A Theory of Stable Market Segmentations

Nima Haghpanah (Penn State) joint with Ron Siegel (Penn State)

August 29, 2024

- Homeowners associations
- Student groups
- Employer-based prices

Consumers interact with a seller as a group

- Homeowners associations
- Student groups
- Employer-based prices

Consumers interact with a seller as a group

- Homeowners associations
- Student groups
- Employer-based prices

Consumers interact with a seller as a group

- Homeowners associations
- Student groups
- Employer-based prices

Consumers interact with a seller as a group

- Homeowners associations
- Student groups
- Employer-based prices

- Homeowners associations
- Student groups
- Employer-based prices
- Leads to "market segmentation"

- Homeowners associations
- Student groups
- Employer-based prices
- Leads to "market segmentation"
- A cooperative approach:
 - segment = a coalition of consumers

- Homeowners associations
- Student groups
- Employer-based prices
- Leads to "market segmentation"
- A cooperative approach:
 - segment = a coalition of consumers
- "Stable" segmentations

- Homeowners associations
- Student groups
- Employer-based prices
- Leads to "market segmentation"
- A cooperative approach:
 - segment = a coalition of consumers
- "Stable" segmentations
 - have good welfare properties

 $(C_1, 1)$: a segment $(C_1, 2)$: a segment $(C_2, 1)$: not a segment $(C_2, 2)$: a segment

 $(C_1, 1)$: a segment $(C_1, 2)$: a segment $(C_2, 1)$: not a segment $(C_2, 2)$: a segment

Segmentation $S = \{(C_1, 1), (C_2, 2)\}$ s.t. coalitions partition [0, 1]

 $(C_1, 1)$: a segment $(C_1, 2)$: a segment $(C_2, 1)$: not a segment $(C_2, 2)$: a segment

Segmentation $S = \{(C_1, 1), (C_2, 2)\}$ s.t. coalitions partition [0, 1]

$$CS(c,S) = \begin{cases} \max\{v(c) - 1, 0\} & \text{if } c \in C_1, \\ \max\{v(c) - 2, 0\} & \text{if } c \in C_2. \end{cases}$$

Outline

Stability

Definition (Objection)

A segment (C, p) objects to segmentation S if

 $\max\{v(c) - p, 0\} > CS(c, S)$ for some (measure > 0) $c \in C$

Definition (Objection) A segment (C, p) objects to segmentation S if

 $\max\{v(c) - p, 0\} \ge CS(c, S) \text{ for all } c \in C \\ \max\{v(c) - p, 0\} > CS(c, S) \text{ for some (measure > 0) } c \in C \\ \end{cases}$

Note: Objecting segment $(C, p) \notin S$

```
Definition (Objection)
```

A segment (C, p) objects to segmentation S if

 $\begin{array}{ll} \max\{v(c)-p,0\}\geq CS(c,S) \text{ for all } & c\in C\\ \max\{v(c)-p,0\}>CS(c,S) \text{ for some (measure }>0) \ c\in C \end{array}$

Note: Objecting segment $(C, p) \notin S$

Definition (Core)

S is in the core if \nexists segment (C, p) that objects to S

Two type illustration: Core may be empty

Two type illustration: Core may be empty If $\delta < 0.8$: $S = \{(C_1, 1), (C_2, 2)\}$ not in core

Two type illustration: Core may be empty If $\delta < 0.8$: $S = \{(C_1, 1), (C_2, 2)\}$ not in core If $\delta = 0.8$: $S = \{(C_1, 1), (C_2, 2)\}$ not in core

Two type illustration: Core may be empty If $\delta < 0.8$: $S = \{(C_1, 1), (C_2, 2)\}$ not in core If $\delta = 0.8$: $S = \{(C_1, 1), (C_2, 2)\}$ not in core

Segment $(C'_1, 1)$ objects

Definition (Weakened Core)

S is in weakened core if \nexists segment (C', p') that strictly objects to S:

Definition (Weakened Core)

S is in weakened core if \nexists segment (C', p') that strictly objects to *S*: (C', p') objects to *S*

Definition (Weakened Core)

S is in weakened core if \nexists segment (C', p') that strictly objects to S:

- (C', p') objects to S
- ∀(C, p) ∈ S that is "broken apart" by C' (C ∩ C' and C\C' have positive measures), ∃ consumers in C ∩ C' who strictly benefit (CS(c, p') > CS(c, S))

Cost-based justification

Cost-based justification

- Small fee to break up existing coalitions
- Must be paid by members who want to deviate (in $C_1 \cap C'_1$)
- If not paid, objection fails

Two type illustration and weakened core $S = \{(C_1, 1), (C_2, 2)\}$ is in the weakened core

Two type illustration and weakened core $S = \{(C_1, 1), (C_2, 2)\}$ is in the weakened core $S' = \{(C'_1, 2)\}$ is not in the weakened core

Characterization

Proposition

For any segmentation S, the following are equivalent

- **1** *S* is in the weakened core
- **2** the induced canonical segmentation of S efficient and saturated

Characterization

Proposition

For any segmentation S, the following are equivalent

- **1** *S* is in the weakened core
- **2** the induced canonical segmentation of S efficient and saturated

 $S = \{(\textbf{C}_1, 1), (\textbf{C}_2, 2)\}$

Characterization

Proposition

For any segmentation S, the following are equivalent

- **1** *S* is in the weakened core
- **2** the induced canonical segmentation of S efficient and saturated
- **3** S is "stable": $\forall S' \neq S$, $\exists (C, p) \in S$ that objects to S'

 $S = \{(C_1, 1), (C_2, 2)\}$

Is defined recursively. Let $\bar{C} = [0,1]$, $S = \emptyset$

- C := largest coalition where all prices (among remaining values in C
 are revenue-maximizing
- 2 Add $(C, \underline{v}(C))$ to S
- Remove C from \bar{C}
- Repeat until $\bar{C} = \emptyset$

Is defined recursively. Let $\bar{C} = [0,1]$, $S = \emptyset$

- C := largest coalition where all prices (among remaining values in C
 are revenue-maximizing
- Add (C, <u>v</u>(C)) to S
- Remove C from \bar{C}
- Repeat until $\bar{C} = \emptyset$

In each step $|\{v| \exists c \in ar{\mathcal{C}}, v(c) = v\}|$ reduces by at least 1

Is defined recursively. Let $\bar{C} = [0,1]$, $S = \emptyset$

- C := largest coalition where all prices (among remaining values in C
 are revenue-maximizing
- Add (C, <u>v</u>(C)) to S
- Remove C from \bar{C}
- Repeat until $\bar{C} = \emptyset$

In each step $|\{v| \exists c \in ar{\mathcal{C}}, v(c) = v\}|$ reduces by at least 1

Proposition

The MER segmentation is stable

Is defined recursively. Let $\bar{C} = [0,1]$, $S = \emptyset$

- C := largest coalition where all prices (among remaining values in C
 are revenue-maximizing
- Add (C, <u>v</u>(C)) to S
- Remove C from \bar{C}
- Repeat until $\bar{C} = \emptyset$

In each step $|\{v| \exists c \in ar{\mathcal{C}}, v(c) = v\}|$ reduces by at least 1

Proposition

The MER segmentation is stable

Bergemann, Brooks, Morris (2015):

- The MER segmentation maximizes consumer surplus
- But is not the only one

Thanks!

Stability ⇒ maximizing consumer surplus

Stability \Rightarrow maximizing consumer surplus

Stability \Rightarrow maximizing consumer surplus

 $S = \{(C_1, 1), (C_2, 3)\}$ is efficient and saturated \Rightarrow stable

Stability \notin maximizing consumer surplus

Stability \notin maximizing consumer surplus

 $S = \{(C_1, 1), (C_2, 2)\}$ maximizes consumer surplus

Stability $\not\leftarrow$ maximizing consumer surplus

- $S = \{(C_1, 1), (C_2, 2)\}$ maximizes consumer surplus
 - Efficient allocation
 - price 3 is revenue-maximizing for $C_1, C_2, [0, 1]$

Stability $\not\leftarrow$ maximizing consumer surplus

 $S = \{(C_1, 1), (C_2, 2)\}$ maximizes consumer surplus

- Efficient allocation
- ▶ price 3 is revenue-maximizing for $C_1, C_2, [0, 1]$

S is not saturated and so not stable:

