Introduction 0000 Mode

Counterfactual Simulation

Conclusion

Appendix 0000

Searching Where Ideas are Harder to Find – The Productivity Slowdown as a Result of Firms Hindering Disruptive Innovation

Richard Bräuer

27.08.2024

Model 00000

Empirics

Counterfactual Simulation

Conclusion 00 Appendix 0000

Introduction

Conclusion

Appendix 0000

Research Question

- Productivity growth is declining across the developed world
- Patents/Scientific Publications have become less
 - disruptive (Park et al. 2023 and Funk & Owen-Smith 2017)
 - scientific (Arore et al. 20019, Poege et al. 2019)
 - creative (Kalyani 2024)
- Researcher productivity declines, yet firms still hire more (Cowen 2019, Bloom et al. 2020)

But why?

- Decline in patent quality (Olmstead-Rumsey 2024)?
- ICT (De Ridder 2024)?
- Technology diffusion (Akcigit & Ates 2023)?

Conclusion 00 Appendix 0000

Agenda

- Empirics: Gather stylized facts about Disruptive Innovations and its costs
- Model: Build an endogenous growth model with disruptive and incremental innovation
- Discussion: Explore under which conditions innovation becomes more incremental
- ► Counterfactuals: Simulate to understand effect size

Model

Counterfactual Simulation

Conclusion

Appendix 0000

Literature

- Endogenous growth (Romer 1987, 1990, Aghion & Howitt 1992, Grossman & Helpman 1991...)
 - Firms invest in R&D to reap monopoly profits
 - Closest Model: Akcigit & Kerr 2018
- Search and matching labor markets (Rogerson 2005)
 - Increased assortative matching (Abowd, Kramarz & Margolis 1999, Hagedorn, Law & Manovskii 2016,Card, Heining & Kline 2013)
- Dynamic Ineffciencies in Innovation
 - General purpose technologies (Helpman and Trajtenberg 1998, Bresnahan and Trajtenberg 1995, Comin & Mestieri 2010)
 - Firms direct research so they can appropriate benefits (Hopenhayn & Mitchell 2001, Denicoló, 2000, Scotchmer 1991, Bryan & Lemus 2017)

Introduction 0000

Counterfactual Simulation

Conclusion 00 Appendix 0000

Empirics

Conclusion 00 Appendix 0000

Data Source

PATSTAT

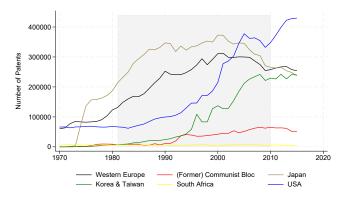
- 70+M. international patent applications
- Inventor & firm name, country, address
- Patent citations

Used Measures

- Disambiguated inventor names (PatentsView)
- Technology fields: IPC-8 classes
- ▶ 5 year Citations (Output)

Model

Counterfactual Simulation

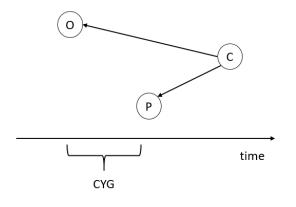

Conclusion

Appendix 0000

Data Source

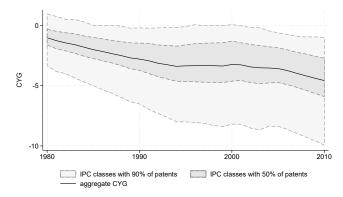
Figure: Overview over PATSTAT

Notes: Number of patents in PATSTAT per region. The gray region marks the time period of data used in the event study. *Sources*: PATSTAT (European Patent Office).



Conclusion 00 Appendix 0000

Measure of "Disruptiveness"



Conclusion 00 Appendix 0000

Decline of "Disruptiveness"

Figure: Aggregate Evolution of Disruptive Innovation

Notes: Average *CYG* per technology class over time. The *CYG* of individual IPC classes containing 50% (90%) of patents are contained in the dark (light) gray area.

Conclusion

Matching Disrupted and Undisrupted IPC classes

- ► To understand the impact of a disruptive innovation
- ▶ IPC Disruption: \geq 50% of citations for disruptive patents
- Nearest Neighbor matching on

Empirics

- Citation year gap: CYG_{T-4}, CYG_{T-3}, CYG_{T-2}, CYG_{T-1}
- ► Citations: nr_{citations}(T), nr_{citations}(T - 1), nr_{citations}(T - 2)
- ► Citations of established Inventors: cum.nr^{cohortT-5}_{citations} (T - 1)

$$y_{t^{r};i} = \sum_{r=-5}^{r=15} \beta^{t^{r}} t_{i}^{r} + \Theta_{i} + u_{t^{r};i}$$
(1)

Empirics Mod

Counterfactual Simulation

Conclusion 00

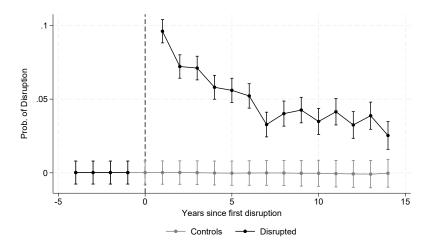
Matching Disrupted and Undisrupted IPC classes

Table: Summary Statistics on IPC classes before and after Matching

	Panel 1: Before Matching			Panel 2: After Matching		
	Controls	Disrupted	Difference	Controls	Disrupted	Difference
CYG_{T-1}	-5.585	-3.441	2.144***	-4.031	-3.917	0.114
	(4.231)	(3.821)	(0.044)	(2.996)	(3.205)	(0.109)
CYG _{T-2}	-5.485	-3.742	1.743***	-3.907	-3.843	0.064
	(4.148)	(3.919)	(0.048)	(3.006)	(3.230)	(0.109)
CYG _{T-3}	-5.386	-4.008	1.378***	-3.813	-3.783	0.029
	(4.067)	(3.903)	(0.052)	(3.048)	(3.266)	(0.111)
CYG _{T-4}	-5.278	-4.105	1.174***	-3.752	-3.662	0.090
	(3.976)	(3.866)	(0.057)	(3.213)	(3.368)	(0.115)
$nr_{citations}(T)$	4.820	5.322	0.502	24.855	22.311	-2.544***
	(65.112)	(8.486)	(0.317)	(25.414)	(27.623)	(0.929)
$nr_{citations}(T-1)$	4.820	3.186	-1.634***	23.901	22.973	-0.928
	(65.112)	(7.374)	(0.317)	(22.709)	(23.086)	(0.802)
$nr_{citations}(T-2)$	4.391	2.544	-1.847***	21.021	20.265	-0.755
	(59.560)	(6.494)	(0.290)	(20.732)	(20.128)	(0.716)
$cum.nr_{citations}^{cohortT-5}(T-1)$	1.187	0.999	-0.188**	7.306	7.484	0.178
citations (* -)	(16.565)	(2.975)	(0.081)	(8.650)	(9.222)	(0.313)
Observations	1,477,476	42,283	1,519,759	1,631	1,631	3,262

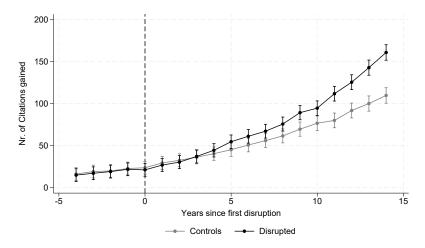
Notes: Unit of observation: harmonized IPC class first disrupted in year *T*. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. *CYG* measures how disrupted a technology is. It is worth noting that matching mainly works for larger well cited IPC classes and the matched same reduces substantially.

Model


Counterfactual Simulation

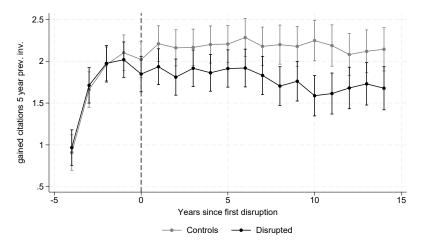
Conclusion

Appendix 0000



Subsequent Disruptions

Citations



Conclusion 00 Appendix 0000

Citations of Established Inventors

Introduction 0000

Empirics

Counterfactual Simulation

Conclusion 00 Appendix 0000

Model

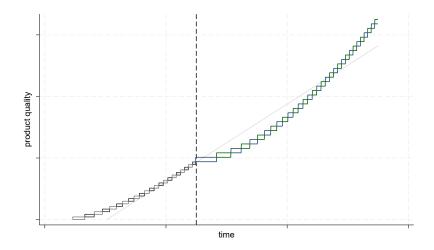
Conclusion 00 Appendix 0000

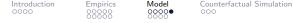
Model Overview

- Model Technological Progress as a function of the resistance to disruption
 - Progress is "normally"' the result of investment
 - But: Progress produces losers
 - Historically, these losers often inhibited growth
- Exogenously fixed decisions not in focus
 - Price setting/Employment
 - Supply of Inventors

Conclusion 00 Appendix 0000

Technology Structure


- Each Product is equivalent to a technology field
- Each technology field is split into technology clusters
 - An exogenous amount of inventors enter the field
 - These enter the most recent technology cluster
- Exogenous amount of disruptive inventors also enter
- ▶ All inventors draw a random (incremental) firm to match
 - Match is permanent, even if not working together
 - Nash Bargaining over match output



Conclusion 00 Appendix 0000

Technology Structure

Conclusion

Product Markets

Final goods sector that converts intermediate goods into final goods

$$Y(t) = \frac{1}{1 - \beta} L_c^{\beta}(t) \int_0^1 q_j^{\beta} z_j^{1 - \beta} dj$$
 (2)

Profits of a monopolist producer:

$$\pi_{mon}^* = L_c(t) * (1 - \beta) * \beta^\beta (1 - \beta)^{1 - 2\beta} * q_j = \pi * q_j \qquad (3)$$

Patents represent a stream of future profits

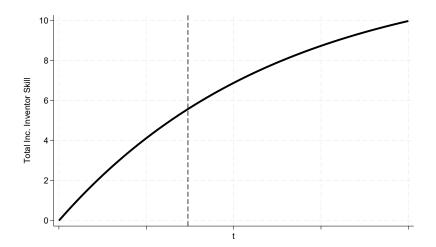
$$r * V^{Patent} = \pi \omega^c \tag{4}$$

Conclusion

Appendix 0000

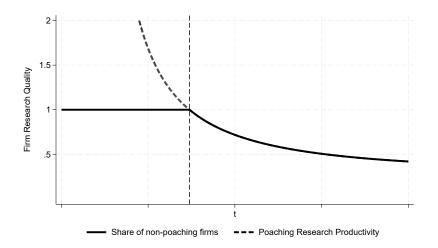
Value Function

Inventors represent a stream of future patents


$$rV_{f}^{inv}(1, \lambda_{f}^{dis}, X^{inc}) = \underbrace{\frac{\pi}{r} \omega^{c} * \alpha}_{\text{new patents net of inv. wages}} - \underbrace{\delta V_{f}^{inv}(1, \lambda_{f}^{dis}, X^{inc})}_{\text{inv. exit}} - \underbrace{\Lambda_{max}^{dis} \frac{\gamma \omega \pi * V_{f}^{inv}(1, \lambda_{f}^{dis}, X^{inc})}{V_{f}^{inv}(1, \lambda_{f}^{dis}, X) * X^{inc}}}_{\text{disruption risk}} - \underbrace{\Lambda_{f}^{dis} V_{f}^{inv}(1, \lambda_{f}^{dis}, X^{inc})}_{\text{wages to poached inv.}} + \underbrace{\frac{\partial V_{f}^{inv}(1, \lambda_{f}^{dis}, X^{inc})}{\partial X^{inc}}}_{\text{increase in poaching by others}} (H^{inc} - \delta X^{inc})$$
(5)

Conclusion 00 Appendix 0000

Behavior of a Sector



Conclusion

Appendix 0000

Behavior of a Sector

Conclusion 00 Appendix 0000

Social Planner's Perspective

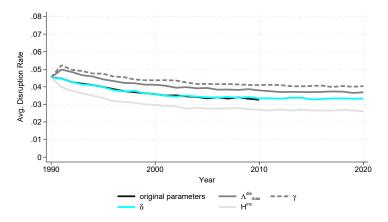
- Social Planner wants to prevent/delay decline in disruptiveness
- increase γ : increase the expected first mover advantage
- increase ω : but it is a technology parameter?
- decrease y^{max}: if there are no high value incremental firms, they cannot hinder disruption
- increase H^{dis}/H^{inc}: increase ration of disruptive to incremental inventors
- make labor market for disruptive inventors less efficient

Introduction 0000 Empirics Model

Counterfactual Simulation

Conclusion 00 Appendix 0000

Counterfactual Simulation

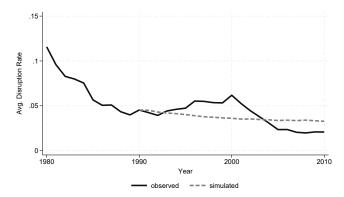


Conclusion 00 Appendix 0000

Policy Implications

Figure: Effect of Parameter Changes

Notes: Effects of 10% changes to selected parameters. *Sources*: PATSTAT (European Patent Office).



Conclusion

Behavior the Economy – Simulation vs. Reality

Figure: Decline in Disruption predicted by the Model

Notes: Graph shows the evolution of the rate of disruptions in IPC classes with more than 50 patents per year – actual vs. predicted rate of disruptions.

Introduction 0000 Empirics Model

Counterfactual Simulation

Conclusion • 0 Appendix 0000

Conclusion

Conclusion

Appendix 0000

Conclusion

- Include an inventor labor market into endog. growth. model
 - allows firms to slow down each others' innovation
 - creates an additional asset that firms protect
- Firms deliberately poach inventors to slow down competition
- Technological progress happens because
 - refrain from hindering other firms
 - "aggregate aging" explains half of the decline in disruptions

Introduction 0000 Empirics Model

Counterfactual Simulation

Conclusion

Appendix

Empirics Model

Counterfactual Simulation

Conclusion 00

Endogenous growth

- Romer 1987, 1990, Aghion & Howitt 1992, Grossman & Helpman 1991...
 - ▶ Firms invest in R&D to reap monopoly profits
 - Steady state growth rate
- Helpman and Trajtenberg 1998, Bresnahan and Trajtenberg 1995, Comin & Mestieri 2010
 - General purpose technologies can lead to waning and waxing growth
 - Cycles of technology invention and adoption
 - Adoption of technologies is as important as invention
- Akcigit & Kerr 2018
 - Technology clusters in an endogenous growth framework
 - Fitting model against firm behavior (Patent data)
- Contribution: Insert a labor market to endogenize key parameters and test vs. data

Mode

Counterfactual Simulation

Conclusion 00

Inefficiencies in dynamic innovation

 Hopenhayn & Mitchell 2001, Denicoló, 2000, Scotchmer (1991)

Firms underinvest in research that spawns new research

- Hopenhayn & Squintani 2016
 - Firms over-invest in high value projects
- Bryan & Lemus 2017
 - Firms direct research so they can appropriate benefits
- Contribution: I insert these insights into an endogenous growth model

Model

Counterfactual Simulation

Conclusion 00

Search and matching labor markets

- Abowd, Kramarz & Margolis 1999,..., Hagedorn, Law & Manovskii 2016
 - Separate worker and firm productivity out from wages paid in a match
 - Assume match production is additive
- Mendes et al. 2010; Card, Heining & Kline 2013
 - Document rising assortative matching between workers and firms
- Contribution: Transfer to endogenous growth and loosen the additivity restriction (a bit)