.89
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Increasing the correlation with U
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Figure 14: ρ = ρz = ρg = 0.9, 95% coverage is 0.70
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Why is coverage good?

• Density check: no unit receives all weight
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(a) ρ = ρz = ρg = 0.5
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(b) ρ = ρz = ρg = 0.9
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Increasing the noise

Model Mean β Var |Bias| MSE

ρ = ρz = ρg = 0.5

OLS (twfe) 0.029 0.019 0.180 0.055

TSLS (twfe) -0.047 0.025 0.112 0.038

SIV -0.145 0.006 0.014 0.006

projected SIV -0.188 0.015 0.028 0.016

SIV + projected -0.151 0.006 0.008 0.006

SIV Z not debiased -0.126 0.007 0.033 0.008

Table 1: σϵ = 2σSyria
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Increasing the noise

Model Mean β Var |Bias| MSE

ρ = ρz = ρg = 0.5

OLS (twfe) 0.069 0.026 0.229 0.078

TSLS (twfe) -0.047 0.028 0.112 0.041

SIV -0.134 0.012 0.025 0.013

projected SIV -0.183 0.023 0.023 0.024

SIV + projected -0.144 0.012 0.015 0.012

SIV Z not debiased -0.113 0.012 0.046 0.014

Table 2: σϵ = 4σSyria
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Increasing the noise

Model Mean β Var |Bias| MSE

ρ = ρz = ρg = 0.5

OLS (twfe) 0.203 0.067 0.363 0.199

TSLS (twfe) -0.048 0.046 0.111 0.058

SIV -0.101 0.045 0.058 0.048

projected SIV -0.152 0.070 0.007 0.071

SIV + projected -0.119 0.044 0.041 0.046

SIV Z not debiased -0.081 0.037 0.078 0.043

Table 3: σϵ = 8σSyria
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Recap

• Good finite sample Bias + MSE

but the method is sensitive to

1. High correlation with the unobserved con-founder

2. High noise-signal ratio

3. Ensemble estimator: SIV + projected estimator may offer

”double-robustness”

Diagnostic checks:

1. Asses good pre-treatment fit (MAD plots)

2. Back testing the start of the treatment

3. Check the instrument strength

4. Check density of weights
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Empirical checks I

(a) Debiased Data (b) Debiased First-Stage
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Empirical checks II

(a) Debiased Reduced-Form (b) Weight density
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ADH revisited

• Decreased effect for 1999-2000

Table 4: China shock effect

1990–2000 2000-2007 1990–2007
(1) (2) (3)

2SLS -0.888 -0.718 -0.746
(0.181) (0.064) (0.068)

SIV (training in 70)-0.955 -0.725 -0.764
(0.202) (0.075) (0.078)

SIV (training in 70 and 80)-0.588 -0.726 -0.703
(0.198) (0.070) (0.067)

1990–2000 2000-2007 1990–2007
(1) (2) (3)

2SLS -0.888 -0.718 -0.746
(0.181) (0.064) (0.068)

SIV -0.588 -0.726 -0.703
(0.198) (0.070) (0.067)

Notes: The first row replicates columns 1--3 
of Table 2 in ADH 2013. In rows 2 and 3, we 
apply SIV. The SC weights are estimated 
using the manufacturing growth rates in 
1970 in row 2, and in 1970 and 1980 in row 
3. 

Notes: The first row replicates columns 1--3 
of Table 2 in ADH 2013. In row 2 we apply 
SIV. The SC weights are estimated using the 
manufacturing growth rates in 1970 and 

Notes: The first row replicates columns 1–3

of Table 2 in ADH 2013. The second row

presents the estimates using the SIV. The

SC weights are estimated using the manu-

facturing growth rates in 1970 and 1980.
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Ranking example I

• Use promotion contracts (Z) as an IV for producer ranking (R) in

digital platform to study the effect on sales (Y)

• A/B test in which ranks were randomized available!
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Figure 18: Reduced form event study of promotion on log sales. 40



Ranking example II

• IV biased upwards as expected from positive OVB

• SIV recovers the A/B test

Figure 19: Treatment effects of being in top ranks on sales.
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Conclusion

• Un-measured confounding can bias DiD and IVDiD estimates

• The synthetic IV offers one solution based on SC

• We derive conditions for consistency and asymptotic normality

• Show the applicability of the method empirically and through

simulations
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New draft coming soon! 42



Additional slides



Regression Set-up

• Let Rj,t denote the refugee/native ratio at province-year level

• Refugee location choice is endogenous: use travel distance as an

instrument:

Zj,t = H̄t︸︷︷︸
shift

× Zj︸︷︷︸
share

Zj =
13∑
s=1

λs
1

dj,s

(1)

where

• H̄t is the number of refugees in Turkey in year t.

• dj,s is the travel distance between Turkish region p and Syrian

governorate s

• λs is the weight given to Syrian governorate s

• today: λs = πs , population share of Syrian governorate s

return
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Setting

• Two unobserved (grey) confounders.

• Goal: estimate causal effect of Rit on Yit .

Figure 20: Triangular system with unknown confounders.
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OLS

• OLS of Y on R valid if Rit ⊥ ϵit ,Uit (R exogenous).

Figure 21: Example of independence relationships for OLS.
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IV

• IV requires that Zit ⊥ ϵit ,Uit .

Figure 22: Example of independence relationships for IV.
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Model Assumptions I

Assumption (A1)

Independence condition: ϵit , ηit ⊥ Zit

Assumption (A2)

• |Flt | ≤ F̄ .

• F
′

T0
FT0 has minimum eigenvalue ξ such that ξ/T0 > 0.

• µi ∈ M with diam(M) = sup{∥t − s∥ : for t, s ∈ M} ≤ cµ.

• Zit ∈ Z such that diam(Z) = sup{∥t − s∥ : for t, s ∈ Z} ≤ cz .

• The instrument Zit and the unobserved factor structure satisfy

1

JT

∑
it

Z 2
it

p→ QZ > 0,

as JT → ∞ and

1

JT
Z ′(I − PU)Z

p→ Q > 0,

for projection matrix U.

• ϵit and ηit are i .i .d mean zero random variables with variances σ2
ϵ

and σ2
η respectively, covariance σϵη = E[ϵitηit ] and bounded fourth

moments.
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Model Assumptions II

Assumption (A3)

With probability one,
∥Y T0 ′∥2F
∥Y T0 ′∥22

≤ r̄ ,

and the largest singular value satisfies σ1(Y
T0) ≤ σ̄1, where r̄ and σ̄1 may

depend on J and T0.

Theorem (Bias bound)

Under A1-A3, for t > T0 the following bound holds for all J,T and T0

1

JT

∣∣∣∣∣E
[∑

it

Z̃it µ̃
′
iFt

]∣∣∣∣∣ ≤
(
F̄ 2k

ξ

)
cz

(
2

√
J

T0
σϵ + r̄ σ̄1

[
1√
T0J

+

√
J

T0

])

Furthermore, as JT → ∞ and r̄ σ̄1

√
J
T0

→ 0,

1

JT

∑
it

Z̃it µ̃
′
iFt

p→ 0.

setting
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Two additional estimators

• The instrument can remove some of the noise!

Suppose we can decompose Zit = Ziλt

Projected synthetic estimator

1. ”de-noise” by projecting: Yz = Z (Z ′Z )−1Z ′Y , where Z is J × 1

2. Use the de-noised outcomes to get the SC

wP
j ∈ argminw∈∆J−1∥Y T0

j − Y T0

z,−j
′w∥2

Aggregated synthetic estimator

1. Let Qi =
∑

t<T0
ZitYit

2. Match the aggregated values

wAgg
j ∈ argminw∈∆J−1∥Qi − Q ′

−iw∥2
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Ensemble estimator

• Baseline synthetic estimator biased when σϵ high.

• Projected/Agg estimators less biased when σϵ, but otherwise could

fit unobserved worse.

Ensemble estimator for α ∈ [0, 1]

θ̃E (α) = αθ̃ + (1− α)θ̃P ,

• α hyper-parameter can be chosen to minimise MSE in a validation

period.

return
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Event study simulation
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Figure 23: Example event study simulation.
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Empirical correlation
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Figure 24: Factor correlation for ρ = 0.7.
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Debiasing the first stage?

We want to compare

• β̃ = (
∑

it R̃it R̃it)
−1∑

it R̃it Z̃it ,

• β̃Z = (
∑

it R̃it R̃it)
−1∑

it R̃itZit .

Lemma

Consider an instrument of the form:

Zit = Ait + αµiFt ,

where Ait ∼iid N(0, σ2
A) and µ′

iFt ⊥ Ait . Suppose that µ̃′
iFt = op(1), then

β̃

β̃Z

=

∑
it R̃it Z̃it∑
it R̃itZit

p→ ξ ≥ 1.

• So de-biasing the instrument could matter asymptotically.

More details
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Randomization Inference

• Asymptotic results require large T . Often we have short panels.

• Randomization inference common practice in SC studies

• e.g. Abadie et al. (2010), Firpo and Possebom (2018)...

• Challenge is that we have a continuous treatment and an instrument.

Two approaches:

1. Split conformal inference: define a blank period and perform

permutation tests comparing the distribution of realized θ̃t with

blank period θ̃bt .

1.1 Chernozhukov et al. (2021), Abadie and Zhao (2022).

2. Randomization inference: permute instrument-treatment pairs

across units, compare permuted estimates θ̃b with realized θ̃.

• Imbens and Rosenbaum (2003).
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Split conformal inference

1. Split T0 period into a training period and a blank period (starting at

Tb < T0).

2. Compute SC weights in the training period and define debiased quantities.

3. Run reduced form event regression to get estimates

{θ̃Tb , . . . , θ̃T0 , . . . , θ̃T}.

4. Generate a permutation (T − T0)× 1 vector eπ = (θ̃π(1), . . . , θ̃π(T−T0)).

5. Compute test statistic: S(e) = 1/(T − T0)∥e∥q, q=1.

6. Permutation p-value:

p̂ =
1

Π

∑
π∈Π

1(S(θ̃π) ≥ S(θ̃t>T0))

• Requires exchangeability across time of ϵit ,Ft .

• Requires blank time periods.
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Randomization inference

1. In the pre-period compute the SC weights and generate the debiased

quantities.

2. Define the set of permutations of the J units: P(J).

3. For a given permutation π ∈ P(J), compute

θ̃π =

(∑
it

Z̃π(i)t R̃π(i)t

)−1∑
it

Z̃π(i)tỸit ,

where we permute the individuals for Z and R but not Y .

4. p-value:

p̂ =
1

P(J)

∑
π∈P(J)

P(θ̃π ≥ θ̃))

• Requires exchangeability across units of ϵit , µi .

• Approximation given the number of permutations.
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Randomization inference

• Permutation distribution example for simulation design with moderate

correlation.
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Back-testing the RF

Figure 25: RF wage-employment rate
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Endogeneity

Model Mean β Var |Bias| MSE

ρ = 0.5, ρz = ρg = 0

OLS (twfe) 1.245 0.012 0.245 0.072

TSLS (twfe) 0.994 0.017 0.006 0.017

SIV 0.995 0.011 0.005 0.011

projected SIV 0.975 0.043 0.025 0.044

SIV + projected 0.994 0.010 0.006 0.010

SIV Z not debiased 0.992 0.011 0.008 0.010

Table 5: T0 = 20,T = 30, J = 20, σz = 1, σother = 0.5, κ = 0.5
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Endogeneity + OVB

Model Mean β Var |Bias| MSE

ρ = ρz = ρg = 0.5

OLS (twfe) 1.379 0.019 0.379 0.162

TSLS (twfe) 1.260 0.069 0.260 0.136

SIV 1.030 0.013 0.030 0.014

projected SIV 0.901 0.046 0.099 0.056

SIV + projected 1.008 0.013 0.008 0.013

SIV Z not debiased 1.079 0.017 0.079 0.023

Table 6: T0 = 20,T = 30, J = 20, σz = 1, σother = 0.5, κ = 0.5
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Increasing OVB

Model Mean β Var |Bias| MSE

ρ = 0.5, ρz = ρg = 0.7

OLS (twfe) 1.501 0.021 0.501 0.272

TSLS (twfe) 1.505 0.084 0.505 0.339

SIV 1.080 0.024 0.080 0.031

projected SIV 0.935 0.062 0.065 0.066

SIV + projected 1.038 0.025 0.038 0.027

SIV Z not debiased 1.200 0.028 0.200 0.068

Table 7: T0 = 20,T = 30, J = 20, σz = 1, σother = 0.5, κ = 0.5
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Increasing OVB

Model Mean β Var |Bias| MSE

ρ = 0.5, ρz = ρg = 0.9

OLS (twfe) 1.661 0.018 0.661 0.455

TSLS (twfe) 1.826 0.064 0.826 0.747

SIV 1.268 0.054 0.268 0.125

projected SIV 1.142 0.087 0.142 0.107

SIV + projected 1.207 0.056 0.207 0.099

SIV Z not debiased 1.519 0.050 0.519 0.328

Table 8: T0 = 20,T = 30, J = 20, σz = 1, σother = 0.5, κ = 0.5
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Increasing OVB

Model Mean β Var |Bias| MSE

ρ = 0.5, ρg = ρz = 1

OLS (twfe) 1.745 0.010 0.745 0.566

TSLS (twfe) 2.006 0.034 1.006 1.045

SIV 1.879 3.338 0.879 4.107

projected SIV 2.141 1.213 1.141 2.514

SIV + projected 2.033 1.446 1.033 2.511

SIV Z not debiased 2.024 0.025 1.024 1.082

Table 9: T0 = 20,T = 30, J = 20, σz = 1, σother = 0.5, κ = 0.5
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Increasing the noise

Model Mean β Var |Bias| MSE

ρ = ρg = ρz = 0.5, σϵ = 2

OLS (twfe) 1.625 0.037 0.625 0.428

TSLS (twfe) 1.252 0.089 0.252 0.152

SIV 1.076 0.049 0.076 0.054

projected SIV 0.849 0.131 0.151 0.154

SIV + projected 1.014 0.049 0.014 0.049

SIV Z not debaised 1.130 0.053 0.130 0.067

Table 10: T0 = 20,T = 30, J = 20, σz = 1, σother = 0.5, κ = 0.5
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Increasing J/T0

• Accentuates other problems, but is less important in low noise

settings.

Model Mean β Var |Bias| MSE

ρ = ρg = ρz = 0.5,T0 = 10, J = 20

OLS (twfe) 1.365 0.018 0.365 0.151

TSLS (twfe) 1.222 0.058 0.222 0.107

SIV 1.023 0.018 0.023 0.019

projected SIV 0.929 0.053 0.071 0.058

SIV + projected 1.004 0.016 0.004 0.016

SIV Z not debiased 1.076 0.017 0.076 0.022

Table 11: T=20, σz = 1, σother = 0.5, κ = 0.5
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Increasing J/T0

Model Mean β Var |Bias| MSE

ρ = ρg = ρz = 0.5,T0 = 10, J = 40

OLS (twfe) 1.377 0.013 0.377 0.155

TSLS (twfe) 1.256 0.041 0.256 0.107

SIV 1.028 0.009 0.028 0.010

projected SIV 0.949 0.029 0.051 0.032

SIV + projected 1.014 0.008 0.014 0.008

SIV Z not debiased 1.061 0.009 0.061 0.014

Table 12: T=20, σz = 1, σother = 0.5, κ = 0.5
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Coverage

• Good coverage in good settings

• Under coverage in higher bias settings

Coverage α = 0.05

T=30 T=40 T=50

ρ = ρg = ρz = 0.0 0.981 0.962 0.952

ρ = ρg = ρz = 0.3 0.976 0.944 0.96

ρ = ρg = ρz = 0.5 0.960 0.945 0.923

ρ = ρg = ρz = 0.7 0.904 0.808 0.792

Table 13: T0 = 20, J = 20, σϵ = 0.5, σz = 1, σother = 0.5, κ = 0.5
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