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Which segmentations will arise?

Consumers interact with a seller as a group

▶ Homeowners associations

▶ Student groups

▶ Employer-based prices

Leads to “market segmentation”

A cooperative approach:

▶ segment = a coalition of consumers

“Stable” segmentations

▶ have good welfare properties
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Coalitions, segments, and segmentations

(C1, 1): a segment (C1, 2): a segment
(C2, 1): not a segment (C2, 2): a segment

Segmentation S = {(C1, 1), (C2, 2)} s.t. coalitions partition [0, 1]

CS(c ,S) =

{
max{v(c)− 1, 0} if c ∈ C1,
max{v(c)− 2, 0} if c ∈ C2.

Consumers
0 1

Values

Measures

0.40.4

1 2

0.4 0.6

C1({1, 2}) C1({1, 2}) C1

0 10.3 0.7

C2({1, 2}) C2({1, 2}) C2

0.70.3
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Outline

1 Core

2 Stability



The core

Definition (Objection)

A segment (C , p) objects to segmentation S if

max{v(c)− p, 0} ≥ CS(c, S) for all c ∈ C
max{v(c)− p, 0} > CS(c , S) for some (measure > 0) c ∈ C

Note: Objecting segment (C , p) /∈ S

Definition (Core)

S is in the core if ∄ segment (C , p) that objects to S
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Two type illustration: Core may be empty

If δ < 0.8: S = {(C1, 1), (C2, 2)} not in core
If δ = 0.8: S = {(C1, 1), (C2, 2)} not in core

▶ Segment (C ′
1, 1) objects

Consumers
0 1

Values

0.4

1 2

({1, 2}) C1

0 δ

({2}) C2

1δ

({1, 2}) C1

0 δ = 0.8

({2}) C2

10.8

({1, 2}) C ′
1

0 0.4 10.8
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Definition (Weakened Core)

S is in weakened core if ∄ segment (C ′, p′) that strictly objects to S :

1 (C ′, p′) objects to S

2 ∀(C , p) ∈ S that is “broken apart” by C ′

(C ∩ C ′ and C\C ′ have
positive measures)

, ∃ consumers in C ∩ C ′ who strictly benefit

(CS(c , p′) > CS(c,S))

Consumers
0 1

Values

0.4

1 2

({1, 2}) C1

0 0.8
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Cost-based justification

▶ Small fee to break up existing coalitions

▶ Must be paid by members who want to deviate (in C1 ∩ C ′
1)

▶ If not paid, objection fails
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Two type illustration and weakened core
S = {(C1, 1), (C2, 2)} is in the weakened core

S ′ = {(C ′
1, 2)} is not in the weakened core
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Characterization

Proposition

For any segmentation S , the following are equivalent

1 S is in the weakened core

2 the induced canonical segmentation of S efficient and saturated

3 S is “stable”: ∀S ′ ̸= S , ∃(C , p) ∈ S that objects to S ′

S = {(C1, 1), (C2, 2)}
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Segmentations

efficient

Stable =
efficient + saturated

?

Core



Stable segmentations exist? An example

S = {(C1, 1), (C2, 2), (C3, 3)}
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Maximal equal-revenue (MER) segmentation

Is defined recursively. Let C̄ = [0, 1], S = ∅
1 C := largest coalition where all prices (among remaining values in C̄ )

are revenue-maximizing

2 Add (C , v(C )) to S

3 Remove C from C̄

4 Repeat until C̄ = ∅
In each step |{v |∃c ∈ C̄ , v(c) = v}| reduces by at least 1

Proposition

The MER segmentation is stable

Bergemann, Brooks, Morris (2015):

▶ The MER segmentation maximizes consumer surplus

▶ But is not the only one
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Stability ⇏ maximizing consumer surplus

S = {(C1, 1), (C2, 3)} is efficient and saturated ⇒ stable

Consumers
0 1
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1
3

2
3

1 2 3

({1, 2}) C1
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3

({3}) C2
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Stability ⇍ maximizing consumer surplus

S = {(C1, 1), (C2, 2)} maximizes consumer surplus

▶ Efficient allocation

▶ price 3 is revenue-maximizing for C1,C2, [0, 1]

S is not saturated and so not stable:
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