Takashi Kano

Hitotsubashi University

@ESEM 2024 August 27, 2024 Very Preliminary and Incomplete Comments Welcome

Introduction: Limited information inferences for DSGE models

- ▶ Full-information likelihood-based inference of DSGE models are subject to misspecification problems
- ▶ Limited information classical inference methods
	- ▶ GMM, SMM, MD, II, etc.
	- ▶ Laplace-type estimator (Chernozhukov and Hong 2003)
- ▶ Limited information Bayesian inference methods
	- ▶ Limited information likelihood: Kim (2002), Christiano et al. (2010), Inoue and Shintani (2018)
	- ▶ Approximated Bayesian computation with MCMC: Marjoram et al. (2003), Forneron and Ng (2018)
- ▶ But still few papers apply limited information Bayesian inference methods to misspecified nonlinear DSGEs.

Introduction

Introduction: Minimal Econometric Interpretation

- ▶ Geweke (2010): DSGEs as incomplete econometric tools
	- ▶ No direct implication on actual data nor sample moments.
	- ▶ Have implications on **unobservable population moments**.
	- ▶ Need an auxiliary empirical model to bridge between DSGEs and actual data.
	- ▶ Bayesian prior predictive analysis: DSGEs are evaluated by measuring the degree of overlapping between empirical and theoretical distributions of targeted population moments.

▶ The MEI is

- ▶ Generalization of Bayesian calibration (DeJong at al. 1996)
- Reviewed by Schorfheide (2000), Canova (2007), DeJong and Dave (2011), Del Negro (2011), and Fernández-Villaverde et al. (2016).
- ▶ Applied by Nason and Rogers (2006), Kano and Nason (2014), and Loria et al.(2022) to several business cycle topics.

Introduction: What does this study try to do?

- \triangleright Because the MEI is a prior predictive analysis, there is no parameter updating process.
- ▶ **Question:** How can we update the structural parameters of nonlinear DSGEs within the MEI?
- ▶ **MEI posterior sampler**: a distribution-matching limited-information Bayesian inference method for DSGEs by extending the MEI.
- ▶ Monte Carlo experiments based on a **nonlinear** equilibrium asset pricing model.

Ingredients of the MEI

Minimal **E**conometric **I**nterpretation

Ingredients of the MEI

Main ingredients of the MEI

- \blacktriangleright Targeted population moments: m_s for $s = E, A$.
- ▶ Empirical model *E* simulates posterior distributions of population moments conditional on data y: $p(\mathbf{m}_E|\mathbf{y}, E) = \prod_{j=1}^{N} p(m_{E,j}|\mathbf{y}, E)$

$$
p(m_E|\mathbf{y}, E) = \frac{p(m_E|E)p(\mathbf{y}|m_E, E)}{p(\mathbf{y}|E)} \propto p(\mathbf{y}|m_E, E)
$$

where $\mathbf{m}_E \equiv \{m_{E,j}\}_{j=1}^N$.

 \blacktriangleright Empirical model E has no prior on population moments:

$$
p(m_{E,j}|E) \propto const
$$

Ingredients of the MEI

Main ingredients of the MEI

 \triangleright DSGE A with structural parameters θ_A generates the prior predictive distributions of population moments

$$
p(\Theta_A, \mathbf{m}_A|A) = \prod_{j=1}^M p(\theta_{A,j}|A) p(m_{A,j}|\theta_{A,j}, A)
$$

where $p(\theta_A|A)$ is the prior of structural parameters θ_A and $\mathbf{m}_A \equiv \{m_{A,j}\}_{j=1}^M$ and $\Theta_A = \{\theta_{A,j}\}_{j=1}^M$

- ▶ DSGE *A* has no direct implication on y.
- ▶ **Main question:** how can we update the structural parameters Θ*^A* conditional on *A* and *E* through population moments?

 $p(\Theta_A|\mathbf{v}, E, A)$

MEI posterior sampler

MEI posterior sampler

Dirichlet-multinomial (DM) model

Dirichlet-multinomial (DM) model

- ▶ Models *E* and *A* generate sets of the empirical and theoretical moment, $\mathbf{m}_E \equiv \{m_{E,j}\}_{j=1}^N$ and $\mathbf{m}_A \equiv \{m_{A,j}\}_{j=1}^M$,
- ▶ Discretize m_E and m_A with a finite support $S = [s, \bar{s}]$
- \triangleright Decompose support S into K mutually exclusive subintervals s_k for $k = 1, \dots, K$.
- $\mathbf{p}_k \geq 0$ denotes the mass probability of the event that population moment *m^s* drops into the k-th subinterval s*k*:

$$
\mathbf{p}_k = p(m_s \in \mathbf{s}_k),
$$

where $\mathbf{p} \equiv [\mathbf{p}_1, \cdots, \mathbf{p}_K]$ denotes a vector consisting of \mathbf{p}_k satisfying the regularity condition $\sum_{k=1}^{K} \mathbf{p}_k = 1$.

Dirichlet-multinomial (DM) model

The multinomial distribution for m_F

▶ n_k ≥ 0 for $k = 1, \dots, K$ denotes the number of draws of m_E that drop into the k-th subinterval s_k ,

$$
n_k = \sum_{j=1}^N I[m_{E,j} \in \mathbf{s}_k]
$$

where $\sum_{k=1}^{K} n_k = N$.

 \blacktriangleright The probability of m_E conditional on **p** is characterized by the multinomial distribution with the parameter $n \equiv [n_1, \dots, n_K]$:

$$
p(\mathbf{m}_E|\mathbf{p}) = \frac{\Gamma(N)}{\prod_{k=1}^K \Gamma(n_k)} \prod_{k=1}^K (\mathbf{p}_k)^{n_k},
$$
 (1)

Dirichlet-multinomial (DM) model

The model restricted Dirichlet prior for p

 \triangleright $\alpha_k \geq 1$ represents one plus the number of draws of theoretical moment m_A that drop into the k-th subinterval s_k .

$$
\alpha_k = \sum_{j=1}^{M} I[m_{A,j} \in \mathbf{s}_k] + 1
$$

where $\sum_{k=1}^{K} \alpha_k = M + K$.

 \triangleright The probability of **p** conditional on m_A is given by the Dirichlet distribution with the concentration parameter α :

$$
p(\mathbf{p}|\mathbf{m}_A) = \frac{\Gamma(M)}{\prod_{k=1}^K \Gamma(\alpha_k)} \prod_{k=1}^K (\mathbf{p}_k)^{\alpha_k - 1}
$$
 (2)

where $\alpha \equiv [\alpha_1, \cdots, \alpha_k]$.

Dirichlet-multinomial (DM) model

The DM marginal likelihood

 \triangleright The marginal likelihood (ML) of the DM model is given by Pólya distribution

$$
p(\mathbf{m}_E|\mathbf{m}_A) = \int p(\mathbf{m}_E|\mathbf{p})p(\mathbf{p}|\mathbf{m}_A)\mathbf{d}\mathbf{p}
$$

=
$$
\frac{\Gamma(N+1)\Gamma(M+K)}{\Gamma(N+M+K)} \prod_{k=1}^K \frac{\Gamma(n_k+\alpha_k)}{\Gamma(n_k+1)\Gamma(\alpha_k)}.
$$
 (3)

- ▶ For large values of N and M, the DM-ML explodes due to the Gamma functions.
- ▶ This study shows that the DM-ML is well approximated by the Jensen-Shannon (JS) divergence.

The JS divergence of the DM-ML

The JS divergence of the DM-ML

▶ The logarithm of the DM-ML is approximated by

$$
\ln p_{\lambda}(\mathbf{m}_{E}|\mathbf{m}_{A}) \approx \ln N - (1 + \lambda) N D_{JS}(\zeta || \mathbf{q}), \tag{4}
$$

where $D_{IS}(\zeta \parallel q)$ denotes the JS divergence between the empirical and theoretical distributions

$$
D_{JS}(\zeta \parallel \mathbf{q}) = \frac{1}{1+\lambda} \sum_{k=1}^{K} \zeta_k \left\{ \ln \zeta_k - \ln \left(\frac{1}{1+\lambda} \zeta_k + \frac{\lambda}{1+\lambda} q_k \right) \right\}
$$

$$
+ \frac{\lambda}{1+\lambda} \sum_{k=1}^{K} q_k \left\{ \ln q_k - \ln \left(\frac{1}{1+\lambda} \zeta_k + \frac{\lambda}{1+\lambda} q_k \right) \right\}
$$

with $\lambda \equiv (M + K)/N$, $\zeta_k \equiv n_k/N$, and $q_k \equiv \alpha_k/(M + K)$.

The JS divergence of the DM-ML

Two extreme cases of the JS likelihood

1.
$$
\lambda \to \infty
$$
 or $M \to \infty$

$$
\lim_{\lambda \to \infty} \ln p_{\lambda}(\mathbf{m}_E | \mathbf{m}_A) \to \ln N - N \sum_{k=1}^K \zeta_k (\ln \zeta_k - \ln q_k) \qquad (5)
$$

i.e. the Kullback-Leibler (KL) divergence of ζ from *q*.

The JS likelihood converges to the quasi likelihood constructed from the multinomial distribution restricted by DSGE.

c.f. Del Negro and Shorfheide (2004, Proposition 1): quasi likelihood from VAR restricted by DSGE.

The JS divergence of the DM-ML

Two extreme cases of the JS likelihood

$$
2 \ \lambda \to \frac{K+1}{N} \text{ or } M \to 1
$$

$$
\lim_{\lambda \to \frac{K+1}{N}} \ln p_{\lambda}(\mathbf{m}_E | m_A) \to \sum_{k=1}^K \mathbf{I}[m_A \in \mathbf{s}_k] \ln \left(\frac{n_k + 2}{N + K + 1} \right), \qquad (6)
$$

 $\left(\frac{n_k+2}{\cdots} \right)$ $\frac{n_k+2}{N+K+1}$) is the predictive density from the DM model, which is close to the maximum likelihood estimate n_k/N for a large N.

This implies a minimum distance (MD) estimator by tracking the empirical distribution with a single theoretical moment as closely as possible.

c.f. Del Negro and Shorfheide (2004, Proposition 2): MD estimator by fitting the restricted VAR to the empirical one.

MEI posterior distribution

The joint posterior distribution of θ_A , m_A , and m_E

 \blacktriangleright This presentation focuses on the case with $M = 1$.

- \blacktriangleright It is almost computationally infeasible to simultaneously draw a large number *M* of the theoretical moments m_A by solving the underlying nonlinear DSGE for different values of the structural parameters Θ*A*.
- ▶ Sequential Monte Carlo sampler with MH mutation for *M* > 1 case applying for single-equation NK Phillips curve (work in progress)
- ▶ The joint posterior distribution induced by the MEI approach with the JS likelihood is

 $p(\theta_A, m_A, \mathbf{m}_E | \mathbf{y}, A, E) \propto p(\theta_A | A) p_\lambda(\mathbf{m}_E | m_A(\theta_A)) p(\mathbf{m}_E | \mathbf{y}, E)$ $\equiv p_{\lambda}(\theta_A|\mathbf{m}_E) p(\mathbf{m}_E|\mathbf{v},E)$

The MEI posterior sampler

The MEI posterior sampler

- Step 1. Given the data y, draw $m_E \sim p(m_E|y, E)$.
- Step 2. Given the initial draw θ_A^{old} and the corresponding conditional probability $p_{\lambda}(\theta_A^{old}|\mathbf{m}_E),$

 $2(a)$. Draw a new candidate of the structural parameter θ_A^{new} from

$$
\theta_A^{new} = \theta_A^{old} + \mathbf{v}, \quad \mathbf{v} \sim i.i.d.(\mathbf{0}, \tau\Omega)
$$

2(b). Calculate the conditional probability $p_{\lambda}(\theta_A^{new}|\mathbf{m}_E)$. Compute

$$
r(\theta_A^{new}|\theta_A^{old})=\min\left\{1,\frac{p_\lambda(\theta_A^{new}|\mathbf{m}_E)}{p_\lambda(\theta_A^{old}|\mathbf{m}_E)}\right\}.
$$

- 2(c). Draw a uniform random variate $u \sim U[0, 1]$. Accept $\theta_A = \theta_A^{new}$ if $r(\theta_A^{new}|\theta_A^{old}) \geq u$. Keep $\theta_A = \theta_A^{old}$ otherwise.
- 2(d). Set $\theta_A^{old} = \theta_A$. Repeat 2(a)-(d) many times.

The MEI posterior sampler

The ML estimate and the odds ratio

- ▶ The marginal likelihood of DSGE *A* is evaluated relative to that of the empirical model *E*.
- ▶ The modified harmonic mean estimator of Geweke (1999)

$$
\hat{\psi}_{\lambda}(\mathbf{y}|A, E) = \left[\frac{1}{J} \sum_{j=1}^{J} \frac{f(\theta_A^j)}{p_{\lambda}(\theta_A^j | \mathbf{m}_E)}\right]^{-1}
$$

.

▶ The formal model comparison between two nonlinear DSGEs A_1 and A_2 is implemented with the estimated relative marginal likelihoods $\hat{\psi}_\lambda(\mathbf{y}|A_1,E)$ and $\hat{\psi}_\lambda(\mathbf{y}|A_2,E)$:

Odds ratio =
$$
\frac{p(A_1)\hat{\psi}_\lambda(\mathbf{y}|A_1, E)}{p(A_2)\hat{\psi}_\lambda(\mathbf{y}|A_2, E)}.
$$

Monte Carlo experiments with an equilibrium asset pricing model

Monte **C**arlo experiments

Monte Carlo experiments with an equilibrium asset pricing model

Monte Carlo experiments with an asset pricing model

- ▶ Monte Carlo experiments to check performance of the proposed MEI sampler.
- ▶ An equilibrium asset pricing model by Labadie (1989, JME)
	- ▶ A continuous state version of Mehra and Prescott (1985)
	- ▶ A nonlinear equilibrium asset pricing model
		- \triangleright Cannot apply the conventional Kalman filter
		- ▶ Stochastic singularity problem due to a single exogenous shock to endowment growth
	- ▶ Investigated as a DSGE with the MEI by Geweke (2010)

Can the proposed MEI sampler recover the true structural **parameters of Labadie's model?**

Labadie's (1989) model

Labadie's (1989) model

▶ The preference of the representative household

$$
\mathsf{E}_{t}\sum_{i=0}^{\infty}\beta^{i}\frac{c_{t+i}^{1-\gamma}-1}{1-\gamma},\quad 0<\beta<1,\quad \gamma>0,
$$

▶ Budget constraint

$$
q_t z_{t+1} + p_t b_{t+1} + c_t \leq (q_t + e_t) z_t + b_t,
$$

▶ The growth rate of endowment *e^t*

$$
\ln \kappa_t \equiv \ln e_t/e_{t-1} = \delta_0 + \delta_1 \ln \kappa_{t-1} + \nu_t, \quad \nu_t \sim i.i.d.N(0, \sigma_e^2),
$$

Labadie's (1989) model: FONCs

 \blacktriangleright The FONCs under the equilibrium condition $c_t = e_t$ are

$$
q_t e_t^{-\gamma} = \beta \mathbf{E}_t e_{t+1}^{-\gamma} (q_{t+1} + e_{t+1}),
$$

$$
p_t e_t^{-\gamma} = \beta \mathbf{E}_t e_{t+1}^{-\gamma}.
$$

▶ Labadie (1989) provides a fixed point algorithm to derive the equilibrium prices of the risky asset and risk-free bond, *q^t* and *pt* .

Labadie's (1989) model: rates of return

 \blacktriangleright The equilibrium rate of return of the risky asset is

$$
1 + r_t^q = \frac{q_t + e_t}{q_{t-1}} = \kappa_t \frac{H^*(\kappa_t) + 1}{H^*(\kappa_{t-1})}
$$

where *H* ∗ (κ*t*) is a nonlinear function of κ*^t* derived by Labadie's fixed point algorithm.

 \blacktriangleright The equilibrium risk free rate is

$$
1 + r_t^f = \beta^{-1} \exp(\gamma \delta_0 - 0.5\gamma^2 \sigma^2) \kappa_t^{\gamma \delta_1}.
$$

Labadie's (1989) model: true calibration

 \triangleright The true model is calibrated as follows:

 \blacktriangleright Given the endowment growth process of κ_t , we can simulate synthetic data of r_t^q f_t^q and r_t^f *t* .

Labadie's (1989) model: target population moments

▶ Target population moments:

 $[\mathbf{E}(r_t^f | R), \mathbf{E}(ep_t | R), \mathbf{E}(\ln \kappa_t | R), \mathbf{V}(ep_t | R), \mathbf{V}(\ln \kappa_t | R), \textbf{Corr}(\ln \kappa_t | R)]$

where

$$
\mathbf{E}(r_t^f|R) = \beta^{-1} \exp\left(\frac{\gamma \delta_0}{1 - \delta_1} + \frac{\gamma^2 \sigma_e^2}{1 - \delta_1^2} (\delta_1^2 - 0.5)\right),
$$

$$
\mathbf{E}(\ln \kappa_t|R) = \frac{\delta_0}{1 - \delta_1}, \mathbf{V}(\ln \kappa_t|R) = \frac{\sigma_e^2}{1 - \delta_1^2}, \text{ and } \mathbf{Corr}(\ln \kappa_t|R) = \delta_1
$$

 \blacktriangleright $\mathbf{E}(ep_t|R)$ and $\mathbf{V}(ep_t|R)$ have no analytical representation. Simulate synthetic time series of ep_t for $T_{true} = 1,000$ quarter periods. Then

$$
\mathbf{E}(ep_t|R) = T_{true}^{-1} \sum_{t=1}^{T_{true}} ep_t, \quad \mathbf{V}(ep_t|R) = T_{true}^{-1} \sum_{t=1}^{T_{true}} (ep_t - \mathbf{E}(ep_t|R))^2.
$$

MEI Step 1: Normal-IW draws with VAR

MEI Step 1: Normal-IW draws with VAR

- \blacktriangleright Draw m_F from $p(m_F|y, E)$
- ▶ Following Geweke (2010), employ a trivariate VAR(1) as the empirical model *E*.
- Simulate synthetic data $y = {y_t}_{t=1}^{T_E}$ $T_{t=1}^L$ from the true Labadie (1989) model

$$
y_t = [r_t^f, ep_t, \ln \kappa_t]'
$$

where the sample length is $T_E = 200$.

MEI Step 1: Normal-IW draws with VAR

MEI Step 1: Normal-IW draws with VAR

 \blacktriangleright The VAR(1) is

$$
y_t - \mu = F(y_{t-1} - \mu) + u_t, \quad u_t \sim i.i.d.N(\mathbf{0}, \Sigma),
$$

where $\mu = [\mu_1, \mu_2, \mu_3]'$.

- \blacktriangleright The empirical moments m_E are given as VAR parameters: $[\mathbf{E}(r_t^f|E), \mathbf{E}(ep_t|E), \mathbf{E}(\ln \kappa_t|E), \mathbf{V}(ep_t|E), \mathbf{V}(\ln \kappa_t|E), \textbf{Corr}(\ln \kappa_t|E)]$ $=[\mu_1, \mu_2, \mu_3, \sigma_{ep}^2, \sigma_{\ln \kappa}^2, \rho_{\ln \kappa}]$
- \blacktriangleright The posterior distributions of the empirical moments \mathbf{m}_E is simulated by the Gibbs-sampling procedure for the standard Normal-inverted Wisharts model with the number of draws $N = 30,000$.

MEI Step 2: RW-MH

MEI Step 2: RW-MH: configuration

 \blacktriangleright *K* = 300

 \triangleright Support S for population moments

- $▶$ Initial parameter values: $β_0 = 0.95$, $γ_0 = 1.5$, $δ_{0,0} = 0.01$, $\delta_{1,0} = 0.01, \sigma_{e,0} = 0.001.$
- ▶ 200,000 MCMC draws and discarding the first 20,000 draws to guarantee the convergence of the posterior distributions.

MEI Step 2: RW-MH: correct prior

MEI Step 2: RW-MH: correct prior

 \blacktriangleright The case with correct priors centered around the true values

MEI Step 2: RW-MH: correct prior

MEI Step 2: RW-MH: correct prior

Figure 2. Posterior Distributions of Structural Parameters θ*A*: Correct Prior

MEI Step 2: RW-MH: uniform prior

MEI Step 2: RW-MH: uniform prior

- \blacktriangleright The case with uniform priors
- \blacktriangleright Use only information from the empirical distributions \mathbf{m}_E to update structural parameters.

MEI Step 2: RW-MH: uniform prior

Figure 3. Empirical and Theoretical Moment Distributions: Uniform

MEI Step 2: RW-MH: uniform prior

MEI Step 2: RW-MH: incorrect prior

MEI Step 2: RW-MH: incorrect prior

- \blacktriangleright The case with incorrect priors
- \blacktriangleright The prior mean of γ is incorrectly specified.
- \triangleright Can update the structural parameters to the correct value?

MEI Step 2: RW-MH: incorrect prior

Figure 5. Empirical and Theoretical Moment Distributions: Incorrect Prior

MEI Step 2: RW-MH: incorrect prior

Figure 6. Posterior Distributions of Structural Parameters: Incorrect Prior

MEI posterior sampler: summary

MEI posterior sampler: summary

Table**: T**rue**, E**mpirical**,** and **T**heoretical **D**istributions of **P**opulation **M**oments

MEI posterior sampler: summary

MEI posterior sampler: summary

Table**: P**osterior **D**istributions of **S**tructural **P**arameters

Concluding remarks

Concluding remarks

- ▶ Develop a distribution-matching limited-information Bayesian inference framework for misspecified nonlinear DSGEs by extending the MEI.
- ▶ Research in progress
	- \triangleright Cases with $M > 1$
		- ▶ Need to draw high dimensional object Θ*^A* from the JS likelihood $p(\Theta_A)p_A(\mathbf{m}_E|\mathbf{m}_A(\Theta_A))$
		- ▶ Sequential Monte Carlo sampler with MH mutation