Synthetic Instrumental Variables

IN DIFF-IN-DIFF DESIGNS WITH UNMEASURED CONFOUNDING

Ahmet Gulek (MIT) and Jaume Vives-i-Bastida (MIT) August 28, 2024

- Motivation
- Empirical example
- Synthetic IV estimator
 - Bias, consistency and inference
- Simulations
- Empirical checks

Motivation

- IV-DiD Design: (Y, R, Z) + pre-treatment period
- **Common problem**: worried about DiD due to unmeasured confounding (PT may not hold).
- Solution: find an IV
 - Example: Shift-share IV methods compare groups or regions moreand less-exposed to a treatment.
- But: What to do if the instrument is also correlated with unobserved confounders? (e.g. reduced-form has pre-trends)
- This paper: a synthetic IV estimator
 - · Combines IV and SCs to address unmeasured confounding
 - Biased, but consistent under assumptions when TSLS is not
 - · Bias depends on pre-treatment fit and instrument strength
 - Can be combined with other estimators to become 'doubly-robust'
 - Exhibits good properties in empirical applications and simulations

An Example

- Question: What is the impact of immigrants on natives' labor market outcomes?
- Setting: Syrian Refugees in Turkey
- Syrian Civil war started in March 2011
- By 2017, 6 million Syrians had sought shelter outside of Syria
 - Primarily in Turkey (3.5 million)
- Time span studied 2004-2016.
- Outcome Y: employment rate of natives (at region-year level)
- Treatment R: Refugee/native ratio
- Instrument Z: Weighted-distance from the border
- Confounder U: region economic trends

Time-series of the number of refugees in Turkey

Figure 1: Number of refugees in Turkey

Distribution of Syrian refugees in Turkey

Figure 2: Number of refugees per 100 natives in 2015

Instrument construction

First-stage

$$R_{jt} = \sum_{k \neq 2010} \theta_k (\mathbb{1}\{t = k\} \times Z_j) + f_j + f_t + \eta_{jt}$$

Figure 3: First-stage

Reduced-form: Employment rate

• Reduced form exhibits pre-trends (confounder U matters)

$$Y_{jt} = \sum_{k \neq 2010} \beta_k (\mathbb{1}\{t = k\} \times Z_j) + f_j + f_t + \epsilon_{jt}$$

Figure 4: RF wage-employment rate

Common problem in shift-share designs

• Example from Autor, Dorn and Hanson (2013).

Figure 5: Percent manufacturing employment, treatment in 1990

Potential solutions

Common solutions in empirical papers

- Adding two-way FEs $(U_{it} = \alpha_i + \delta_t)$, region FEs $(U_{it} = \alpha_g \times \delta_t)$
- Estimating a linear trend $(U_{it} = \alpha_i \times t)$.
- Using observed **covariates** $(U_{it} = g(X_{it}))$.
- But, in many economic examples agents make decisions on time varying unobservables (e.g. Llull 2017).

Current papers addressing related concerns:

- 1. Boryusak and Hull 2023: identification and counterfactual inference in shift-share designs when instruments mechanically depends on covariates.
- 2. Arkhangelsky and Korovkin 2023: IV with unobserved confounding when exogeneous variation is given by aggregate time-series shocks
- 3. Danieli et al. 2024: negative controls for IV. Show IV-DiD unbiased under PT ($U_{it} = \alpha_i + \delta_t$).

In this paper: address unmeasured confounding $(U_{it} = \mu'_i F_t)$ in the framework of IV-DiD using SC.

General idea

- What to do when Z_{it} is correlated with $U_{it} = \mu'_i F_t$?
- If we could control for U_{it} we would be done
- Idea: in a pre-period we create a proxy for U_{it} then use IV on the "debiased" data

Figure 6: Triangular system with proxy

The Synthetic Estimator

SC program: for each $j \in \{1, ..., J\}$ we find the synthetic control weights \hat{w}_j by solving the following program for $t \in \{1, ..., T_0\}$. For each j,

$$\hat{w}_j^{SC} \in \operatorname{argmin}_{w \in \mathcal{W}} \| Y_j^{T_0} - Y_{-j}^{T_0} w \|^2,$$

Today: $W = \Delta^{J-1}$.

However, our results follow for any estimator in

$$\mathcal{W} = \{ w \in \mathbb{R}^J \mid ||w||_1 \le C \}.$$

- Nests the standard SC program with simplex constraint: C = 1.
- Allows for a variety of SC procedures (e.g. with l_1 penalties).
- While our results are valid for \mathcal{W} estimators, in practice simplex regularization performs well.
- If *R_{it}* exists in pre-period we compute the weights on the residual of *Y* on *R* or match *R*.

The Synthetic IV

Step 2: Given $\{\tilde{Y}_{it}, \tilde{R}_{it}, \tilde{Z}_{it}\}_{t>T_0}^T$, we estimate the first stage and reduced form by OLS

$$\begin{split} &\tilde{\pi} \in \operatorname{argmin}_{\pi} (\tilde{Y} - \tilde{Z}\pi)' (\tilde{Y} - \tilde{Z}\pi), \\ &\tilde{\beta} \in \operatorname{argmin}_{\beta} (\tilde{R} - \tilde{Z}\beta)' (\tilde{R} - \tilde{Z}\beta), \end{split}$$

where \tilde{Z} includes an intercept.

Then, the estimated average marginal effect is given by:

$$ilde{ heta}^{TSLS} = \left(\sum_{it} ilde{Z}_{it} ilde{ heta}_{it}
ight)^{-1} \sum_{it} ilde{Z}_{it} ilde{Y}_{it}.$$

- Also possible to not debias Z, $\tilde{\theta}_{YR}^{TSLS}$, or to only debias Z, $\tilde{\theta}_{Z}^{TSLS}$.
- But, debiasing both will help in finite samples.
- Intuition from TSLS with covariates differs because we are estimating P_U .

Reduced-form re-visited I

Figure 7: RF wage-employment rate

Reduced-form re-visited II

(b) Women: formal salaried employment

Figure 8: Additional examples of IV vs SIV

Treatment effects

• Using SIV can matter in practice

Figure 9: RF wage-employment rate

Setting

Linear Triangular System: J units, $T = T_0 + T_1$ time periods

$$\begin{split} Y_{it} &= \theta R_{it} + \mu_i' F_t + \epsilon_{it}, \\ R_{it} &= \gamma Z_{it} + A_{it} + \eta_{it}, \end{split}$$

where $Z_{it} = 0$ for $t < T_0$.

Assumptions

- Partial independence condition: $\epsilon_{it}, \eta_{it} \perp Z_{it}$
- Bounded primitives: μ_i , F_t , A_{it} , Z_{it} are bounded
- Strong instrument and enough residual variation

$$\frac{1}{JT}Z'(I-P_U)Z \stackrel{p}{\to} Q > 0$$

- Errors: ϵ_{it} and η_{it} are *i.i.d* mean zero, with bounded variance, covariance and fourth moments
- Stable rank: $\frac{\|Y^{T_0}\|_F^2}{\|Y^{T_0}\|_2^2} \leq \bar{r}$ and $\lambda_1(Y^{T_0}) \leq \bar{\sigma}_1$ (signal to noise assumption)

The Synthetic TSLS identification

As in FE models,

$$\begin{split} \tilde{Y}_{it} &= Y_{it} - \hat{Y}_{it}^{SC} \\ &= \theta R_{it} + \mu'_i F_t + \epsilon_{it} - \sum_{j \neq i} \hat{w}_{ij}^{SC} Y_{jt} \\ &= \theta \tilde{R}_{it} + (\mu_i - \sum_{j \neq i} \hat{w}_{ij}^{SC} \mu_j)' F_t + \epsilon_{it} - \sum_{j \neq i} \hat{w}_{ij}^{SC} \epsilon_{jt}. \end{split}$$

The synthetic TSLS is given by

$$\begin{split} \tilde{\theta}^{TSLS} &= \left(\sum_{it} \tilde{Z}_{it} \tilde{R}_{it}\right)^{-1} \sum_{it} \tilde{Z}_{it} \tilde{Y}_{it} \\ &= \theta + \left(\sum_{it} \tilde{Z}_{it} \tilde{R}_{it}\right)^{-1} \sum_{it} \tilde{Z}_{it} \left(\mu_i - \sum_{j \neq i} \hat{w}_{ij}^{SC} \mu_j\right)' F_t \\ &+ \left(\sum_{it} \tilde{Z}_{it} \tilde{R}_{it}\right)^{-1} \sum_{it} \tilde{Z}_{it} \left(\epsilon_{it} - \sum_{j \neq i} \hat{w}_{ij}^{SC} \epsilon_{jt}\right). \end{split}$$

In general, it need not be $o_p(1)$, the expected fit in the pre-treatment period plays a key role.

Theorem (Bound - MAD)

Under assumptions, for $t > T_0$ the following bound holds for all J, T and T_0

$$\begin{aligned} \frac{1}{JT_1} \left| \mathbb{E}\left[\sum_{it} \tilde{Z}_{it} \tilde{\mu}'_i F_t\right] \right| &\leq \left(\frac{\bar{F}^2 k}{\xi}\right) c_z \left(2\sqrt{\frac{J}{T_0}} \sigma_\epsilon + \mathbb{E}\left[\frac{1}{JT_0} \sum_{i,t \leq T_0} |\tilde{Y}_{jt}|\right] \\ &+ \mathbb{E}\left[\frac{1}{JT_0} \sum_{i,t \leq T_0} |\tilde{R}_{jt}|\right] \right) \end{aligned}$$

Theorem (Bound)

Under assumptions, for $t > T_0$ the following bound holds for all J, T_1 and T_0

$$\frac{1}{JT_1} \left| \mathbb{E}\left[\sum_{it} \tilde{Z}_{it} \tilde{\mu}'_i F_t \right] \right| \le \left(\frac{\bar{F}^2 k}{\xi} \right) c_z \left(2\sqrt{\frac{J}{T_0}} \sigma_\epsilon + \bar{r} \bar{\sigma}_1 \left[\frac{1}{\sqrt{T_0 J}} + \sqrt{\frac{J}{T_0}} \right] \right)$$

Furthermore, as $JT_1
ightarrow \infty$ and $ar{r}ar{\sigma}_1\sqrt{rac{J}{T_0}}
ightarrow 0$,

$$\frac{1}{JT_1}\sum_{it}\tilde{Z}_{it}\tilde{\mu}'_iF_t\stackrel{p}{\to} 0.$$

Consistency result

Theorem (Consistency)

Under assumptions, as $JT_1 \to \infty$ and $\bar{r}\bar{\sigma}_1 \sqrt{rac{J}{T_0}} \to 0$,

$$\begin{split} & \tilde{\theta}^{TSLS} - \theta \xrightarrow{p} 0, \\ & \tilde{\theta}^{TSLS}_Z - \theta \xrightarrow{p} 0, \\ & \tilde{\theta}^{TSLS}_{YR} - \theta \xrightarrow{p} 0 \end{split}$$

Finite sample bias increases with

- Noise: σ_{ϵ} vs. $\mu'_{i}F_{t}$, worse fit
- Short pre-periods: $\sqrt{\frac{J}{T_0}}$, worse over-fitting
- Correlation with confounder: first stage gets worse

$$\frac{1}{JT_1}\sum_{it}\tilde{Z}_{it}\tilde{R}_{it}\stackrel{p}{\to}Q,$$

for $\tilde{\theta}^{\rm TSLS}$, $\tilde{\theta}_{\rm YR}^{\rm TSLS}$ and $\tilde{\theta}_{\rm Z}^{\rm TSLS}$

Asymptotic normality

Theorem (Asymptotic normality)

Under assumptions, for $t > T_0$, if $\sqrt{\frac{T_1}{T_0}}(1+J)\overline{r}\overline{\sigma}_1 \to 0$ as $\sqrt{\frac{J}{T_1}} \to 0$, then

$$rac{\sqrt{JT_1}(ilde{ heta}^{SIV}- heta)}{v_{JT}} \stackrel{d}{
ightarrow} N(0,1)$$

where
$$v_{JT_1} = (\mathbb{E}\tilde{Z}'\tilde{R})^{-2} \left(\mathbb{E}\left[\sum_{it} var(\tilde{Z}_{it}\tilde{\epsilon}_{it} \mid Z, w)\right]\right)$$
 and

$$\sum_{it} var(\tilde{Z}_{it}\tilde{\epsilon}_{it} \mid Z, w) = \sigma^2 \sum_{it} \Delta_{it}(Z, w)$$

- We require large number of pre and post periods $\frac{J}{T_1} \rightarrow 0$
- Condition on weight sequence such that $\|w^i\|_1 \leq C,$ then we do not need $J/T_1 \rightarrow 0$
- Alternatively, we also explore randomization inference

• The instrument can remove some of the noise!

Suppose we can decompose $Z_{it} = Z_i \lambda_t$

Projected synthetic estimator

1. "de-noise" by projecting: $Y_z = Z(Z'Z)^{-1}Z'Y$, where Z is $J \times 1$

2. Use the de-noised outcomes to get the SC

$$w_j^{\mathcal{P}} \in \operatorname{argmin}_{w \in \Delta^{J-1}} \|Y_{z,j}^{\mathcal{T}_0} - Y_{z,-j}^{\mathcal{T}_0} 'w\|^2$$

3. Compute $\tilde{\theta}_P^{TSLS}$ using the projected debiased data \tilde{Y}^P , \tilde{R}^P , and Z.

Bound comparison

- Baseline synthetic estimator biased when σ_ϵ high.
- Projected estimator less biased when σ_ε, but otherwise could fit unobserved *worse*.

SIV

$$\frac{1}{JT_1} \left| \mathbb{E}\left[\sum_{it} \tilde{Z}_{it} \tilde{\mu}'_i F_t \right] \right| \le \left(\frac{\bar{F}^2 k}{\xi} \right) c_z \left(2\sqrt{\frac{J}{T_0}} \sigma_\epsilon + \mathbb{E}\left[\frac{1}{JT_0} \sum_{i,t \le T_0} |\tilde{Y}_{jt}| \right] \right)$$

Projected SIV

$$\frac{1}{JT_1} \left| \mathbb{E}\left[\sum_{it} \tilde{Z}_{it} \tilde{\mu}'_i F_t \right] \right| \leq \left(\frac{\bar{F}^2 k}{\xi} \right) c_z \left(2\sqrt{\frac{1}{T_0}} \sigma_\epsilon + \mathbb{E}\left[\frac{1}{JT_0} \sum_{i,t \leq T_0} |\tilde{Y}_{jt}^{P}| \right] \right)$$

Ensemble estimator for $\alpha \in [0, 1]$

$$\tilde{\theta}^{E}(\alpha) = \alpha \tilde{\theta} + (1 - \alpha) \tilde{\theta}^{P},$$

Simulation design

$$Y_{it} = \beta R_{it} + \mu'_i f_t + \epsilon_{it},$$

$$R_{it} = (\gamma Z_{it} + \eta_{it}) * \mathbb{1}(t \ge T_0)$$

$$Z_{it} = Z'_i g_t * \mathbb{1}(t \ge T_0)$$

Time series structure:

$$f_t = \kappa_f f_{t-1} + u_{ft},$$

$$g_t = \kappa_g g_{t-1} + u_{gt},$$

Error structure:

$$\begin{pmatrix} u_{ft} \\ g_{ft} \end{pmatrix} \sim N\left(0, \begin{bmatrix} \sigma_f^2 & \rho_g \sigma_f \sigma_g \\ \rho_g \sigma_f \sigma_g & \sigma_g^2 \end{bmatrix}\right) \\ \begin{pmatrix} Z_i \\ \mu_i \end{pmatrix} \sim N\left(0, \begin{bmatrix} \sigma_z^2 & \rho_z \sigma_z \sigma_\mu \\ \rho_z \sigma_z \sigma_\mu & \sigma_\mu^2 \end{bmatrix}\right), \\ \begin{pmatrix} \epsilon_{it} \\ \eta_{it} \end{pmatrix} \sim N\left(0, \begin{bmatrix} \sigma_\epsilon^2 & \rho \sigma_\epsilon \sigma_\lambda \\ \rho \sigma_\epsilon \sigma_\lambda & \sigma_\lambda^2 \end{bmatrix}\right).$$

Simulation based on Syrian example:

- *T* = 16, *T*₀ = 10, *J* = 26
- Target $\theta = -0.16$
- Noise level: $\sigma_{\epsilon}^2 = \sigma_{\eta}^2 = 0.035$
- Instrument strength: match F-stat of 153; $\sigma_Z^2 = 0.54$, $\gamma = 3.16$
- Signal level: $\sigma_{\mu}^2 = 0.25$, k = 2 (from PCA)

Simulations designs for 10000 draws, we vary:

- 1. ρ s to change degree of confounding
- 2. σ_{ϵ} to change noise level

Baseline

Figure 10: $\rho = \rho_z = \rho_g = 0$, 95% coverage is 0.96

Endogeneity

Figure 11: $\rho = 0.5, \rho_z = \rho_g = 0, 95\%$ coverage is 0.96

Endogeneity + OVB

Figure 12: $\rho = \rho_z = \rho_g = 0.5$, 95% coverage is 0.94

Increasing the correlation with U

Figure 13: $\rho = \rho_z = \rho_g = 0.7$, 95% coverage is 0.89

Increasing the correlation with U

Figure 14: $\rho = \rho_z = \rho_g = 0.9$, 95% coverage is 0.70

Why is coverage good?

• Density check: no unit receives all weight

Model	$Mean\ \beta$	Var	Bias	MSE
$ ho= ho_{z}= ho_{g}=0.5$				
OLS (twfe)	0.029	0.019	0.180	0.055
TSLS (twfe)	-0.047	0.025	0.112	0.038
SIV	-0.145	0.006	0.014	0.006
projected SIV	-0.188	0.015	0.028	0.016
SIV+projected	-0.151	0.006	0.008	0.006
SIV Z not debiased	-0.126	0.007	0.033	0.008

Table 1: $\sigma_{\epsilon} = 2\sigma_{Syria}$

Model	$Mean\ \beta$	Var	Bias	MSE
$\rho = \rho_z = \rho_g = 0.5$				
OLS (twfe)	0.069	0.026	0.229	0.078
TSLS (twfe)	-0.047	0.028	0.112	0.041
SIV	-0.134	0.012	0.025	0.013
projected SIV	-0.183	0.023	0.023	0.024
SIV+projected	-0.144	0.012	0.015	0.012
SIV Z not debiased	-0.113	0.012	0.046	0.014

Table 2: $\sigma_{\epsilon} = 4\sigma_{Syria}$

Model	$Mean\ \beta$	Var	Bias	MSE
$\rho = \rho_z = \rho_g = 0.5$				
OLS (twfe)	0.203	0.067	0.363	0.199
TSLS (twfe)	-0.048	0.046	0.111	0.058
SIV	-0.101	0.045	0.058	0.048
projected SIV	-0.152	0.070	0.007	0.071
SIV+projected	-0.119	0.044	0.041	0.046
SIV Z not debiased	-0.081	0.037	0.078	0.043

Table 3: $\sigma_{\epsilon} = 8\sigma_{Syria}$

Recap

• Good finite sample Bias + MSE

but the method is sensitive to

- 1. High correlation with the unobserved con-founder
- 2. High noise-signal ratio
- 3. Ensemble estimator: SIV + projected estimator may offer "double-robustness"

Diagnostic checks:

- 1. Asses good pre-treatment fit (MAD plots)
- 2. Back testing the start of the treatment
- 3. Check the instrument strength
- 4. Check density of weights

Empirical checks I

(a) Debiased Data

(b) Debiased First-Stage

15 16

Empirical checks II

(a) Debiased Reduced-Form

(b) Weight density

• Decreased effect for 1999-2000

	1990–2000	2000-2007	1990–2007
	(1)	(2)	(3)
2SLS	-0.888	-0.718	-0.746
	(0.181)	(0.064)	(0.068)
SIV	-0.588	-0.726	-0.703
	(0.198)	(0.070)	(0.067)

Table 4: China shock effect

Notes: The first row replicates columns 1-3 of Table 2 in ADH 2013. The second row presents the estimates using the SIV. The SC weights are estimated using the manufacturing growth rates in 1970 and 1980.

Ranking example I

- Use promotion contracts (Z) as an IV for producer ranking (R) in digital platform to study the effect on sales (Y)
- A/B test in which ranks were randomized available!

Figure 18: Reduced form event study of promotion on log sales.

Ranking example II

- IV biased upwards as expected from positive OVB
- SIV recovers the A/B test

Figure 19: Treatment effects of being in top ranks on sales.

Conclusion

- Un-measured confounding can bias DiD and IVDiD estimates
- The synthetic IV offers one solution based on SC
- We derive conditions for consistency and asymptotic normality
- Show the applicability of the method empirically and through simulations

Additional slides

Regression Set-up

- Let $R_{j,t}$ denote the refugee/native ratio at province-year level
- Refugee location choice is endogenous: use travel distance as an instrument:

$$Z_{j,t} = \underbrace{\overline{H}_t}_{\text{shift}} \times \underbrace{Z_j}_{\text{share}}$$

$$Z_j = \sum_{s=1}^{13} \lambda_s \frac{1}{d_{j,s}}$$
(1)

where

- \bar{H}_t is the number of refugees in Turkey in year t.
- *d_{j,s}* is the travel distance between Turkish region *p* and Syrian governorate *s*
- λ_s is the weight given to Syrian governorate s
- today: $\lambda_s = \pi_s$, population share of Syrian governorate s

Setting

- Two unobserved (grey) confounders.
- Goal: estimate causal effect of R_{it} on Y_{it} .

Figure 20: Triangular system with unknown confounders.

• OLS of Y on R valid if $R_{it} \perp \epsilon_{it}, U_{it}$ (R exogenous).

Figure 21: Example of independence relationships for OLS.

• IV requires that $Z_{it} \perp \epsilon_{it}, U_{it}$.

Figure 22: Example of independence relationships for IV.

Model Assumptions I

Assumption (A1)

Independence condition: $\epsilon_{it}, \eta_{it} \perp Z_{it}$

Assumption (A2)

- $|F_{lt}| \leq \overline{F}$.
- $F'_{T_0}F_{T_0}$ has minimum eigenvalue ξ such that $\xi/T_0 > 0$.
- $\mu_i \in \mathcal{M}$ with diam $(\mathcal{M}) = \sup\{\|t s\| : \text{ for } t, s \in \mathcal{M}\} \le c_{\mu}$.
- $Z_{it} \in \mathcal{Z}$ such that $diam(\mathcal{Z}) = \sup\{\|t s\| : \text{ for } t, s \in \mathcal{Z}\} \le c_z$.
- The instrument Z_{it} and the unobserved factor structure satisfy

$$\frac{1}{JT}\sum_{it}Z_{it}^2 \xrightarrow{p} Q_Z > 0,$$

as $JT \to \infty$ and

$$\frac{1}{JT}Z'(I-P_U)Z \xrightarrow{p} Q > 0,$$

for projection matrix U.

Model Assumptions II

Assumption (A3)

With probability one,

$$\frac{\|Y^{T_0'}\|_F^2}{\|Y^{T_0'}\|_2^2} \leq \bar{r},$$

and the largest singular value satisfies $\sigma_1(Y^{T_0}) \leq \bar{\sigma}_1$, where \bar{r} and $\bar{\sigma}_1$ may depend on J and T_0 .

Theorem (Bias bound)

Under A1-A3, for $t > T_0$ the following bound holds for all J, T and T_0

$$\frac{1}{JT} \left| \mathbb{E}\left[\sum_{it} \tilde{Z}_{it} \tilde{\mu}'_i F_t \right] \right| \leq \left(\frac{\bar{F}^2 k}{\xi} \right) c_z \left(2\sqrt{\frac{J}{T_0}} \sigma_\epsilon + \bar{r} \bar{\sigma}_1 \left[\frac{1}{\sqrt{T_0 J}} + \sqrt{\frac{J}{T_0}} \right] \right)$$

Furthermore, as JT $\rightarrow\infty$ and $\bar{r}\bar{\sigma}_{1}\sqrt{\frac{J}{T_{0}}}\rightarrow$ 0,

$$\frac{1}{JT}\sum_{it}\tilde{Z}_{it}\tilde{\mu}'_iF_t\stackrel{p}{\to} 0.$$

• The instrument can remove some of the noise!

Suppose we can decompose $Z_{it} = Z_i \lambda_t$

Projected synthetic estimator

- 1. "de-noise" by projecting: $Y_z = Z(Z'Z)^{-1}Z'Y$, where Z is $J \times 1$
- 2. Use the de-noised outcomes to get the SC

$$w^P_j \in \operatorname{argmin}_{w \in \Delta^{J-1}} \| Y^{T_0}_j - Y^{T_0}_{z,-j} ' w \|^2$$

Aggregated synthetic estimator

- 1. Let $Q_i = \sum_{t < T_0} Z_{it} Y_{it}$
- 2. Match the aggregated values

$$w^{\mathcal{A}gg}_{j} \in \operatorname{argmin}_{w \in \Delta^{J-1}} \| Q_{i} - Q'_{-i} w \|^{2}$$

- Baseline synthetic estimator biased when σ_ϵ high.
- Projected/Agg estimators less biased when σ_{ϵ} , but otherwise could fit unobserved *worse*.

Ensemble estimator for $\alpha \in [0, 1]$

$$\tilde{\theta}^{E}(\alpha) = \alpha \tilde{\theta} + (1 - \alpha) \tilde{\theta}^{P},$$

• α hyper-parameter can be chosen to minimise *MSE* in a validation period.

return

Event study simulation

Figure 23: Example event study simulation.

Empirical correlation

Figure 24: Factor correlation for $\rho = 0.7$.

Debiasing the first stage?

We want to compare

•
$$\tilde{\beta} = (\sum_{it} \tilde{R}_{it} \tilde{R}_{it})^{-1} \sum_{it} \tilde{R}_{it} \tilde{Z}_{it}$$
,

•
$$\tilde{\beta}_Z = (\sum_{it} \tilde{R}_{it} \tilde{R}_{it})^{-1} \sum_{it} \tilde{R}_{it} Z_{it}.$$

Lemma

Consider an instrument of the form:

$$Z_{it} = A_{it} + \alpha \mu_i F_t,$$

where $A_{it} \sim_{iid} N(0, \sigma_A^2)$ and $\mu'_i F_t \perp A_{it}$. Suppose that $\tilde{\mu}'_i F_t = o_p(1)$, then

$$\frac{\tilde{\beta}}{\tilde{\beta}_Z} = \frac{\sum_{it} \tilde{R}_{it} \tilde{Z}_{it}}{\sum_{it} \tilde{R}_{it} Z_{it}} \xrightarrow{p} \xi \ge 1.$$

• So de-biasing the instrument could matter asymptotically.

More details

Randomization Inference

- Asymptotic results require large T. Often we have short panels.
- Randomization inference common practice in SC studies
 - e.g. Abadie et al. (2010), Firpo and Possebom (2018)...
- Challenge is that we have a continuous treatment and an instrument.

Two approaches:

1. Split conformal inference: define a blank period and perform permutation tests comparing the distribution of realized $\tilde{\theta}_t$ with blank period $\tilde{\theta}_t^b$.

1.1 Chernozhukov et al. (2021), Abadie and Zhao (2022).

- 2. Randomization inference: permute instrument-treatment pairs across units, compare permuted estimates $\tilde{\theta}_b$ with realized $\tilde{\theta}$.
 - Imbens and Rosenbaum (2003).

Split conformal inference

- 1. Split T_0 period into a *training* period and a *blank* period (starting at $T_b < T_0$).
- 2. Compute SC weights in the training period and define debiased quantities.
- 3. Run reduced form event regression to get estimates $\{\tilde{\theta}_{T^b}, \ldots, \tilde{\theta}_{T_0}, \ldots, \tilde{\theta}_T\}.$
- 4. Generate a permutation $(T T_0) \times 1$ vector $e_{\pi} = (\tilde{\theta}_{\pi(1)}, \dots, \tilde{\theta}_{\pi(T T_0)})$.
- 5. Compute test statistic: $S(e) = 1/(T T_0) ||e||_q$, q=1.
- 6. Permutation p-value:

$$\hat{
ho} = rac{1}{\Pi} \sum_{\pi \in \Pi} \mathbb{1}(S(ilde{ heta}_{\pi}) \geq S(ilde{ heta}_{t > au_0}))$$

- Requires exchangeability across time of ϵ_{it}, F_t .
- Requires blank time periods.

Randomization inference

- 1. In the pre-period compute the SC weights and generate the debiased quantities.
- 2. Define the set of permutations of the J units: $\mathcal{P}(J)$.
- 3. For a given permutation $\pi \in \mathcal{P}(J)$, compute

$$ilde{ heta}_{\pi} = \left(\sum_{it} ilde{Z}_{\pi(i)t} ilde{R}_{\pi(i)t}
ight)^{-1} \sum_{it} ilde{Z}_{\pi(i)t} ilde{Y}_{it},$$

where we permute the individuals for Z and R but not Y.

4. p-value:

$$\hat{
ho} = rac{1}{\mathcal{P}(J)} \sum_{\pi \in \mathcal{P}(J)} P(ilde{ heta}_{\pi} \geq ilde{ heta}))$$

- Requires exchangeability across units of ε_{it}, μ_i.
- Approximation given the number of permutations.

Randomization inference

• Permutation distribution example for simulation design with moderate correlation.

Back-testing the RF

Figure 25: RF wage-employment rate

Model	Mean β	Var	Bias	MSE
$\rho = 0.5, \rho_z = \rho_g = 0$				
OLS (twfe)	1.245	0.012	0.245	0.072
TSLS (twfe)	0.994	0.017	0.006	0.017
SIV	0.995	0.011	0.005	0.011
projected SIV	0.975	0.043	0.025	0.044
SIV+projected	0.994	0.010	0.006	0.010
SIV Z not debiased	0.992	0.011	0.008	0.010

Table 5: $T_0 = 20, T = 30, J = 20, \sigma_z = 1, \sigma_{other} = 0.5, \kappa = 0.5$

Model	Mean β	Var	Bias	MSE
$ ho= ho_{z}= ho_{g}=0.5$				
OLS (twfe)	1.379	0.019	0.379	0.162
TSLS (twfe)	1.260	0.069	0.260	0.136
SIV	1.030	0.013	0.030	0.014
projected SIV	0.901	0.046	0.099	0.056
SIV+projected	1.008	0.013	0.008	0.013
SIV Z not debiased	1.079	0.017	0.079	0.023

Table 6: $T_0 = 20, T = 30, J = 20, \sigma_z = 1, \sigma_{other} = 0.5, \kappa = 0.5$

Model	$Mean\ \beta$	Var	Bias	MSE
$\rho=0.5, \rho_z=\rho_g=0.7$				
OLS (twfe)	1.501	0.021	0.501	0.272
TSLS (twfe)	1.505	0.084	0.505	0.339
SIV	1.080	0.024	0.080	0.031
projected SIV	0.935	0.062	0.065	0.066
SIV+projected	1.038	0.025	0.038	0.027
SIV Z not debiased	1.200	0.028	0.200	0.068

Table 7: $T_0 = 20, T = 30, J = 20, \sigma_z = 1, \sigma_{other} = 0.5, \kappa = 0.5$

Model	Mean β	Var	Bias	MSE
$\rho = 0.5, \rho_z = \rho_g = 0.9$				
OLS (twfe)	1.661	0.018	0.661	0.455
TSLS (twfe)	1.826	0.064	0.826	0.747
SIV	1.268	0.054	0.268	0.125
projected SIV	1.142	0.087	0.142	0.107
SIV+projected	1.207	0.056	0.207	0.099
SIV Z not debiased	1.519	0.050	0.519	0.328

Table 8: $T_0 = 20, T = 30, J = 20, \sigma_z = 1, \sigma_{other} = 0.5, \kappa = 0.5$

Model	Mean β	Var	Bias	MSE
$\rho = 0.5, \rho_g = \rho_z = 1$				
OLS (twfe)	1.745	0.010	0.745	0.566
TSLS (twfe)	2.006	0.034	1.006	1.045
SIV	1.879	3.338	0.879	4.107
projected SIV	2.141	1.213	1.141	2.514
SIV+projected	2.033	1.446	1.033	2.511
SIV Z not debiased	2.024	0.025	1.024	1.082

Table 9: $T_0 = 20, T = 30, J = 20, \sigma_z = 1, \sigma_{other} = 0.5, \kappa = 0.5$

Model	Mean β	Var	Bias	MSE
$\rho = \rho_g = \rho_z = 0.5, \sigma_\epsilon = 2$				
OLS (twfe)	1.625	0.037	0.625	0.428
TSLS (twfe)	1.252	0.089	0.252	0.152
SIV	1.076	0.049	0.076	0.054
projected SIV	0.849	0.131	0.151	0.154
SIV+projected	1.014	0.049	0.014	0.049
SIV Z not debaised	1.130	0.053	0.130	0.067

Table 10: $T_0 = 20, T = 30, J = 20, \sigma_z = 1, \sigma_{other} = 0.5, \kappa = 0.5$

• Accentuates other problems, but is less important in low noise settings.

Model	$Mean\ \beta$	Var	Bias	MSE
$\rho = \rho_g = \rho_z = 0.5, T_0 = 10, J = 20$				
OLS (twfe)	1.365	0.018	0.365	0.151
TSLS (twfe)	1.222	0.058	0.222	0.107
SIV	1.023	0.018	0.023	0.019
projected SIV	0.929	0.053	0.071	0.058
SIV + projected	1.004	0.016	0.004	0.016
SIV Z not debiased	1.076	0.017	0.076	0.022

Table 11: T=20, $\sigma_z = 1, \sigma_{other} = 0.5, \kappa = 0.5$

Model	$Mean\ \beta$	Var	Bias	MSE
$\rho = \rho_g = \rho_z = 0.5, T_0 = 10, J = 40$				
OLS (twfe)	1.377	0.013	0.377	0.155
TSLS (twfe)	1.256	0.041	0.256	0.107
SIV	1.028	0.009	0.028	0.010
projected SIV	0.949	0.029	0.051	0.032
SIV+projected	1.014	0.008	0.014	0.008
SIV Z not debiased	1.061	0.009	0.061	0.014

Table 12: T=20, $\sigma_z = 1, \sigma_{other} = 0.5, \kappa = 0.5$

Coverage

- Good coverage in good settings
- Under coverage in higher bias settings

Coverage $\alpha = 0.05$			
	T=30	T=40	T=50
$\rho = \rho_g = \rho_z = 0.0$	0.981	0.962	0.952
$\rho = \rho_g = \rho_z = 0.3$	0.976	0.944	0.96
$\rho = \rho_g = \rho_z = 0.5$	0.960	0.945	0.923
$\rho = \rho_g = \rho_z = 0.7$	0.904	0.808	0.792

Table 13: $T_0 = 20, J = 20, \sigma_e = 0.5, \sigma_z = 1, \sigma_{other} = 0.5, \kappa = 0.5$