Man Eats Forest

Agricultural Demand and Amazon Deforestation

Nikolas Kuschnig* & Lukas Vashold EEA-ESEM 2024

Vienna University of Economics and Business
* nkuschnig@wu.ac.at

Motivation

- Amazon **deforestation** continues to be an issue,
- Agriculture has a large **deforestation footprint**; the *Brazilian beef industry* in particular is ...
 - 'the proximate cause of 70% of deforestation'^a
 - 'linked to deforestation that accounts for a fifth of land use emissions from the tropics'^b

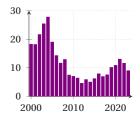


Figure 1: Deforestation in the Brazilian Amazon (in 1,000 km²).

- a. MapBiomas 2023.
- b. Pendrill et al. 2019.

Motivation

- Amazon deforestation continues to be an issue,
- Agriculture has a large **deforestation footprint**; the *Brazilian beef industry* in particular is ...
 - 'the proximate cause of 70% of deforestation'^a
 - 'linked to deforestation that accounts for a fifth of land use emissions from the tropics'b
- However, there's no frame for **causal interpretation**,
 - and naive regressions indicate limited impacts.

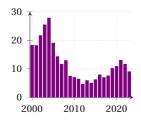


Figure 1: Deforestation in the Brazilian Amazon (in 1,000 km²).

- a. MapBiomas 2023.
- b. Pendrill et al. 2019.

Motivation

- Amazon deforestation continues to be an issue,
- Agriculture has a large **deforestation footprint**; the *Brazilian beef industry* in particular is ...
 - 'the proximate cause of 70% of deforestation'^a
 - 'linked to deforestation that accounts for a fifth of land use emissions from the tropics'^b
- However, there's no frame for **causal interpretation**,
 - and naive regressions indicate **limited impacts**.
- We show that the causal effect of cattle on deforestation is close to footprint estimates.
- a. MapBiomas 2023.
- b. Pendrill et al. 2019.

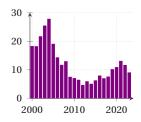


Figure 1: Deforestation in the Brazilian Amazon (in 1,000 km²).

Motivation, Brazilian Amazon in 2000

Figure 2: Land cover, including forest, pasture, and croplands, in the Brazilian Legal Amazon in 2000.

Motivation, Brazilian Amazon in 2022

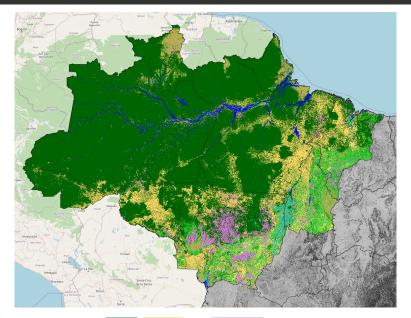


Figure 3: Land cover, including forest, pasture, and croplands, in the Brazilian Legal Amazon in 2022.

Background, Amazon deforestation in Brazil

- **Deforestation threatens** *biodiversity*, as well as local, regional, and global *climates*, and *livelihoods*.
- **Demand for land** stems primarily from agriculture,
 - with soy and cattle being the predominant factors.¹
 - Mining and other agricultural products play a limited role.²

- 1. Carreira et al. 2024; Rajão et al. 2020.
- 2. See, e.g., Garrett et al. 2021; Giljum et al. 2022.
- 3. Fearnside 2017.
- 4. See, e.g., Kuschnig et al. 2023.

Background, Amazon deforestation in Brazil

- **Deforestation threatens** *biodiversity*, as well as local, regional, and global *climates*, and *livelihoods*.
- **Demand for land** stems primarily from *agriculture*,
 - with soy and cattle being the predominant factors.¹
 - Mining and other agricultural products play a limited role.²
- Another important factor is speculative land grabbing, where
 - cattle serves as an intermediary to feign ownership,³
 - enabled by poor property rights and anticipation effects.
- Environmental policy and interventions have been wavering.⁴.
- 1. Carreira et al. 2024; Rajão et al. 2020.
- 2. See, e.g., Garrett et al. 2021; Giljum et al. 2022.
- 3. Fearnside 2017.
- 4. See, e.g., Kuschnig et al. 2023.

Specification

Specification, model

We depart from a naive panel specification relating **deforestation** in hectare to changes in **cattle heads**:

(1)
$$forest_{i,t} = \beta cattle_{i,t} + \mathbf{x}'_{i,t-s} \boldsymbol{\gamma} + t \delta_i + \xi_t + \mu_i + e_{i,t},$$

where i denotes municipalities, and t years, \mathbf{x} covariates, t municipality-trends, and fixed effects are included.

Specification, model

We depart from a naive panel specification relating **deforestation** in hectare to changes in **cattle heads**:

(1) forest_{i,t} =
$$\beta$$
 caîtle_{i,t} + $\mathbf{x}'_{i,t-s}\gamma$ + $t\delta_i$ + ξ_t + μ_i + $e_{i,t}$,

where i denotes municipalities, and t years, \mathbf{x} covariates, t municipality-trends, and fixed effects are included.

We use an **instrument** to *causally identify* β , the effect of interest:

(2)
$$\operatorname{cattle}_{i,t} = \omega B_{i,t} + \mathbf{x}'_{i,t-s} \boldsymbol{\alpha} + t \delta^b_i + \xi^b_t + \mu^b_i + u_{i,t}.$$

Specification, instrument

Instrument construction

The (shift-share) **instrument** *B*, is constructed as

$$B_{i,t} = \sum_{m} \text{shift}_{m,t} \times \text{share}_{i,m,t=0}.$$

We rely on the **exogeneity of the shifts** for identification, and exploit the *shares* for relevance.

Specification, instrument

Instrument construction

The (shift-share) **instrument** B, is constructed as

$$B_{i,t} = \sum_{m} \text{shift}_{m,t} \times \text{share}_{i,m,t=0}.$$

We rely on the exogeneity of the shifts for identification, and exploit the shares for relevance.

We consider two sources of variation: Details

- (a) changes in international beef consumption, coupled with
 - export shares per destination at the municipality level,
- (b) changes in **Chinese beef consumption**, coupled with
 - exposure to slaughterhouse locations and initial stocks.
 - 5. Also called 'Bartik' instrument; see Borusyak et al. 2022, for more information.

Specification, China shock and slaughterhouse exposure

Figure 4: Δ Chinese beef consumption.

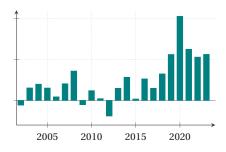
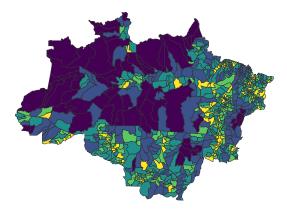


Figure 5: Slaughterhouse exposure in 2003.



Specification, covariates and heterogeneity

- The sample covers 808 municipalities of the **Legal Amazon**;
 - we also consider a subset covered by the Amazon biome (\approx 500).
- Deforestation changed over the **period 2003-2022**;
 - we consider splitting the sample per administration.
- Variables considered include ...
 - land cover and land use change (MapBiomas 2023), socioeconomic and agricultural data (IBGE 2022), environmental fines (IBAMA 2022), protected areas (UNEP-WCMC and IUCN 2022), climatological indicators (Vicente-Serrano et al. 2010), slaughterhouse locations (Vale et al. 2022), international beef consumption (FAO 2023), Brazilian beef exports (UN Comtrade 2022; Ermgassen et al. 2020).

Results

Results

	OLS		
Cattle	-0.100 (0.02)	-0.103 (0.02)	-0.056 (0.02)
Covariates Specific trends	None No	Full No	Full Yes
Fixed effects $N \times T$	Yes 16,160	•••	
F stat	,		

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in **bold**.

▶ Alternative instrument

Results

	OLS			IV		
Cattle	- 0.100 (0.02)	- 0.103 (0.02)	- 0.056 (0.02)	-0.466 (0.14)	- 0.435 (0.14)	- 0.582 (0.17)
Covariates Specific trends Fixed effects	None No Yes	Full No 	Full Yes	None No	Full No	Full Yes
$N \times T$ F stat	16,160			431.1	463.5	62.7

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in **bold**.

▶ Alternative instrument

Results, biome heterogeneity

	Amazon		Cerrado		Savanna ~
	OLS	IV	OLS	IV	
Cattle	-0.057	-0.717	-0.002	-0.169	
	(0.02)	(0.20)	(.002)	(0.12)	
Covariates	Full				
Specific trends	Yes	•••			
Fixed effects	Yes	•••			
$N \times T$	10,060		21,040		

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in **bold**.

▶ Regime heterogeneity

Results, biome heterogeneity

	Amazon		Cerr	ado	Savanna ~		
	OLS	IV	OLS	IV	OLS	IV	
Cattle	-0.057	-0.717	-0.002	-0.169	-0.009	-0.288	
	(0.02)	(0.20)	(.002)	(0.12)	(.002)	(0.14)	
Covariates	Full	•••					
Specific trends	Yes	•••					
Fixed effects	Yes	•••					
$N \times T$	10,060	•••	21,040				
F stat		33.8		13.0		13.0	

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in **bold**.

▶ Regime heterogeneity

Results, intensification

	Legal Amazon OLS IV		Amazon OLS	biome IV
Cattle per pasture	0.102 (0.03)	0.527 (0.09)	0.158 (0.05)	0.861 (0.14)
Covariates Specific trends Fixed effects	Full Yes Yes			
$N \times T$ F stat	16,160	 73.9	10,060	 46.4

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in **bold**.

Conclusion

Discussion, effect size

- Stocking rates suggest that each cow requires roughly one+hectares of grazing area (see Samuel and Dines 2023).
- The reported **cattle per pasture** fall below that.



Discussion, effect size

- Stocking rates suggest that each cow requires roughly one+hectares of grazing area (see Samuel and Dines 2023).
- The reported **cattle per pasture** fall below that.
- Naive estimates suggest **decoupling** of cattle and land.
- Our instrumented estimates are much closer to this physical boundary suggested by footprint analyses.



Discussion, implications

- The beef industry is considered a **driver of economic growth**
 - Monitoring supply chains complicated
- Land use externalities lie at the heart of climate change
 - Beef has a caloric efficiency of 1.9%^a
- Few interventions **disincentivize** the drivers of deforestation

a. Alexander et al. 2016.

Discussion, implications

- The beef industry is considered a **driver of economic growth**
 - Monitoring supply chains complicated
- Land use externalities lie at the heart of climate change
 - Beef has a caloric efficiency of 1.9%^a
- Few interventions **disincentivize** the drivers of deforestation

Table 1: Land use in m² for nutritional needs.^b

	beef	cheese	eggs	nuts	potatoes
2,000 kcal	239.0	45.4	8.7	4.2	2.4
100g protein	163.6	39.8	5.7	7.9	5.2

Figure 6: Prussia was onto something.

a. Alexander et al. 2016.

b. Poore and Nemecek 2018.

Conclusion

In this presentation, we ...

- dove into how agriculture drives deforestation in Brazil,
- found considerable impacts of cattle ranching,
 - driving around 63% of observed deforestation,
 - at 1 \times \times 1 hectare,
- which are **underestimated** without proper identification.

Conclusion

In this presentation, we ...

- dove into how agriculture drives deforestation in Brazil,
- found considerable impacts of cattle ranching,
 - driving around 63% of observed deforestation,
 - at 1 km ≈ 1 hectare,
- which are **underestimated** without proper identification.

Thank you! — we're happy for any feedback! You can find the slides, and follow the paper (and my related JMP on **deforestation spillovers**) online.

References i

Alexander, P., et al. 2016. "Human appropriation of land for food: The role of diet."

Global Environ. Change 41:88–98. issn: 0959-3780.

https://doi.org/10.1016/j.gloenvcha.2016.09.005.

Borusyak, Kirill, et al. 2022. "Quasi-experimental shift-share research designs." Review of Economic Studies 89 (1): 181–213. issn: 0034-6527. https://doi.org/10.1093/restud/rdab030.

Carreira, I., et al. 2024. "The deforestation effects of trade and agricultural productivity in Brazil." *Journal of Development Economics* 167:103217. issn: 0304-3878. https://doi.org/10.1016/j.jdeveco.2023.103217.

References ii

FAO. 2023. Food and Agriculture Statistics. Retrieved on May 5th 2023 from: https://www.fao.org/faostat/en/. Rome, Italy.

Fearnside, Phillip. 2017. "Deforestation of the Brazilian Amazon." In Oxford Research Encyclopedia of Environmental Science. September.

https://doi.org/10.1093/acrefore/9780199389414.013.102.

References iii

Garrett, Rachael D., et al. 2021. "Forests and sustainable development in the Brazilian Amazon: history, trends, and future prospects." *Annual Review of Environment and Resources* 46, no. 1 (October): 625–652. issn: 1543-5938. https://doi.org/10.1146/annurev-environ-012220-010228.

Giljum, Stefan, et al. 2022. "A pantropical assessment of deforestation caused by industrial mining." *Proceedings of the National Academy of Sciences* 119 (38): e2118273119. https://doi.org/10.1073/pnas.2118273119.

IBAMA. 2022. *Dados Abertos*. Retrieved at September 16^t h 2022 from: https://dadosabertos.ibama.gov.br/. São Paulo, Brazil.

IBGE. 2022. Sistema IBGE de recuperação automática. Retrieved at September 16^t h 2022 from: https://sidra.ibge.gov.br/. São Paulo, Brazil.

References iv

Kuschnig, Nikolas, et al. 2023. "Eroding resilience of deforestation interventions—evidence from Brazil's lost decade." *Environmental Research Letters* 18, no. 7 (July): 074039. issn: 1748-9326. https://doi.org/10.1088/1748-9326/acdfe7.

MapBiomas. 2023. Annual Land Use Land Cover Maps of Brazil. Available at: https://mapbiomas.org/en. São Paulo, Brazil.

Pendrill, Florence, et al. 2019. "Agricultural and forestry trade drives large share of tropical deforestation emissions." *Global Environmental Change* 56:1–10. issn: 0959-3780. https://doi.org/10.1016/j.gloenvcha.2019.03.002.

Poore, J., and T. Nemecek. 2018. "Reducing food's environmental impacts through producers and consumers." *Science* 360 (6392): 987–992. issn: 0036-8075. https://doi.org/10.1126/science.aaq0216.

References v

- Rajão, Raoni, et al. 2020. "The rotten apples of Brazil's agribusiness." *Science* 369 (6501): 246–248. https://doi.org/10.1126/science.aba6646.
 - Samuel, A., and L. Dines. 2023. Lockhart and Wiseman's Crop Husbandry Including Grassland. Buckingham, England, UK: Woodhead Publishing. isbn: 978-0-323-85702-4. https://doi.org/10.1016/C2020-0-01095-9.
- UN Comtrade. 2022. *United Nations Comtrade Database*. Retrieved on May 5th 2022 from: https://comtradeplus.un.org/. New York, US.
- UNEP-WCMC and IUCN. 2022. Protected Planet: The World Database on Protected Areas (WDPA). Available at: www.protectedplanet.net. Cambridge, UK.

References vi

Vale, Ricardo, et al. 2022. "Regional expansion of the beef industry in Brazil: from the coast to the Amazon, 1966–2017." *Regional Studies, Regional Science* 9, no. 1 (December): 641–664.

https://doi.org/10.1080/21681376.2022.2130088.

Vicente-Serrano, Sergio M., et al. 2010. "A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index."

Journal of Climate 23 (7): 1696–1718.

https://doi.org/10.1175/2009jcli2909.1.

Instrument construction I (Return

We construct our instrument $B_{i,t}$ using ...

■ shares from a municipality's distance to the next slaughterhouse, interacted with the share of all pasture area.

$$\mathsf{share}_{i,t=0} = \exp\{-\mathsf{dist}_{i,t=0}\} \times \frac{\mathsf{pasture}_{i,t=0}}{\sum_{n} \mathsf{pasture}_{n,t=0}}.$$

- Pastures expand near infrastructure and cleared land.
- Transport costs determine profitability, and slaughterhouses are a necessary destination for cattle.
- **shifts** from changes in Chinese beef consumption.

$$shift_t = \nabla beef_{t-1}^{CHN}$$
.

The demand is relevant to Brazilian agricultural products (FAO 2023), but doesn't affect Amazon deforestation in other ways.

The second instrument $B_{i,t}$ uses ...

■ beef consumption changes in export destinations m = 1, ... M

$$\begin{split} B_{i,t} &= \sum_{m} \text{share}_{i,m,t=0} \times \text{shift}_{m,t} \\ &\text{share}_{i,m,t=0} = \text{share}_{i,t=0} \times \frac{\text{exports}_{i,m,t=0}}{\text{exports}_{i,t=0}}, \end{split}$$

- where share $i_{i,t=0}$ is defined by initial stocks and/or exposure to slaughterhouses, and
- shift $_{m,t}$ is the growth in beef consumption in m.
- Export shares are at the municipality level (available from Ermgassen et al. 2020), but are only available for the second half of the period considered.

Results, export-share instrument Return

	0	LS	Export IV		
Cattle	- 0.109 (0.03)	-0.015 (.008)	- 0.381 (0.10)	-0.130 (0.03)	
Covariates Specific trends Fixed effects	Full No Yes	 Yes 	No	Yes	
N × T F stat	9,696		56.8	19.8	

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in **bold**.

Results, regimes Return

	2003-2015			2016-2022				
	OLS	OLS	IV	IV	OLS	OLS	IV	IV
Cattle	-0.088	-0.066	-0.389	-0.361	-0.142	-0.015	-0.510	-0.267
	(0.02)	(0.02)	(0.09)	(0.11)	(0.04)	(0.01)	(0.13)	(0.29)
Covariates	Full							
Specific trends	No	Yes	No	Yes	No	Yes	No	Yes
Fixed effects	Yes	•••						
$N \times T$	10,504				5,656			
F stat			207.7	101.5			385.0	13.3

Standard errors clustered at the municipality-level. Significant (p < 0.01) estimates in **bold**.