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Motivation

▶ Collaboration between agents plays a prominent role in team
production.

▶ For example, co-inventor networks in technology innovation (Singh,
2005; Fleming et al., 2007), co-authorship networks in scientific
research (Ductor et al., 2014), corporate board members in firm
performance (Conyon & Muldoon, 2006).

▶ The aim of this paper is to develop a general structural model that
helps us to understand how collaboration affects team production.

▶ In our model, an agent’s contribution to the team’s project is
determined by his/her effort. Individual agent choose endogenous
effort on projects in a network game.

▶ Collaborations in our model bring in two possible effects on efforts: the
complementarity effect and the substitutability effect due to
congestion (Jackson and Wolinsky, 1996).
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Overview

▶ Theoretical model
▶ Network game of multiple agents who participate in overlapping projects.
▶ We are able to characterize the unique interior equilibrium of efforts.

▶ Empirical study of patent inventors
▶ We use data from United States Patent and Trademark Office (USPTO).
▶ We deal with the problem of endogenous matching between inventors

and patents.
▶ Results show a positive complementarity effect and a negative

substitutability effect.
▶ Counterfactual analysis

▶ We carry out a counterfactual study on the impact of innovation
incentives on project’s output.
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Production Function

▶ Assume there are s ∈ P = {1, . . . , p} projects (e.g., patents) and
i ∈ N = {1, . . . , n} agents (e.g., inventors).

▶ The production function for project s is given by

ys(G) =
∑
i∈Ns

αieis +
λ

2
∑
i∈Ns

∑
j∈Ns\{i}

gijeisejs + ϵs, (1)

▶ where ys is the output of project s, eis is the effort that agent i spent
on project s (eis = 0 if author i does not participate in project s),

▶ αi captures the ability (fixed effect) of agent i,
▶ gij ∈ (0, 1] measures the degree of compatibility between agents i and j,
▶ ϵs is i.i.d. project-specific random shock.
▶ the parameter λ represents the complementarity effect (spillover)

between the efforts of collaborating agents, and
▶ G represents the bipartite network of agents and projects.
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Utility

▶ The utility of agent i is given by

Ui(G) =
∑
s∈Pi

δsys︸ ︷︷ ︸
payoff

− 1
2

∑
s∈Pi

e2
is + ϕ

∑
s∈Pi

∑
t∈Pi\{s}

eiseit


︸ ︷︷ ︸

cost

. (2)

▶ where δs ∈ (0, 1] is a discounting factor,5 and
▶ The parameter ϕ measures substitutability between the efforts of the

same agent in different projects.

5If δs = 1, then individual payoff from output Ys is not discounted. If δs = 1/
∑

i∈N gis,
then individual payoff is discounted by the number of agents participating in project s.
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Equilibrium Characterization

▶ Let

W = D(diagp
s=1{δs} ⊗ G)D, and M = D(Jp ⊗ In)D, (3)

where ⊗ denotes Kronecker product.
▶ D is an np-dimensional diagonal matrix given by diagp

s=1{diagn
i=1{dis}},

where dis = 1 if agent i is in project s and dis = 0 otherwise.
▶ G is an n × n zero-diagonal matrix with the (i, j)-th (i ̸= j) element

being gij (compatibility).
▶ Jp is an p × p zero-diagonal matrix with off-diagonal elements being

ones.
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Equilibrium Characterization

▶ Proposition: Suppose the production function for each project s ∈ P
is given by Equation (1) and the utility function for each agent i ∈ N is
given by Equation (2). Given the bipartite network G, if

ρmax(Lλ,ϕ) < 1, (4)

then the equilibrium effort portfolio is given by

e∗ = (Inp − Lλ,ϕ)−1D(δ ⊗α), (5)

where Lλ,ϕ = λW − ϕM represents the weight matrix of the line graph
L(G), δ = [δ1, · · · , δp]

′ and α = [α1, · · · , αn]
′, ρmax(A) denote the

spectral radius of a square matrix A.
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Data

▶ We use the dataset compiled by Bhaskarabhatla et al. (2021).
▶ The primary data consists of U.S. patents granted by USPTO, and

then they match the assignees to publicly listed firms using Compustat
data.

▶ Each entry in the dataset represents a patent-inventor pairing,
containing information on both the patent and the associated
inventor(s).

▶ For each patent, we know the application number, application year,
and granted year. We merge the information of patent forward citation
and patent value (Kogan et al. 2017) as measures of patent output.

▶ For inventors, we know their foreigner status, geographical location (at
the state level for U.S.-based inventors), affiliated company, and
industry classification, and past granted patents.
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Data

To prepare the data for the estimation, we undertake the following sample
selection procedure:
▶ We narrow our focus to patents filed in two specific industries:

Semiconductors and related device manufacturing (with NAICS code
334413) and pharmaceutical preparation manufacturing (with NAICS
code 325412).

▶ we focus on patents applied in 2003, in which the number of patent
applications in the semiconductor industry is the highest compared to
all other years.

▶ We exclude patents with missing information on the application year or
associated inventors, and inventors with missing information on their
characteristics.

▶ We drop inventors who only work on one solo-invented patent and the
corresponding patents.

There are 8472 inventors and 6017 patents in NAICS 334413; 2888
inventors and 927 patents in NAICS 325412.

Go to Summary Statistics

10/20



Estimating the Production Function

▶ Following Equation (1), the production function of project s, with
s = 1, . . . , p, is given by

ys =
∑
i∈N

αidiseis +
λ

2
∑
i∈N

∑
j∈N\{i}

gijdisdjseisejs + ϵs, (6)

▶ We specify αi = exp(x′
iβ), where xi is a k × 1 vector of agent-specific

exogenous characteristics.
▶ The empirical production function can be estimated by the nonlinear

least squares (NLS) method or the maximum likelihood (ML) method
(under the normality assumption on ϵs), with the unobservable eis
replaced by the equilibrium effort given in Equation (5).

▶ One potential problem of directly estimating Equation (6) is
endogeneity of D = diagp

s=1{diagn
i=1{dis}}.
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Endogenous Project Participation

▶ To address this endogeneity problem, we model the endogenous project
participation of agent i in project s by

dis = 1(z′isγ + ξµi + ψηs + κ|µi − ηs|+ vis > 0), (7)

where zis is a h × 1 vector of observables measuring compatibility
between agent i and other agents participating in project s.

▶ The variable µi is an i.i.d.(0,1) agent-specific random component; and
ηs is an i.i.d.(0,1) project-specific random component (Graham, 2016;
2017; Friel et al., 2016).

▶ vis is a random component.
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Endogenous Project Participation

▶ The production function (6) is then extended to

ys =
∑
i∈N

exp(x′
iβ + ζµi︸ ︷︷ ︸
αi

)diseis +
λ

2
∑
i∈N

∑
j∈N\{i}

gijdisdjseisejs + ςηs + us︸ ︷︷ ︸
ϵs

,

(8)
to accommodate inventor and project specific unobservables, where us
is assumed to be independent of ηs and normally distributed with zero
mean and variance σ2

u.
▶ Given X = [xi] and Z = [zis], the joint probability function of

Y = (y1, · · · , yp) and D can be specified as

Pr(Y,D|X,Z) =
∫
µ

∫
η

Pr(Y|D,X,Z, µ, η) Pr(D|Z, µ, η)f(µ)f(η)dµdη,

(9)
from which we can estimate the parameter vector
θ = (λ, ϕ, β′, γ′, ξ, κ, ψ, ζ, ς, σ2

v )
′.

▶ We estimate the model by Bayesian Markov Chain Monte
Carlo (MCMC) sampling.

13/20



Estimation Results
Table: Estimation results for semiconductors and pharmaceuticals using patent forward
citations.

Semiconductors Pharmaceuticals

(A) (B) (C) (D)
Exogenous Endogenous Exogenous Endogenous

Participation Participation Participation Participation

Production

Complementarity (λ) 0.1538*** 0.1677*** 0.2782*** 0.3192***
(0.0233) (0.0245) (0.0663) (0.0751)

Substitutability (ϕ) 0.0485*** 0.0502*** 0.1663*** 0.1871***
(0.0062) (0.0062) (0.0204) (0.0348)

Constant (β0) -0.2110*** -0.2167*** -0.3956*** -0.4208***
(0.0224) (0.0243) (0.0610) (0.0670)

Foreigner (β1) -0.0494*** -0.0499*** -0.0726** -0.0711*
(0.0139) (0.0138) (0.0365) (0.0362)

Log accu. citations (β2) 0.1559*** 0.1569*** 0.2212*** 0.2237***
(0.0060) (0.0062) (0.0099) (0.0106)

Seniority (β3) -0.3823*** -0.3890*** -0.7042*** -0.7191***
(0.0339) (0.0327) (0.1102) (0.1120)

Inventor effect (ζ) – 0.0106*** – 0.0289*
(0.0027) (0.0169)

Patent effect (ς) – 0.0129*** – 0.0283
(0.0027) (0.0170)

Error term variance (σ2
ϵ ) 0.8867*** – 0.7174*** –

(0.0162) (0.0338)
Error term variance (σ2

u) – 0.8664*** – 0.7170***
(0.0162) (0.0337)

a Model (A): assume exogenous participation of inventors on projects. Model (B): assume en-
dogenous participation by Equation (7). The asterisks ∗∗∗(∗∗,∗) indicates that its 99% (95%,
90%) highest posterior density range does not cover zero.
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Estimation Results

Table: Estimation results for semiconductors and pharmaceuticals using patent forward citations.

Semiconductors Pharmaceuticals
(A) (B) (C) (D)

Exogenous Endogenous Exogenous Endogenous
Participation Participation Participation Participation

Participation

Constant (γ0) – -5.1908*** – -5.0033***
(0.0455) (0.0884)

Location (γ1) – 1.5446*** – 5.2940***
(0.0674) (0.2421)

Past coauthors (γ2) – 8.4770*** – 7.2150***
(0.1589) (0.3919)

Common co-authors (γ3) – 15.1374*** – 12.8617***
(0.1659) (0.3785)

Inventor effect (ξ) – 1.4049*** – 1.1192***
(0.0647) (0.0767)

Patent effect (ψ) – -2.8966*** – -2.6903***
(0.0432) (0.0960)

Homophily effect (κ) – -3.6539*** – -1.6792***
(0.0669) (0.0827)

Sample size
Patents 6,017 927
Inventors 8,472 2,888
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Conclusion

▶ we analyze the equilibrium efforts of agents who seek to maximize their
utility when involved in multiple, possibly overlapping projects in a
bipartite network.

▶ We show that both the complementarity effect between collaborating
inventors and the substitutability effect between concurrent projects of
the same inventor play an important role in determining the
equilibrium effort level.

▶ We conduct a counterfactual analysis of the impact of the innovation
incentive program on patent output. We find that the effectiveness of
innovation incentives tends to be underestimated when the
complementarity is ignored and overestimated when the
substitutability is ignored.

▶ With some modifications, this framework can also be used to analyze
competition between multi-product firms, formation of syndicated
loans, and spillovers from science to innovations.
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Counterfactual Analysis
▶ To illustrate the importance of accounting for the complementarity and

substitutability effects in policy design and evaluation, we use our
model to study a counterfactual incentive program to promote
innovations.

▶ Under this program, we assume every inventor receives a reward,
r ∈ R+, per unit of the output she generates. Then the utility function
(2) of agent i can be extended to

Ui(G, r) =
∑
s∈Pi

(1+ r)δsys −
1
2

∑
s∈Pi

e2
is + ϕ

∑
s∈Pi

∑
t∈Pi\{s}

eiseit

 . (10)

▶ Let L(r) := L(r;λ, ϕ) = λ(1+ r)W − ϕM. We can show that, if
ρmax[L(r)] < 1, then the equilibrium effort portfolio is given by

e∗(r) = (1+ r)[Inp − L(r)]−1D(δ ⊗ α). (11)

▶ For a given reward rate r, the net total output can be computed as the
total output,

∑
i∈N

∑
s∈Pi

δsys(G, r), minus the cost of the program,∑
i∈N

∑
s∈Pi

rδsys(G, r).
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Counterfactual Analysis

r

((a)) Semiconductors

r

((b)) Pharmaceuticals

Figure: The net total output in the presence of a merit-based reward,∑
i∈N

∑
s∈Pi

(1− r)δsys(G, r), for the semiconductor industry and the
pharmaceutical industry. The maximum at the optimal rate, r∗, is highlighted
with vertical lines for different model specifications.
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Data

Table: Sample statistics for semiconductors.

Min Max Mean S.D. Obs.

Patents
Forward Citations (in log) 0.0000 5.7398 1.6047 1.1063 6017
Value (million dollars in 1982 prices) 0.0209 162.0552 7.4947 9.9904 6017
Number of inventors (in each patent) 1 13 2.5784 1.4803 6017

Inventors
Foreigner 0 1 0.4214 0.4938 8472
Log life-time patent citations 0 9.3284 2.7749 1.7108 8472
Log life-time patent values (millions) 0 6.4146 1.9198 1.0437 8472
Seniority (decades since first granted patent) 0 2.5000 0.2275 0.4088 8472
Number of patents (for each inventor) 1 49 1.8312 1.9784 8472

Notes: Semiconductor and related device manufacturing (NAICS: 334413). This sample is based on
patents applied in 2003. We drop inventors with a single solo-invented patent and the corresponding
patents. We add one before taking the log of forward citations.
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Data

Table: Sample statistics for pharmaceuticals.

Min Max Mean S.D. Obs.

Patents
Forward Citations (in log) 0.0000 5.1761 1.3639 1.2304 927
Value (million dollars in 1982 prices) 0.0100 563.4050 51.2777 60.5520 927
Number of inventors (in each patent) 1 24 4.2945 2.9925 927

Inventors
Foreigner 0 1 0.2753 0.4467 2888
Log life-time patent citations 0 8.3156 2.4375 1.7482 2888
Log life-time patent values (millions) 0 6.8764 3.4198 1.2467 2888
Seniority (decades since first granted patent) 0 2.5000 0.2617 0.4495 2888
Number of patents (for each inventor) 1 18 1.3785 0.9459 2888

Notes: Pharmaceutical preparation manufacturing (NAICS: 325412). This sample is based on
patents applied in 2003. We drop inventors with a single solo-invented patent and the corresponding
patents. We add one before taking the log of forward citations.

Return
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