Coordination and Network-based Proximity: Experimental Evidence from the Field

Ben D'Exelle (University of East Anglia)

Christine Gutekunst (Maastricht University)

Arno Riedl (Maastricht University)

European Economic Association - Annual Meeting - Rotterdam

27 August 2024

Summary

- Many social and economic interactions require the coordination of behavior. Coordination failure is a source of inefficiency (Schelling, 1960, 1978)
- Coordination takes place in a social context; social connections might influence the potential to coordinate behaviour.
- Our focus: network-based social proximity as a possible coordination device; using three established concepts in network analysis (closeness, maximum network flow, and clustering)

Empirical approach:

- Two-player lab-in-the-field coordination experiment, where we vary identity disclosure of players, and cost of effort
- Real existing social networks in small-scale communities
- Results:
 - Social proximity increases efficiency of coordination through clustering; i.e., in pairs of friends who share friends
 - No support for alternative measures of network proximity

Our contribution

Comparison of three network based concepts of social proximity, emphasizing the potential importance of indirect connections

Use of real existing networks

- ► Differences from existing approaches in the literature:
 - Dyadic perspective; but with multiple pairs
 - Allow for different behavior towards different interaction partners
 - Do not mention networks
 - ► Focus on the role of altruism instead of information sharing (similar to the approach used by Leider et al. (2009))

	Experiment ●00000	
_		

Two-player Minimum Effort Game (MEG): a one-shot simultaneous-move coordination game where payoffs depend on the minimal effort of either player.

• A player *i*'s individual payoff Π_i is defined as:

$$\Pi_i(e) = a \times \min\{e_i, e_j\} - c \times e_i \tag{1}$$

- ▶ a is the marginal benefit of effort, while c is the marginal private cost of effort, with a > c > 0.
- Any combination of (e_i^*, e_j^*) with $e_i^* = e_j^*$ is a Nash equilibrium.
- Equilibria can be **Pareto-ranked**; higher *e*, higher efficiency

Experiment

Results

Network-based proximity

Three concepts of network-based proximity: **maximum network flow** (Ford Jr and Fulkerson, 1956), **closeness** (Freeman, 1978), and **clustering** (Coleman, 1988)

Experiment 00●000	

Treatments

► Identity disclosure (within-subject)

- We exogenously change information about the identity of the participants, thus, about network position
- In a pair, participants either had information on the other's identity (full disclosure condition FD), or not (anonymity condition AN). (Note: it is impossible to manipulate real existing networks)

Effort cost (between-subject)

- Low Effort Cost (LEC) and High Effort Cost (HEC)
- ▶ A higher effort cost lowers effort in MEG (Goeree and Holt, 2001, 2005)
- A higher effort cost increases the room for an influence of social proximity.

Hypotheses

We focus on difference in effort between FD and AN (FD-AN):

Hypothesis (effort costs): Proximity increases the FD-AN difference in effort. This increase is stronger in HEC than in LEC.

Hypotheses (cont.)

Specific hypotheses, using the three concepts of network-based proximity.

Hypothesis (Direct tie):

- 1. A direct tie in FD increases ego's effort relative to that in AN $% \mathcal{A}$
 - a) **independently of** whether ego and alter have any friends in common (Flow and Closeness).
 - b) only if ego and alter have at least one common friend (Cluster).

Hypothesis (Common friends):

- 1. Having common friends in FD increases ego's effort relative to that in AN
 - a) independently of whether ego and alter have a direct tie (Flow).
 - b) only if ego and alter do not have a direct friendship tie (Closeness).
 - c) only if ego and alter <u>have</u> a direct friendship tie (Cluster).

Experimental procedures

Study was conducted in Sironko district in **eastern Uganda**, **22** randomly selected **villages**, surveyed (almost) all households in village; **197 participants**

- $1. \ \mbox{Survey}:$ a few weeks before experiment
 - Network elicitation: full network in village
 - Socio-economic characteristics

2. Experiment: incentivized MEG

- Two decisions with different opponents in each disclosure condition; Order of the disclosure conditions randomized at the individual level
- In FD condition both opponents were from the same village; allows to observe within-subject variation in behavior along social proximity.
- In AN condition participants were once paired with someone who lived in the same village and once with someone from a different village.

Influence of proximity on FD-AN difference in effort

Direct test (not shown): Both having a **Tie** and having a **Common** friend increases effort in FD relative to AN.

Regression analysis addresses:

- ► Tie and Common might be correlated
- ▶ interactions between Tie and Common
- reduce remaining omitted variable bias

Our main specification looks as follows:

 $y_{ij} = \beta_0 + \beta_1 \operatorname{HEC} + \beta_2 \operatorname{Tie} + \beta_3 \operatorname{HEC} \times \operatorname{Tie} + \beta_4 \operatorname{Common} + \beta_5 \operatorname{HEC} \times \operatorname{Common} + \beta_6 \operatorname{Tie} \times \operatorname{Common} + \beta_7 \operatorname{HEC} \times \operatorname{Tie} \times \operatorname{Common} + \beta_8 \operatorname{X}_i + \beta_9 \operatorname{X}_j + \mu_e + \epsilon_{ij}$ (4)

with y_{ij} being the FD-AN difference when i (ego) is matched with j (alter)

Influence of proximity on FD-AN difference in effort

Direct test (not shown): Both having a **Tie** and having a **Common** friend increases effort in FD relative to AN.

Regression analysis addresses:

- ► Tie and Common might be correlated
- ▶ interactions between Tie and Common
- reduce remaining omitted variable bias

Our main specification looks as follows:

 $y_{ij} = \beta_0 + \beta_1 \operatorname{HEC} + \beta_2 \operatorname{Tie} + \beta_3 \operatorname{HEC} \times \operatorname{Tie} + \beta_4 \operatorname{Common} + \beta_5 \operatorname{HEC} \times \operatorname{Common} + \beta_6 \operatorname{Tie} \times \operatorname{Common} + \beta_7 \operatorname{HEC} \times \operatorname{Tie} \times \operatorname{Common} + \beta_8 \operatorname{X}_i + \beta_9 \operatorname{X}_j + \mu_e + \epsilon_{ij}$ (4)

with y_{ij} being the FD-AN difference when i (ego) is matched with j (alter)

Influence of proximity on FD-AN difference in effort

	(1)	(2)	(3)	(4)	(5)
HEC	0.174	0.021	0.214	0.186	0.231
	(0.111)	(0.108)	(0.288)	(0.278)	(0.239)
Tie		-0.190		-0.209	0.085
		(0.144)		(0.157)	(0.242)
${\sf HEC} imes {\sf Tie}$		0.493***		0.546***	-0.517*
		(0.178)		(0.175)	(0.285)
Common		. ,	-0.001	0.078	0.112
			(0.143)	(0.146)	(0.162)
HEC \times Common			-0.050	-0.231	-0.290
			(0.363)	(0.350)	(0.327)
$Tie \times Common$. ,	-0.321
					(0.339)
HEC $ imes$ Tie $ imes$ Common					1.111***
					(0.358)
Constant	-0.511	-0.210	-0.330	-0.243	-0.226
	(0.506)	(0.469)	(0.506)	(0.492)	(0.475)
R^2	0.070	0.087	0.071	0.090	0.093

Notes: OLS regressions with the difference in ego's effort between FD and AN as dependent variable. N $\,=\,$ 393. Standard errors in parentheses, clustered and bootstrapped at village level, with 2000 repetitions.

The effect of 'Common' on FD-AN difference in effort

a) Effect of Common	LEC	HEC	LEC vs. HEC $^{(a)}$
Tie=0 Tie=1	0.112 -0.209	-0.178 0.612***	0.375 0.005
Tie=0 vs. Tie=1 $^{(a)}$	0.344	0.009	

Notes. Effect of having common friends. Table entries calculated as follows: Tie=0 in LEC: 'Common'; Tie=0 in HEC: 'Common + HEC × Common'; Tie=1 in LEC: 'Common + Tie × Common', Tie=1 in HEC: 'Common + HEC × Common + Tie × Common + HEC × Tie × Common'. ***, **, * indicate significance levels at 1, 5, and 10% of a Wald test. (a) Two-sided p-value of a Wald test that compares coefficients in the same row/column.

Result (Effect of Common):

- (i) The **effect of Common** on the FD-AN effort difference is **positive** and significant in the **HEC** condition and where **pairs are friends**.
- (ii) The positive effect of Common on the FD-AN effort difference is larger among friends in the HEC condition, than among friends in the LEC condition, or non-friends in the HEC condition.

The effect if 'Tie' on FD-AN difference in effort

b) Effect of Tie	LEC	HEC	LEC vs. HEC $^{(a)}$
Common=0 Common=1	0.085 -0.236	-0.432 0.358***	0.069 0.001
Common=0 vs. Common=1 $^{(a)}$	0.344	0.009	

Notes. Effect of having a tie. Table entries calculated as follows: Common=0 in LEC: 'Tie'; Common=0 in HEC: 'Tie + HEC \times Tie'; Common=1 in LEC: 'Tie + Tie \times Common', Common=1 in HEC: 'Tie + HEC \times Tie + Tie \times Common'. ***, **, * indicate significance levels at 1, 5, and 10% of a Wald test. (a) Two-sided p-value of a Wald test that compares coefficients in the same row/column.

Result (Influence of Tie):

- (i) The effect of Tie on the FD-AN effort difference is positive and significant in the HEC condition and where pairs have a common friend.
- (ii) The positive effect of Tie on the FD-AN effort difference is larger among pairs who have a common friend in the HEC condition, than pairs with a common friend in the LEC condition, or pairs without a common friend in the HEC condition.

	Results 0000●0	

Conclusion

- ► **Hypothesis**: higher social proximity in friendship networks between two participants increases effort (i.e., efficiency) in coordination problem.
- Result: Common friends increase effort (when costs are high) for pairs with a direct tie, but not for those without. Similarly, having a direct tie increases effort (when costs are high) for pairs with common friends, but not for those without.
- ► These results provide support for a positive effect of clustering on efficiency of coordination.
- ▶ In line with other studies that described how clustering fosters trust (Karlan et al., 2009) and increases favor exchange (Jackson et al., 2012).
- ► Even in an experiment where networks are not mentioned, network structure influences behaviour.
- We cannot exclude that trust and reciprocity might also have contributed to the positive effect of clustering on effort in our experiment.

Thank you!

References I

- Coleman, J. S. (1988). Free riders and zealots: The role of social networks. Sociological Theory, 6(1):52–57.
- Costa, P. T. and McCrae, R. R. (1992). Normal personality assessment in clinical practice: The NEO personality inventory. *Psychological Assessment*, 4(1):5.
- Ford Jr, L. R. and Fulkerson, D. R. (1956). Solving the transportation problem. *Management Science*, 3(1):24–32.
- Freeman, L. C. (1978). Centrality in social networks conceptual clarification. *Social Networks*, 1(3):215–239.
- Goeree, J. K. and Holt, C. A. (2001). Ten little treasures of game theory and ten intuitive contradictions. *American Economic Review*, 91(5):1402–1422.
- Goeree, J. K. and Holt, C. A. (2005). An experimental study of costly coordination. *Games and Economic Behavior*, 51(2):349–364.
- Jackson, M. O., Rodriguez-Barraquer, T., and Tan, X. (2012). Social capital and social quilts: Network patterns of favor exchange. *American Economic Review*, 102(5):1857–97.
- Karlan, D., Mobius, M., Rosenblat, T., and Szeidl, A. (2009). Trust and social collateral. *Quarterly Journal of Economics*, 124(3):1307–1361.
- Leider, S., Möbius, M. M., Rosenblat, T., and Do, Q.-A. (2009). Directed altruism and enforced reciprocity in social networks. *Quarterly Journal of Economics*, 124(4):1815–1851.
- Schelling, T. C. (1960). The Strategy of Conflict. Harvard University Press.
- Schelling, T. C. (1978). Micromotives and Macrobehavior. WW Norton and Company.