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e |IV-DiD Design: (Y, R, Z) + pre-treatment period

e Common problem: worried about DiD due to unmeasured
confounding (PT may not hold).

e Solution: find an IV

e Example: Shift-share IV methods compare groups or regions more-
and less-exposed to a treatment.

e But: What to do if the instrument is also correlated with
unobserved confounders? (e.g. reduced-form has pre-trends)

e This paper: a synthetic IV estimator

Combines IV and SCs to address unmeasured confounding

Biased, but consistent under assumptions when TSLS is not

Bias depends on pre-treatment fit and instrument strength

Can be combined with other estimators to become ‘doubly-robust’

Exhibits good properties in empirical applications and simulations




An Example

Question: What is the impact of immigrants on natives’ labor

market outcomes?
e Setting: Syrian Refugees in Turkey
e Syrian Civil war started in March 2011

e By 2017, 6 million Syrians had sought shelter outside of Syria
e Primarily in Turkey (3.5 million)

e Time span studied 2004-2016.

e Outcome Y: employment rate of natives (at region-year level)
e Treatment R: Refugee/native ratio

e Instrument Z: Weighted-distance from the border

e Confounder U: region economic trends



Time-series of the number of refugees in Turkey
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Figure 1: Number of refugees in Turkey




Distribution of Syrian refugees in Turkey




First-stage
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Reduced-form: Employment rate

e Reduced form exhibits pre-trends (confounder U matters)
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Figure 4: RF wage-employment rate 8



Common problem in shift-share designs

e Example from Autor, Dorn and Hanson (2013).
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Figure 5: Percent manufacturing employment, treatment in 1990




Potential solutions

Common solutions in empirical papers

e Adding two-way FEs (Ui = «j + d;), region FEs (Ui = ag X 0¢)
e Estimating a linear trend (Ui = o X t).
e Using observed covariates (Ui = g(Xit)).

e But, in many economic examples agents make decisions on time varying
unobservables (e.g. Llull 2017).

Current papers addressing related concerns:

1. Boryusak and Hull 2023: identification and counterfactual inference in
shift-share designs when instruments mechanically depends on covariates.

2. Arkhangelsky and Korovkin 2023: IV with unobserved confounding
when exogeneous variation is given by aggregate time-series shocks

3. Danieli et al. 2024: negative controls for V. Show IV-DiD unbiased
under PT (Ui = a; + &¢).

In this paper: address unmeasured confounding (Ui = pjF:) in the framework

of IV-DiD using SC. 10




General idea

e What to do when Z; is correlated with U; = u}F;?
e If we could control for U;; we would be done

e Idea: in a pre-period we create a proxy for Ui then use IV on the
"debiased” data

Figure 6: Triangular system with proxy 11




The Synthetic Estimator

SC program: for each j € {1,...,J} we find the synthetic control
weights W; by solving the following program for t € {1,..., To}. For
each J,

W< € argmin, e[|V, — Y¥wP?,
Today: W = AL

However, our results follow for any estimator in

W= {weR||lw|; < C}.

Nests the standard SC program with simplex constraint: C = 1.

Allows for a variety of SC procedures (e.g. with /; penalties).
e While our results are valid for VW estimators, in practice simplex
regularization performs well.

If R;; exists in pre-period we compute the weights on the residual of
Y on R or match R.
12



The Synthetic IV

Step 2: Given {\N’,-t, Rie, Zit}Z;To' we estimate the first stage and reduced
form by OLS

7 € argmin, (Y — Zn)'(Y — Zn),
B € argming(R — ZB)' (R — ZB),
where Z includes an intercept.

Then, the estimated average marginal effect is given by:
=il
grsis _ (z z:e) AN
it it

e Also possible to not debias Z, 87215, or to only debias Z, 7515,
e But, debiasing both will help in finite samples.

e Intuition from TSLS with covariates differs because we are
estimating Py .
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Reduced-form re-visited |
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Figure 7: RF wage-employment rate
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Reduced-form re-visited Il

(a) Men: salaried employment (b) Women: formal salaried employment

Figure 8: Additional examples of IV vs SIV
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Treatment effects

e Using SIV can matter in practice
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Figure 9: RF wage-employment rate
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Linear Triangular System: J units, T = Ty + T; time periods
Yie = ORie + ,U:'Ft =+ €it,
Rit = vZix + Aie + nie,
where Z;; = 0 for t < Ty.
Assumptions
e Partial independence condition: €, nie L Zj;
e Bounded primitives: u;, F¢, Ait, Zix are bounded
e Strong instrument and enough residual variation
JiTz'(/ —P)ZEH Q>0

e Errors: ¢jr and nj are i.i.d mean zero, with bounded variance, covariance

and fourth moments
Y7oz

ag < Fand A\i(Y"0) < & (signal to noise assumption)
2

e Stable rank:

more detail
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The Synthetic TSLS identification

As in FE models,

Vit = Y‘ - s\/,fc
—9R1t+,U,Ft+€1t ZWSCY
J#i
:Gk,t+(ﬂ,—2 [Lj) Ft+61t ZASC
JF#i J#i

The synthetic TSLS is given by

-1
jrsts _ (z 2 R> AT
it it
=il
=0+ (Z Zit’%t) Zzit NI—ZW,'}?CNJ Fe
it it

JFi
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Bound on factor term

In general, it need not be 0,(1), the expected fit in the pre-treatment
period plays a key role.

Theorem (Bound - MAD)

Under assumptions, for t > Tq the following bound holds for all J, T

and Ty
F?k [J 1 YL
S (T) Cz(2 ?00'5 +E !J—TO |\/Jt|]

i,t<To

E lJiT > |ﬁﬁ|])

i,t<Tp
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Bound on factor term

Theorem (Bound)

Under assumptions, for t > Tq the following bound holds for all J, Ty

and To

Z It:u'l

<ﬂ>c 2,/ia +ro
= § z TO € 1

Furthermore, as JT; — oo and 7514/ %0 — 0,

i ZZ,tu,Ft 2.
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Consistency result

Theorem (Consistency)

Under assumptions, as JT; — oo and o1,/ %ﬂ — 0,

gTsLs _g P o,
6755 — 9 B o,
20

078 — 6

Finite sample bias increases with

e Noise: o vs. p}F:, worse fit

e Short pre-periods: io worse over-fitting

e Correlation with confounder: first stage gets worse
1 5 5 P
J_T1 ; ZiRir = Q,

for G743, 0;,5{5 and GZTSLS
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Asymptotic normality

Theorem (Asymptotic normality)

Under assumptions, for t > Ty, if,/%(l + J)fg1 — 0 as \/% — 0,
then

\/W(QSIV 9) d

VT

where v,1, = (EZ'R)~2 (E [Zit var(Zwéir | Z, W)D and

< N(0,1)

Z var(zitg,'t | Z,w) = o? Z Nir(Z,w)
it it

e We require large number of pre and post periods %1 -0

o Condition on weight sequence such that ||w'||; < C, then we do not need
J/ T.—0

e Alternatively, we also explore randomization inference
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Additional estimators

e The instrument can remove some of the noise!

Suppose we can decompose Zi; = Zi\;

Projected synthetic estimator

1. "de-noise” by projecting: Y, = Z(Z'Z)71Z'Y, where Z is J x 1
2. Use the de-noised outcomes to get the SC

WJ-P € argminweAJﬂHYZZ‘? - YT0 ’W||2

3. Compute G755 using the projected debiased data Y”, RF, and Z.
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Bound comparison

e Baseline synthetic estimator biased when o, high.
e Projected estimator less biased when o, but otherwise could fit

unobserved worse.

SIv

F2k J 1 -
<[—7 )¢ 2,/ 0. +E|— Y;
( § ) TO JTO’-;.O| Jtl

Z /tM,

Jn T1

Projected SIV

Z Z/tN,

F2k 1 1 .
< ()= |2/ gerE | T %A

(.

i T1

Ensemble estimator for a € [0, 1]
65(a) =af + (1 — a)f",
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Simulation design

Yie = BRit + pife + €,
Rie = (vZie + mie) * 1(t > To)
Zie = Zige * 1(t > To)
Time series structure:
fe = kef—1 + ug,
8t = Kg8t—1 + Ugt,

Error structure:

2
oy pz020,
2 b
Pz070, @

2
o¢ pPOCON
2 .
POON oy

25




Calibrated simulation

Simulation based on Syrian example:

o T =16, To=10, J =26

e Target 6 = —0.16

e Noise level: 02 = 02 = 0.035

e Instrument strength: match F-stat of 153; 02 = 0.54, v = 3.16
e Signal level: ai = 0.25, k = 2 (from PCA)

Simulations designs for 10000 draws, we vary:

1. ps to change degree of confounding

2. o to change noise level

26



Baseline
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Figure 10: p = p, = p; = 0, 95% coverage is 0.96
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Endogeneity
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Figure 11: p =0.5,p, = p; = 0, 95% coverage is 0.96
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Endogeneity + OVB
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Increasing the correlation with U
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Figure 13: p = p, = p; = 0.7, 95% coverage is 0.89
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Increasing the correlation with U
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Figure 14: p = p, = p; = 0.9, 95% coverage is 0.70
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Why is coverage good?

e Density check: no unit receives all weight

Max col norm
[ Frobenius norm

Max col norm
Frobenius norm

(a)p:pzng:O,S (b)pzpz:pg=09
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Increasing the noise

Model Mean Var |Bias| MSE
p=pz:=pg =05

OLS (twfe) 0.029 0.019 0.180 0.055
TSLS (twfe) -0.047 0.025 0.112 0.038
SIV -0.145 0.006 0.014 0.006
projected SIV -0.188 0.015 0.028 0.016
SIV + projected -0.151  0.006 0.008 0.006

SIV Z not debiased -0.126 0.007 0.033 0.008

Table 1: 0. = 20'Syria
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Increasing the noise

Model Mean Var |Bias| MSE
p=pz:=pg =05

OLS (twfe) 0.069 0.026 0.229 0.078
TSLS (twfe) -0.047 0.028 0.112 0.041
SIV -0.134 0.012 0.025 0.013
projected SIV -0.183 0.023 0.023 0.024
SIV + projected -0.144 0.012 0.015 0.012

SIV Z not debiased -0.113 0.012 0.046 0.014

Table 2: 0. = 40'Syria
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Increasing the noise

Model Mean Var |Bias| MSE
p=pz:=pg =05

OLS (twfe) 0.203 0.067 0.363 0.199
TSLS (twfe) -0.048 0.046 0.111 0.058
SIvV -0.101  0.045 0.058 0.048
projected SIV -0.152  0.070 0.007 0.071
SIV + projected -0.119 0.044 0.041 0.046

SIV Z not debiased -0.081 0.037 0.078 0.043

Table 3: 0. = 80syria
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e Good finite sample Bias + MSE
but the method is sensitive to

1. High correlation with the unobserved con-founder

2. High noise-signal ratio

3. Ensemble estimator: SIV + projected estimator may offer
"double-robustness”

Diagnostic checks:

1. Asses good pre-treatment fit (MAD plots)
2. Back testing the start of the treatment

3. Check the instrument strength

4. Check density of weights

36



Empirical checks
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Empirical checks Il
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ADH revisited

e Decreased effect for 1999-2000

Table 4: China shock effect

1990-2000 2000-2007 1990-2007
(1) (2) (3)
25LS -0.888 -0.718 -0.746
(0.181)  (0.064)  (0.068)

SIv -0.588 -0.726 -0.703
(0.198)  (0.070)  (0.067)

Notes: The first row replicates columns 1-3
of Table 2 in ADH 2013. The second row
presents the estimates using the SIV. The
SC weights are estimated using the manu-
facturing growth rates in 1970 and 1980.
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Ranking example |

e Use promotion contracts (Z) as an IV for producer ranking (R) in
digital platform to study the effect on sales ()
e A/B test in which ranks were randomized available!
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Figure 18: Reduced form event study of promotion on log sales. 40



Ranking example II

e |V biased upwards as expected from positive OVB
e SIV recovers the A/B test
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Figure 19: Treatment effects of being in top ranks on sales.
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Conclusion

Un-measured confounding can bias DiD and IVDiD estimates
The synthetic IV offers one solution based on SC

We derive conditions for consistency and asymptotic normality
Show the applicability of the method empirically and through

simulations
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New draft coming soon! 42



Additional slides




Regression Set-up

e Let R;; denote the refugee/native ratio at province-year level
e Refugee location choice is endogenous: use travel distance as an

instrument:
Zi+= H: x Z
~— =~
shift  share
o 1)
2 = As—
) Z °d; s
s=1 Js
where

e H; is the number of refugees in Turkey in year t.

e d; is the travel distance between Turkish region p and Syrian
governorate s

e )\, is the weight given to Syrian governorate s

e today: \s = 7, population share of Syrian governorate s
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e Two unobserved (grey) confounders.
e Goal: estimate causal effect of R on Yj.

Figure 20: Triangular system with unknown confounders.
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OLS

e OLS of Y on R valid if Ry L €, Uy (R exogenous).

Figure 21: Example of independence relationships for OLS.
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e |V requires that Z;; L €j, Uy.

Figure 22: Example of independence relationships for IV.
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Model Assumptions |

Assumption (A1)

Independence condition: €, nix L Zjt

Assumption (A2)

° |F/t| S ﬁ

° Ffro Fr, has minimum eigenvalue £ such that £/ Ty > 0.

o 1j € M with diam(M) = sup{||t — s|| : for t,s € M} < c,.

e Zjiy € Z such that diam(Z) = sup{||t —s|| : fort,s € Z} < c,.

e The instrument Z; and the unobserved factor structure satisfy

1
J_TZZ’%£)Q2>O’
it

as JT — oo and

1
—2Z'(l — Py)Z £ 0
74 =Pu)Z=Q>0,
. . 47
for projection matrix U.



Model Assumptions Il

Assumption (A3)

With probability one,
Y7ol

Mo G r

Y73 =

and the largest singular value satisfies 01(YT°) < &1, where ¥ and &1 may
depend on J and Ty.

Theorem (Bias bound)

Under A1-A3, for t > Ty the following bound holds for all J, T and Ty

£2
> ZufiiFe s(F—k) . (2 Lo+ 75
it S To

Furthermore, as JT — oo and 71,/ Tio — 0,

)

1
— |E
JT

S A
VTod To

1 Z 5w P
- Zit,LL,'Ft — 0.
JT m
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Two additional estimators

e The instrument can remove some of the noise!

Suppose we can decompose Z;; = Zi\;

Projected synthetic estimator
1. "de-noise” by projecting: Y, = Z(Z'Z)71Z'Y, where Z is J x 1
2. Use the de-noised outcomes to get the SC

!

wf € argmin,,epr ||V = V1wl

Aggregated synthetic estimator

1. Let Q,’ = zt<To Zit )/it
2. Match the aggregated values

va\gg € argmin,, a1 Qi — Qiwl?
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Ensemble estimator

e Baseline synthetic estimator biased when o, high.

e Projected/Agg estimators less biased when o, but otherwise could
fit unobserved worse.

Ensemble estimator for o € [0, 1]

0F(a) = af + (1 — )",

e « hyper-parameter can be chosen to minimise MSE in a validation
period.

return
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Empirical correlation
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Figure 24: Factor correlation for p = 0.7.
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Debiasing the first stage?

We want to compare
° B = (Zit Rjtkit)_l Eit F\;itzity
° BZ = (Eit R’,’tﬁit)_l Eit RsitZit-

Lemma

Consider an instrument of the form:

Ziy = Air + apiFy,

where Aj ~ig N(0,03) and ji}F: | Ai. Suppose that fi}F; = 0,(1), then

LYDSN

:Uz :Uz

_ Y RiZe
- Y RieZe

E‘bllﬁz

e So de-biasing the instrument could matter asymptotically.

More details
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Randomization Inference

e Asymptotic results require large T. Often we have short panels.
e Randomization inference common practice in SC studies

e e.g. Abadie et al. (2010), Firpo and Possebom (2018)...

e Challenge is that we have a continuous treatment and an instrument.
Two approaches:

1. Split conformal inference: define a blank period and perform
permutation tests comparing the distribution of realized 6, with
blank period 7.

1.1 Chernozhukov et al. (2021), Abadie and Zhao (2022).

2. Randomization inference: permute instrument-treatment pairs
across units, compare permuted estimates 6, with realized 6.

e Imbens and Rosenbaum (2003).
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Split conformal inference

1. Split To period into a training period and a blank period (starting at
Ty < To).

2. Compute SC weights in the training period and define debiased quantities.
3. Run reduced form event regression to get estimates
{0r6,...,07,,...,07}.

4. Generate a permutation (T — Tp) X 1 vector e = (5,,(1), e é,r(r,ro)).
5. Compute test statistic: S(e) = 1/(T — To)lle|lq, 9=1.
6. Permutation p-value:

L1 o 7

b= D US@) > S(lesm,))

wen

e Requires exchangeability across time of ¢, F;.

e Requires blank time periods.
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Randomization inference

1. In the pre-period compute the SC weights and generate the debiased
quantities.

2. Define the set of permutations of the J units: P(J).

3. For a given permutation 7w € P(J), compute

—1
Or = (Z Z‘rr(i)tRw(i)t> Z Zr(iye Yit,
it it

where we permute the individuals for Z and R but not Y.

4. p-value:

ﬁzﬁ S P, > )

e Requires exchangeability across units of €z, pi.

e Approximation given the number of permutations.
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Randomization inference

e Permutation distribution example for simulation design with moderate
correlation.

0.8

04 r
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Back-testing the RF
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Figure 25: RF wage-employment rate



Endogeneity

Model Mean Var |Bias| MSE
p=05,p,=pg=0

OLS (twfe) 1.245 0.012 0.245 0.072
TSLS (twfe) 0.994 0.017 0.006 0.017
SIV 0.995 0.011 0.005 0.011
projected SIV 0.975 0.043 0.025 0.044
SIV + projected 0.994 0.010 0.006 0.010
SIV Z not debiased 0.992 0.011 0.008 0.010

Table 5: T =20, 7 =30,J =20,0; =1, 00ther = 0.5,k =0.5
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Endogeneity + OVB

Model Mean Var |Bias| MSE
p=pz:=pg =05

OLS (twfe) 1.379 0.019 0.379 0.162
TSLS (twfe) 1.260 0.069 0.260 0.136
SIV 1.030 0.013 0.030 0.014
projected SIV 0.901 0.046 0.099 0.056
SIV + projected 1.008 0.013 0.008 0.013

SIV Z not debiased 1.079 0.017 0.079 0.023

Table 6: To =20, 7 =30,J =20,0, =1,00ther = 0.5,k =0.5
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Increasing OVB

Model Mean Var |Bias| MSE
p=05,p,=p;, =07

OLS (twfe) 1501 0.021 0.501 0.272
TSLS (twfe) 1.505 0.084 0.505 0.339
SIvV 1.080 0.024 0.080 0.031
projected SIV 0.935 0.062 0.065 0.066
SIV + projected 1.038 0.025 0.038 0.027
SIV Z not debiased 1.200 0.028 0.200 0.068

Table 7: T =20,T7 =30,J =20,0; =1,00ther = 0.5, =0.5
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Increasing OVB

Model Mean Var |Bias| MSE
p=05,p, =p;,=0.9

OLS (twfe) 1.661 0.018 0.661 0.455
TSLS (twfe) 1.826 0.064 0.826 0.747
SIV 1.268 0.054 0.268 0.125
projected SIV 1.142 0.087 0.142 0.107
SIV + projected 1.207 0.056 0.207 0.099
SIV Z not debiased 1.519 0.050 0.519 0.328

Table 8: To =20, 7 =30,J =20,0, = 1,00ther = 0.5,k =0.5
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Increasing OVB

Model Mean Var |Bias| MSE
p=05pg=p;=1

OLS (twfe) 1.745 0.010 0.745 0.566
TSLS (twfe) 2.006 0.034 1.006 1.045
SIV 1.879 3.338 0.879 4.107
projected SIV 2.141 1213 1.141 2514
SIV + projected 2.033 1446 1.033 2511
SIV Z not debiased 2.024 0.025 1.024 1.082

Table 9: To =20, 7 =30,J =20,0, = 1,00ther = 0.5,k =0.5

63



Increasing the noise

Model Mean /8 Var |Bias| MSE
p=pg=p;=050,=2

OLS (twfe) 1.625 0.037 0.625 0.428
TSLS (twfe) 1252 0.089 0.252 0.152
SIV 1.076 0.049 0.076 0.054
projected SIV 0.849 0.131 0.151 0.154
SIV + projected 1.014 0.049 0.014 0.049
SIV Z not debaised 1.130 0.053 0.130 0.067

Table 10: To =20, T =30,J = 20,0: = 1, 0other = 0.5,k = 0.5
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Increasing J/ T

e Accentuates other problems, but is less important in low noise

settings.

Model Mean S Var |Bias| MSE
p=pg=p;=05Ty=10,J =20

OLS (twfe) 1.365 0.018 0.365 0.151
TSLS (twfe) 1.222 0.058 0.222 0.107
SIV 1.023 0.018 0.023 0.019
projected SIV 0.929 0.053 0.071 0.058
SIV + projected 1.004 0.016 0.004 0.016
SIV Z not debiased 1.076 0.017 0.076 0.022

Table 11: T=20, 0, = 1, 0other = 0.5,k = 0.5
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Increasing J/ T

Model Mean Var |Bias| MSE
p=pg=p;=05Ty=10,J =40

OLS (twfe) 1.377 0.013 0.377 0.155
TSLS (twfe) 1.256 0.041 0.256 0.107
SIvV 1.028 0.009 0.028 0.010
projected SIV 0.949 0.029 0.051 0.032
SIV + projected 1.014 0.008 0.014 0.008
SIV Z not debiased 1.061 0.009 0.061 0.014

Table 12: T=20, 0, = 1, 0other = 0.5,k = 0.5
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Coverage

e Good coverage in good settings

e Under coverage in higher bias settings

Coverage o = 0.05

T=30 T=40 T=50

p=ps=p.=00 0981 0962 00952
p=pg=p, =03 0976 0944  0.96
p=pg=p;=05 0960 0945 0923
p=pg=p, =07 0904 0808 0.792

Table 13: To =20,J =20,0. =0.5,0; = 1,00ther = 0.5,k = 0.5

67



	Additional slides

