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Introduction

Introduction: Limited information inferences for DSGE models

▶ Full-information likelihood-based inference of DSGE models
are subject to misspecification problems

▶ Limited information classical inference methods
▶ GMM, SMM, MD, II, etc.
▶ Laplace-type estimator (Chernozhukov and Hong 2003)

▶ Limited information Bayesian inference methods
▶ Limited information likelihood: Kim (2002), Christiano et al.

(2010), Inoue and Shintani (2018)
▶ Approximated Bayesian computation with MCMC: Marjoram et

al. (2003), Forneron and Ng (2018)

▶ But still few papers apply limited information Bayesian
inference methods to misspecified nonlinear DSGEs.
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Introduction

Introduction: Minimal Econometric Interpretation
▶ Geweke (2010): DSGEs as incomplete econometric tools

▶ No direct implication on actual data nor sample moments.
▶ Have implications on unobservable population moments.
▶ Need an auxiliary empirical model to bridge between DSGEs

and actual data.
▶ Bayesian prior predictive analysis: DSGEs are evaluated by

measuring the degree of overlapping between empirical and
theoretical distributions of targeted population moments.

▶ The MEI is
▶ Generalization of Bayesian calibration (DeJong at al. 1996)
▶ Reviewed by Schorfheide (2000), Canova (2007), DeJong and

Dave (2011), Del Negro (2011), and Fernández-Villaverde et
al. (2016).

▶ Applied by Nason and Rogers (2006), Kano and Nason
(2014), and Loria et al.(2022) to several business cycle topics.
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Introduction

Introduction: What does this study try to do?

▶ Because the MEI is a prior predictive analysis, there is no
parameter updating process.

▶ Question: How can we update the structural parameters of
nonlinear DSGEs within the MEI?

▶ MEI posterior sampler: a distribution-matching
limited-information Bayesian inference method for DSGEs by
extending the MEI.

▶ Monte Carlo experiments based on a nonlinear equilibrium
asset pricing model.
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Minimal Econometric Interpretation
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Ingredients of the MEI

Main ingredients of the MEI

▶ Targeted population moments: ms for s = E, A.

▶ Empirical model E simulates posterior distributions of
population moments conditional on data y:
p(mE |y, E) =

∏N
j=1 p(mE, j|y, E)

p(mE |y, E) =
p(mE |E)p(y|mE , E)

p(y|E)
∝ p(y|mE , E)

where mE ≡ {mE, j}Nj=1.

▶ Empirical model E has no prior on population moments:

p(mE, j|E) ∝ const
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Ingredients of the MEI

Main ingredients of the MEI
▶ DSGE A with structural parameters θA generates the prior

predictive distributions of population moments

p(ΘA,mA|A) =
M∏
j=1

p(θA, j|A)p(mA, j|θA, j, A)

where p(θA|A) is the prior of structural parameters θA and
mA ≡ {mA, j}Mj=1 and ΘA = {θA, j}Mj=1

▶ DSGE A has no direct implication on y.

▶ Main question: how can we update the structural parameters
ΘA conditional on A and E through population moments?

p(ΘA|y, E, A)
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Dirichlet-multinomial (DM) model

▶ Models E and A generate sets of the empirical and theoretical
moment, mE ≡ {mE, j}Nj=1 and mA ≡ {mA, j}Mj=1,

▶ Discretize mE and mA with a finite support S = [s, s̄]
▶ Decompose support S into K mutually exclusive subintervals

sk for k = 1, · · ·K.
▶ pk ≥ 0 denotes the mass probability of the event that

population moment ms drops into the k-th subinterval sk:

pk = p(ms ∈ sk),

where p ≡ [p1, · · · ,pK] denotes a vector consisting of pk

satisfying the regularity condition
∑K

k=1 pk = 1.
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Dirichlet-multinomial (DM) model

The multinomial distribution for mE

▶ nk ≥ 0 for k = 1, · · · ,K denotes the number of draws of mE

that drop into the k-th subinterval sk,

nk =

N∑
j=1

I[mE, j ∈ sk]

where
∑K

k=1 nk = N.

▶ The probability of mE conditional on p is characterized by the
multinomial distribution with the parameter n ≡ [n1, · · · , nK]:

p(mE |p) =
Γ(N)∏K

k=1 Γ(nk)

K∏
k=1

(pk)nk , (1)
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Dirichlet-multinomial (DM) model

The model restricted Dirichlet prior for p
▶ αk ≥ 1 represents one plus the number of draws of theoretical

moment mA that drop into the k-th subinterval sk.

αk =

M∑
j=1

I[mA, j ∈ sk] + 1

where
∑K

k=1 αk = M + K.

▶ The probability of p conditional on mA is given by the Dirichlet
distribution with the concentration parameter α:

p(p|mA) =
Γ(M)∏K

k=1 Γ(αk)

K∏
k=1

(pk)αk−1 (2)

where α ≡ [α1, · · · , αK].
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Dirichlet-multinomial (DM) model

The DM marginal likelihood

▶ The marginal likelihood (ML) of the DM model is given by
Pólya distribution

p(mE |mA) =
∫

p(mE |p)p(p|mA)dp

=
Γ(N + 1)Γ(M + K)
Γ(N + M + K)

K∏
k=1

Γ(nk + αk)
Γ(nk + 1)Γ(αk)

. (3)

▶ For large values of N and M, the DM-ML explodes due to the
Gamma functions.

▶ This study shows that the DM-ML is well approximated by the
Jensen-Shannon (JS) divergence.
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The JS divergence of the DM-ML

▶ The logarithm of the DM-ML is approximated by

ln pλ(mE |mA) ≈ ln N − (1 + λ)N DJS (ζ || q), (4)

where DJS (ζ || q) denotes the JS divergence between the
empirical and theoretical distributions

DJS (ζ || q) =
1

1 + λ

K∑
k=1

ζk

{
ln ζk − ln

(
1

1 + λ
ζk +

λ

1 + λ
qk

)}

+
λ

1 + λ

K∑
k=1

qk

{
ln qk − ln

(
1

1 + λ
ζk +

λ

1 + λ
qk

)}
with λ ≡ (M + K)/N, ζk ≡ nk/N, and qk ≡ αk/(M + K).
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The JS divergence of the DM-ML

Two extreme cases of the JS likelihood

1. λ→ ∞ or M → ∞

lim
λ→∞

ln pλ(mE |mA)→ ln N − N
K∑

k=1

ζk (ln ζk − ln qk) (5)

i.e. the Kullback-Leibler (KL) divergence of ζ from q.

The JS likelihood converges to the quasi likelihood
constructed from the multinomial distribution restricted by
DSGE.

c.f. Del Negro and Shorfheide (2004, Proposition 1): quasi
likelihood from VAR restricted by DSGE.
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The JS divergence of the DM-ML

Two extreme cases of the JS likelihood

2 λ→ K+1
N or M → 1

lim
λ→ K+1

N

ln pλ(mE |mA)→
K∑

k=1

I[mA ∈ sk] ln
(

nk + 2
N + K + 1

)
, (6)

(
nk+2

N+K+1

)
is the predictive density from the DM model, which is

close to the maximum likelihood estimate nk/N for a large N.

This implies a minimum distance (MD) estimator by tracking
the empirical distribution with a single theoretical moment as
closely as possible.

c.f. Del Negro and Shorfheide (2004, Proposition 2): MD
estimator by fitting the restricted VAR to the empirical one.
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MEI posterior distribution

The joint posterior distribution of θA, mA, and mE

▶ This presentation focuses on the case with M = 1.

▶ It is almost computationally infeasible to simultaneously draw a
large number M of the theoretical moments mA by solving the
underlying nonlinear DSGE for different values of the structural
parameters ΘA.

▶ Sequential Monte Carlo sampler with MH mutation for M > 1
case applying for single-equation NK Phillips curve (work in
progress)

▶ The joint posterior distribution induced by the MEI approach
with the JS likelihood is

p(θA,mA,mE |y, A, E) ∝ p(θA|A) pλ(mE |mA(θA)) p(mE |y, E)

≡ pλ(θA|mE) p(mE |y, E)
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The MEI posterior sampler

The MEI posterior sampler

Step 1. Given the data y, draw mE ∼ p(mE |y, E).

Step 2. Given the initial draw θold
A and the corresponding conditional probability

pλ(θold
A |mE),

2(a). Draw a new candidate of the structural parameter θnew
A from

θnew
A = θold

A + v, v ∼ i.i.d.(0, τΩ)

2(b). Calculate the conditional probability pλ(θnew
A |mE). Compute

r(θnew
A |θold

A ) = min
{

1,
pλ(θnew

A |mE)

pλ(θold
A |mE)

}
.

2(c). Draw a uniform random variate u ∼ U[0, 1]. Accept θA = θ
new
A if

r(θnew
A |θold

A ) ≥ u. Keep θA = θ
old
A otherwise.

2(d). Set θold
A = θA. Repeat 2(a)-(d) many times.
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The MEI posterior sampler

The ML estimate and the odds ratio

▶ The marginal likelihood of DSGE A is evaluated relative to that
of the empirical model E.

▶ The modified harmonic mean estimator of Geweke (1999)

ψ̂λ(y|A, E) =

1
J

J∑
j=1

f (θ j
A)

pλ(θ j
A|mE)


−1

.

▶ The formal model comparison between two nonlinear DSGEs
A1 and A2 is implemented with the estimated relative marginal
likelihoods ψ̂λ(y|A1, E) and ψ̂λ(y|A2, E):

Odds ratio =
p(A1)ψ̂λ(y|A1, E)
p(A2)ψ̂λ(y|A2, E)

.
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Monte Carlo experiments
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Monte Carlo experiments with an equilibrium asset pricing model

Monte Carlo experiments with an asset pricing model

▶ Monte Carlo experiments to check performance of the
proposed MEI sampler.

▶ An equilibrium asset pricing model by Labadie (1989, JME)
▶ A continuous state version of Mehra and Prescott (1985)
▶ A nonlinear equilibrium asset pricing model

▶ Cannot apply the conventional Kalman filter
▶ Stochastic singularity problem due to a single exogenous shock

to endowment growth

▶ Investigated as a DSGE with the MEI by Geweke (2010)

▶ Can the proposed MEI sampler recover the true structural
parameters of Labadie’s model?
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Labadie’s (1989) model

Labadie’s (1989) model

▶ The preference of the representative household

Et

∞∑
i=0

βi c1−γ
t+i − 1
1 − γ , 0 < β < 1, γ > 0,

▶ Budget constraint

qtzt+1 + ptbt+1 + ct ≤ (qt + et)zt + bt,

▶ The growth rate of endowment et

ln κt ≡ ln et/et−1 = δ0 + δ1 ln κt−1 + υt, υt ∼ i.i.d.N(0, σ2
e),
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Labadie’s (1989) model

Labadie’s (1989) model: FONCs

▶ The FONCs under the equilibrium condition ct = et are

qte
−γ
t = βEte

−γ
t+1(qt+1 + et+1),

pte
−γ
t = βEte

−γ
t+1.

▶ Labadie (1989) provides a fixed point algorithm to derive the
equilibrium prices of the risky asset and risk-free bond, qt and
pt.
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Labadie’s (1989) model

Labadie’s (1989) model: rates of return

▶ The equilibrium rate of return of the risky asset is

1 + rq
t =

qt + et

qt−1
= κt

H∗(κt) + 1
H∗(κt−1)

where H∗(κt) is a nonlinear function of κt derived by Labadie’s
fixed point algorithm.

▶ The equilibrium risk free rate is

1 + r f
t = β

−1 exp(γδ0 − 0.5γ2σ2)κγδ1
t .
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Labadie’s (1989) model

Labadie’s (1989) model: true calibration

▶ The true model is calibrated as follows:

β Subjective discount factor 0.980
γ Risk aversion 2.000
δ0 Endowment constant 0.017
δ1 Endowment AR(1) root 0.180
σe S.D. of endowment shock 0.003

▶ Given the endowment growth process of κt, we can simulate
synthetic data of rq

t and r f
t .
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Labadie’s (1989) model

Labadie’s (1989) model: target population moments

▶ Target population moments:

[E(r f
t |R),E(ept |R),E(ln κt |R),V(ept |R),V(ln κt |R),Corr(ln κt |R)]

where

E(r f
t |R) = β−1 exp

(
γδ0

1 − δ1
+
γ2σ2

e

1 − δ2
1

(δ2
1 − 0.5)

)
,

E(ln κt |R) =
δ0

1 − δ1
,V(ln κt |R) =

σ2
e

1 − δ2
1

, and Corr(ln κt |R) = δ1

▶ E(ept |R) and V(ept |R) have no analytical representation. Simulate synthetic
time series of ept for Ttrue = 1, 000 quarter periods. Then

E(ept |R) = T−1
true

Ttrue∑
t=1

ept, V(ept |R) = T−1
true

Ttrue∑
t=1

(ept − E(ept |R))2.
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MEI Step 1: Normal-IW draws with VAR

MEI Step 1: Normal-IW draws with VAR

▶ Draw mE from p(mE |y, E)

▶ Following Geweke (2010), employ a trivariate VAR(1) as the
empirical model E.

▶ Simulate synthetic data y = {yt}TE
t=1 from the true Labadie

(1989) model
yt = [r f

t , ept, ln κt]′

where the sample length is TE = 200.
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MEI Step 1: Normal-IW draws with VAR

MEI Step 1: Normal-IW draws with VAR

▶ The VAR(1) is

yt − µ = F(yt−1 − µ) + ut, ut ∼ i.i.d.N(0,Σ),

where µ = [µ1, µ2, µ3]′.

▶ The empirical moments mE are given as VAR parameters:

[E(r f
t |E),E(ept |E),E(ln κt |E),V(ept |E),V(ln κt |E),Corr(ln κt |E)]

= [µ1, µ2, µ3, σ
2
ep, σ

2
ln κ, ρln κ]

▶ The posterior distributions of the empirical moments mE is
simulated by the Gibbs-sampling procedure for the standard
Normal-inverted Wisharts model with the number of draws
N = 30, 000.
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MEI Step 2: RW-MH

MEI Step 2: RW-MH: configuration

▶ K = 300
▶ Support S for population moments

s s̄
E(r f

t ) 0.0 20.0
E(ept) -1.0 3.0
V(ept) 0.0 80.0
E(ln κt) 0.0 3.0
V(ln κt) 0.0 50.0

Cor(ln κt) -0.5 0.5

▶ Initial parameter values: β0 = 0.95, γ0 = 1.5, δ0,0 = 0.01,
δ1,0 = 0.01, σe,0 = 0.001.

▶ 200,000 MCMC draws and discarding the first 20,000 draws
to guarantee the convergence of the posterior distributions.
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MEI Step 2: RW-MH: correct prior

MEI Step 2: RW-MH: correct prior

▶ The case with correct priors centered around the true values

Dist. Mean S.D.
β Beta 0.980 0.001
γ Gamma 2.000 1.500
δ0 Normal 0.017 0.005
δ1 Normal 0.180 0.100
σe inv Gamma 0.003 0.001
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MEI Step 2: RW-MH: correct prior

Figure 1. Empirical and Theoretical Moment Distributions: Correct Prior
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MEI Step 2: RW-MH: correct prior

Figure 2. Posterior Distributions of Structural Parameters θA: Correct Prior
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MEI Step 2: RW-MH: uniform prior

MEI Step 2: RW-MH: uniform prior

▶ The case with uniform priors

▶ Use only information from the empirical distributions mE to
update structural parameters.

β U[0.001, 0.999]
γ U[0.001, 10.00]
δ0 U[0.001, 0.500]
δ1 U[0.001, 0.500]
σe U[0.001, 0.100]
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MEI Step 2: RW-MH: uniform prior

Figure 3. Empirical and Theoretical Moment Distributions: Uniform
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MEI Step 2: RW-MH: uniform prior

Figure 4. Posterior Distributions of Structural Parameters θA: Uniform
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MEI Step 2: RW-MH: incorrect prior

MEI Step 2: RW-MH: incorrect prior

▶ The case with incorrect priors
▶ The prior mean of γ is incorrectly specified.
▶ Can update the structural parameters to the correct value?

Dist. Mean S.D.
β Beta 0.980 0.001
γ Gamma 5.000 1.500
δ0 Normal 0.017 0.005
δ1 Normal 0.180 0.100
σe inv Gamma 0.003 0.001
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MEI Step 2: RW-MH: incorrect prior

Figure 5. Empirical and Theoretical Moment Distributions: Incorrect Prior
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MEI Step 2: RW-MH: incorrect prior

Figure 6. Posterior Distributions of Structural Parameters: Incorrect Prior
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MEI posterior sampler: summary

Table: True, Empirical, and Theoretical Distributions of Population Moments

True mR Empirical mE Theoretical mA Theoretical mA Theoretical mA
Correct Uniform Incorrect

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

E(r f
t ) 5.725 5.813 0.173 5.805 0.196 5.821 0.330 5.836 0.203

E(ept) 0.493 0.619 0.313 0.471 0.130 0.510 0.181 0.647 0.174
V(ept) 27.50 24.86 2.603 24.86 2.027 27.17 2.197 24.93 2.198
E(ln κt) 2.075 2.256 0.456 2.119 0.312 2.007 0.436 1.706 0.213
V(ln κt) 31.03 29.12 3.143 28.04 2.269 28.27 2.326 28.03 2.252
Cor(ln κt) 0.180 0.129 0.077 0.178 0.047 0.174 0.052 0.135 0.039
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MEI posterior sampler: summary

MEI posterior sampler: summary

Table: Posterior Distributions of Structural Parameters

True Correct Uniform Incorrect
Mean S.D. Mean S.D. Mean S.D.

β 0.980 0.981 0.007 0.981 0.011 0.985 0.006
γ 2.000 2.076 0.533 2.415 1.044 3.672 0.856
δ0 0.017 0.017 0.002 0.016 0.003 0.014 0.002
δ1 0.180 0.178 0.047 0.174 0.052 0.137 0.040
σ2

e 0.003 0.003 0.000 0.003 0.000 0.003 0.001
log ML -719673.8 -719685.2 -719675.3
Odds 1 0.000 0.223
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Concluding remarks

▶ Develop a distribution-matching limited-information Bayesian
inference framework for misspecified nonlinear DSGEs by
extending the MEI.

▶ Research in progress
▶ Cases with M > 1

▶ Need to draw high dimensional object ΘA from the JS likelihood
p(ΘA)pλ(mE |mA(ΘA))

▶ Sequential Monte Carlo sampler with MH mutation


