THE ANATOMY OF A PEG: LESSONS FROM CHINA'S PARALLEL CURRENCIES

Saleem Bahaj¹ Ricardo Reis²

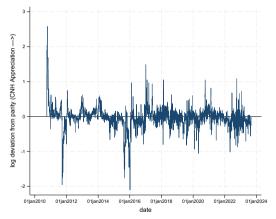
¹UCL and Bank of England

 ^{2}LSE

August 2024

CHINA'S LARGE-SCALE MONETARY EXPERIMENT

- CNY: mainland currency, Chinese
- CNH: parallel currency, anyone
- Officially convert 1:1


Why? Internationalisation strategy

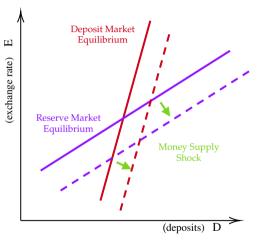
- Foreigners can use CNH freely for payments or to convert to other currencies.

Open current account, closed capital account

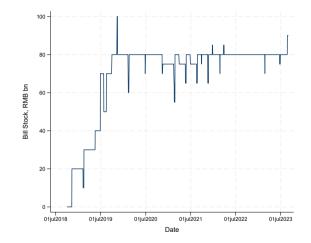
- Chinese firms can export/import without restrictions in CNH and convert to CNY against invoices.
- Restrictions and quotas on conversion for capital flows that are closely monitored: FDI, investment, household transfers, bank borrowing/lending.
- Large scale parallel currencies.

GRESHAM'S LAW: THE PEG TO PARITY AND SUCCESS CNY to CNH (E)

How is it implemented?

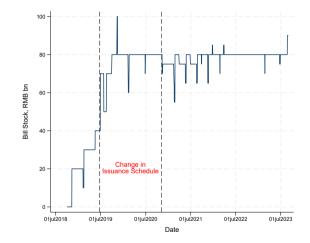

- Controlling scarcity of *M* to target *E*.
- PBoC weekly manages *M* through auctions for CNH bills
- HKMA hourly manages *M* through lending facility
- This paper: learn classic lessons about monetary economics, and how pegs are kept from this experience

Tension: if $ln(E) \neq 0$ for too long, capital controls will fail by arbitrage

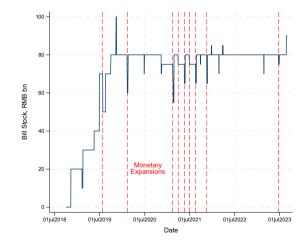

MODEL OF BANKING

- Risk neutral competitive banks raise deposits onshore or offshore subject to withdrawal shocks met with offshore reserves. Interest semi-elasticity of reserve demand from banks $\varepsilon_m \equiv \partial ln(M) / \partial R^m$ – negative of elasticity wrt *E*.
- Chinese households demand for deposits given rate of deposits R^d and preference (money demand) shock. Interest semielasticity ε_d
- Equilibrium for (*E*, *D*) money supply shock:

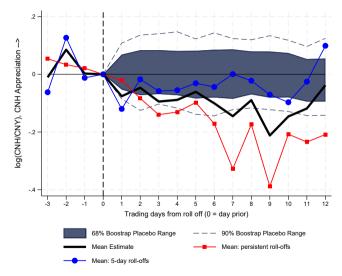
 $d\log(E)/d\log(M) = (\varepsilon_m + (M/D)\varepsilon_d)^{-1}$



EXOGENOUS HIGHER CNH MONEY SUPPLY


Bill issuance: November 2018 goal was 40bn of 3M bills and 10bn of 12M bills.

EXOGENOUS HIGHER CNH MONEY SUPPLY

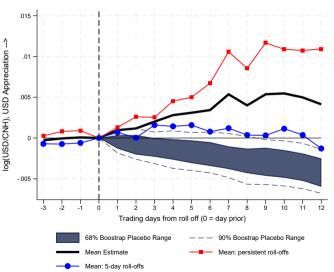


8 Aug 2019: new goal of 20bn of 3M and 6M and 40bn of 12M. 6 Nov 2020: switch to 10bn of 3M and 6M and 60bn of 12M

EXOGENOUS HIGHER CNH MONEY SUPPLY

Response of E to M

A 1% increase in *M* lowers *E* by 0.11pp.


Since $\frac{M}{D} = \frac{196}{730}$ and $\varepsilon_d \approx 10$, Benati et al (2021) , then

$$\varepsilon_m = \frac{11/196}{0.0011} - \left(\frac{196}{730}\right)\varepsilon_d = 48.$$

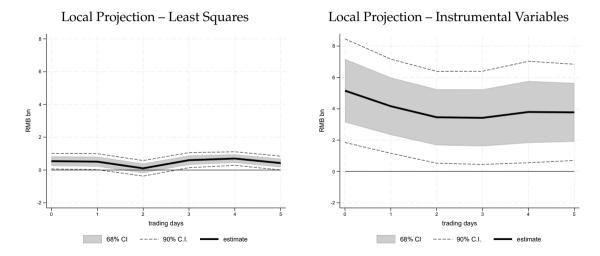
Same number as US in 2007 under scarce reserve system. Also matches time series exercise.

WHY LET E FLUCTUATE? E IS A PRESSURE VALVE FOR \hat{E} Response of \hat{E} to M

- When the yuan is depreciating against USD, CNH depreciates more than CNY...
- ...and vice versa when appreciating...
- ... failure to perfectly maintain the peg is a tool to slow an FX adjustment.

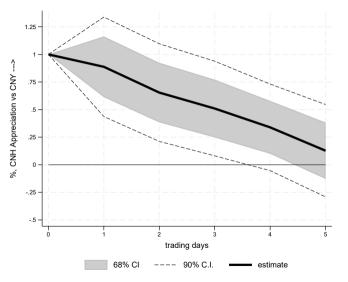
MONETARY ANATOMY OF THE PEG

Simple policy rule


 $\log(M'/M) = \eta \log(E).$

Is (i) $\eta > 0$ and, if so, (ii) is η big enough to maintain the peg?

But *E* also driven by policy changes and other supply shocks. IV strategy based on CNY:


- CNY-USD exchange rate (\tilde{E}) trades in a 2% corridor around a central parity rate (\bar{E}).
- \overline{E} set in the morning and not set in response to *E*.
- Most of time \bar{E} tracks the previous close of CNY-USD. Sometimes it does not. Unfilled pressure on CNY rate to change.
- Since CNH is not controlled, it will adjust in anticipation of CNY
- Use deviation of \overline{E} today from \widetilde{E} yesterday as instrument for *E*, F-stat is 20.

RESPONSE OF M to E (PLP LENDING)

If *z* is PLP drawing, then plot from regression $y_{t+h} = \beta_h e_t + \gamma_h e_{t-1} + \delta_h y_{t-1} + \text{error}$

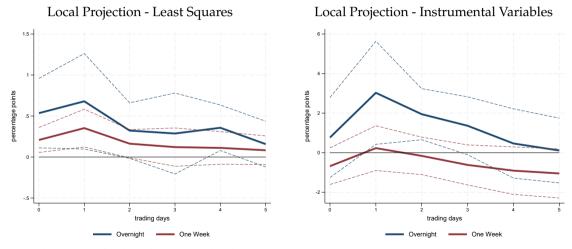
IS THE MONEY RESPONSE ENOUGH TO RESTORE PARITY?

After 5 days, 0.83 of 1% increase in the exchange rate has reverted. Channels:

- 0.53 can be accounted for by the shock dissipating (incl CNY adjustment),
- ¥5bn money response: using earlier estimate accounts for 0.05
- Remaining 0.25: other liquidity policies that shift $\phi(M/D)$

- Poole model of random withdrawal shock, interbank markets, and discount window.
- A rise in money demand only partially offset by a rise in money supply (*E* rises) leads to:
 a) an increase in the tightness in the interbank market *θ*;

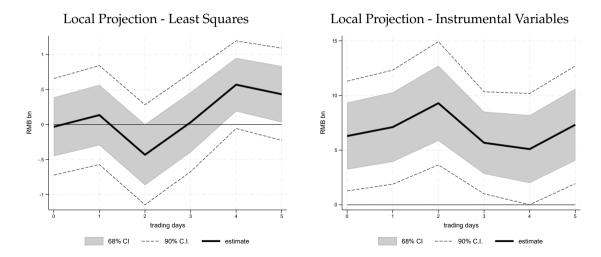
A) INTERBANK MARKET TIGHTNESS: BILL AUCTION SUBSCRIPTIONS


Regression of bill auction subscription rate (bids / bills auctioned) on the exchange rate

Bill maturities	All	12M	6M	
	(1)	(2)	(3)	(4)
$\frac{1}{5}\sum_{0}^{4}\log(E_{t-h})$	-2.76***	-3.38***	-2.78***	-3.38***
5 _ 0 0 0 0 0	(0.93)	(1.10)	(0.93)	(1.12)
Number of Auctions	35	19	16	19
R^2	0.142	0.335	0.131	0.324

Heteroskedasticity robust standard errors in parentheses * p < 0.1, ** p < 0.05, ***p < 0.01

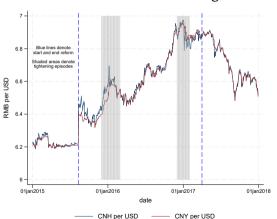
- Poole model of random withdrawal shock, interbank markets, and discount window.
- A rise in money demand only partially offset by a rise in money supply (*E* rises) leads to:
 a) an increase in the tightness in the interbank market *θ*;
 - b) an increase in the interbank rate $R^{f}(\theta)$;


B) INTERBANK RATE RESPONSE TO A MONEY DEMAND SHOCK

z is interbank rate facility drawing, plot from regression $z_{t+h} = \frac{\beta_h e_t}{\rho_h e_t} + \gamma_h e_{t-1} + \delta_h z_{t-1} + \text{error}$

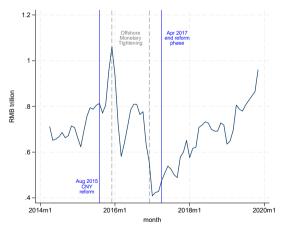
- Poole model of random withdrawal shock, interbank markets, and discount window.
- A rise in money demand only partially offset by a rise in money supply (*E* rises) leads to:
 a) an increase in the tightness in the interbank market *θ*;
 - b) an increase in the interbank rate $R^{f}(\theta)$;
 - c) greater use of the discount window liquidity facilities.

C) DISCOUNT WINDOW DRAWINGS



z is intraday facility drawing, plot from regression $z_{t+h} = \beta_h e_t + \gamma_h e_{t-1} + \delta_h z_{t-1} + \text{error}$

- Poole model of random withdrawal shock, interbank markets, and discount window.
- A rise in money demand only partially offset by a rise in money supply (*E* rises) leads to:
 - a) an increase in the tightness in the interbank market θ ;
 - b) an increase in the interbank rate $R^{f}(\theta)$;
 - c) greater use of the discount window liquidity facilities.
- Liquidity policies: restrict access to the lending facility raises the marginal benefit of reserves, appreciates the CNH. Case study: 5 April 2016 and the role of the three-day lagged overnight rate starts
 - → Prior to 5 April 2016, the R^z was set as previous day's overnight R^f plus 50bp. On that day, the rule was changed to the average of the previous three days overnight rate plus 50bp. The three day lagged overnight rate starts significantly raising *E*:
 - → Another case study: on 22nd of July of 2022, the spread was cut to 25bp: comparing 10 days before to 10 days: 2bp reduction in *E* and a 10bp reduction in R^f

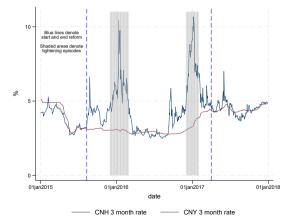

- Poole model of random withdrawal shock, interbank markets, and discount window.
- A rise in money demand only partially offset by a rise in money supply (*E* rises) leads to:
 - a) an increase in the tightness in the interbank market θ ;
 - b) an increase in the interbank rate $R^{f}(\theta)$;
 - c) greater use of the discount window liquidity facilities.
- Liquidity policies: restrict access to the lending facility raises the marginal benefit of reserves, appreciates the CNH. Case study: 5 April 2016 and the role of the three-day lagged overnight rate starts
- Liquidity controls: on deposit flows, on reserve flows, on FXI via bills: raise the marginal benefit of reserves, can offset negative shocks to money demand in order to keep the peg, come with: more use of the intraday facility; an increase in the interbank rate; a return to parity of the peg *E*.

Episode 1): the 11/8/2015 depreciation and controls

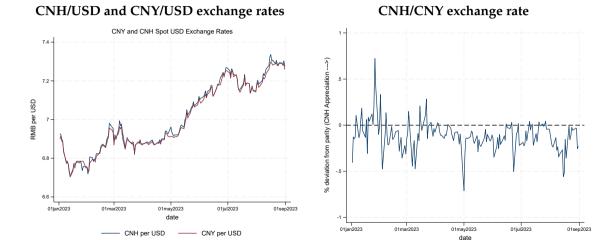
CNH/USD and CNY/USD exchange rates

RMB flows from onshore to offshore

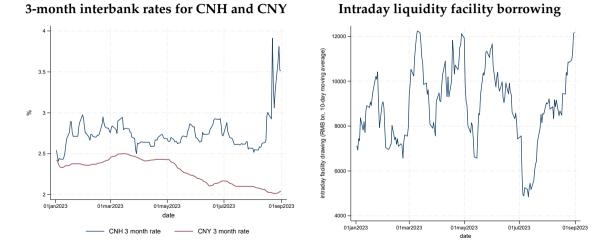
Episode 1): The 11/8/2015 depreciation and controls


Deposits fall, interbank rate rises

5 Aug 2018 CNY - 1.2 reform % deviation from parity (CNH Appre 0 Apr 2017 and reform nhase - 5 ŏ .2 Offshore Monetary Tightening 2014m1 2018m1 2020m1 2016m1 month


Relative stock of CNH-CNY deposits and *e*

log(CNY/CNH), LHS ----- Rel. Money Supply, RHS



EPISODE 2) SUMMER 2023 AND MONETARY/LIQUIDITY POLICIES

EPISODE 2) SUMMER 2023 AND MONETARY/LIQUIDITY POLICIES

CONCLUSION

- China has offshore currency to enforce capital controls while allowing for an open current account and internationalization of the yuan.
 - \rightarrow Gresham's law need to maintain a peg. How?
- Monetarist anatomy of a peg:
 - \rightarrow Scarce reserves (elasticity of 50) \implies money influences exchange rate.
 - ightarrow This money supply changes only accounts for one sixth of adjustment to maintain peg.
- Liquidity anatomy of a peg:
 - $\rightarrow~$ Other policies that shift the benefit of liquidity used.
 - \rightarrow Interbank market efficiency and discount window.
 - $\rightarrow\,$ Capital controls limit transfers of liquidity. Active in '15. Less so in '23.