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1 Introduction

Endogenous growth models have been shown to explain the hysteresis e�ects
of supply shocks (e.g. Covid-19, Ukraine War) on output and in�ation (see,
e.g. Fornaro and Wolf, 2023, FW for short). These models can also repli-
cate �nancial data well. For instance, Kung and Schmid (2015, KS for short)
show that these models produce a high mean of the equity premium, and also
capture the variation in market returns. This is because endogenous tech-
nology movements create signi�cant, low-frequency variation in consumption
(long-run risks), which are re�ected in asset prices (see, e.g. KS for a closed-
economy and Grüning (2017, 2018) for open-economy setups).

In this paper we use a simpli�ed endogenous growth model to deliver
approximate closed-form solutions for asset prices. The complexity of the
cited models and that of many other endogenous growth models precludes
even approximate closed-form solutions and, thus, they are solved numer-
ically. Unlike the literature using exogenous growth models with long-run
risk (see e.g. Bansal et al., 2010), there is no paper, which shows using at
least an approximate closed-form solution how the endogenous growth model
is successful in resolving the equity premium puzzle. For the closed-form so-
lution, we take the standard loglinear-lognormal approach. In particular, we
loglinarise the macroeconomic model, and calculate asset prices by assuming
that the pricing kernel and the return on the consumption claim are jointly
conditionally lognormally distributed.

What is the advantage of having an approximate closed-form solution?
Closed-form solutions of simpli�ed models are well-suited to illuminate how
model assumptions and mechanisms shape the predictions of a model at the
expense of matching the data less well than complex models. In particular,
Bansal et al. (2010) calculate approximate closed-form solutions based on
the loglinear-lognormal approach from an exogenous growth model with long-
run risk. Their model is driven by both temporary, business cycle (mean-
reverting) and permanent shocks. They show that positive business cycle
shocks lead to falling asset prices due to their mean-reversion property. In
the absence of at least one approximate closed-form solution, it is di�cult to
see clearly how business cycle shocks in endogenous growth models produce
rising asset prices in response to positive mean-reverting shocks. We have
the following contributions to make to the literature.

First, we use the closed-form solution to show that the salient asset pricing
implications of the model are driven by the trend component of consumption
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growth. To do so, we decompose expected consumption growth into cyclical
and trend components, which are endogenous in our set up, while they are
driven by cyclical and permanent shocks, respectively, in Bansal et al. (2010).
With the closed-form solution, we can analytically show the conditions un-
der which the negative cyclical component is su�ciently muted, so that the
positive trend component engineers a procyclical price-consumption ratio in
line with empirical evidence. The latter happens, for instance, when the
shock process is su�ciently persistent with an AR(1) parameter larger than
0.95. The closed-form solution also shows how the interaction of Epstein-Zin
preferences and endogenous growth leads to a larger precautionary savings
e�ect, and keeps the risk-free rate low.

Second, we show that the R&D spending-to-GDP ratio is crucial for a sig-
ni�cant trend component, and for the asset pricing implications of the model.
Unlike the previous macro-�nance literature, which calibrates growth models
using estimated input shares, our model matches R&D spending-to-GDP ra-
tio in US data. Figure 1 exhibits R&D spending-to-GDP ratio varies around
two percent in annual US data from 1953-2023. For the benchmark value of
the R&D spending-to-GDP ratio, the model captures a small fraction of the
mean and standard deviation of the equity premium (31 basis points and 5.5
percent, respectively). However, a small increase of 0.13 percentage points in
the R&D spending-to-GDP ratio relative to the empirical benchmark of 2.46
percent raises annual productivity and consumption growth by 0.71 percent-
age points, and quadruples the equity premium (from 31 basis points to 130
basis points) roughly in line with empirical estimates of Kogan et al. (2017).

Insert Figure 1 here.

Third, we point to the importance of patent obsolescence in explaining
asset prices. A rise in the obsolescence parameter magni�es the e�ect of
supply shocks on macroeconomic variables as they make the hysteresis e�ects
coming from the endogenous trend component more pronounced similarly to
the arguments in FW. With patent obsolescence, the precautionary savings
e�ect is powerful in helping to match the low risk free rate in the data.

Fourth, we �nd that a third-order perturbation solution of the model
as well as stochastic volatility imply additional risk-correction relative to
the loglinear-lognormal solution. Since the previous literature �nds that
loglinear-lognormal solutions might be inaccurate (see e.g. Pohl et al., 2018),
we solve the model with third-order perturbation, which the computational
macro-�nance literature considers to be highly accurate (see e.g. Caldara
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et al., 2012). We �nd that macroeconomic and �nancial moments increase
when the full model is solved with third-order perturbation solution due to
the positive risk-correction coming from higher-order terms. In addition, we
show that stochastic volatility helps capture the full variation in the price-
consumption ratio.

Finally, the simplicity of our model allows us to gauge the importance
of intangible capital accumulation on asset prices in isolation. The previous
literature employs models with both tangible and intangible capital accumu-
lation. It is di�cult to judge the contribution of intangible capital since the
previous literature (e.g. Kaltenbrunner and Lochstoer, 2010) already shows
that even models equipped with tangible capital only and permanent shocks
can yield reasonable asset pricing implications.

We use the endogenous growth model of FW but unlike FW we focus on
macro-�nancial issues. We con�rm that uncertainty shocks further elevate
risk-premia in keeping with the �ndings of Bandi et al. (2023) and Bonciani
and Oh (2022). Recently, Dou et al. (2024) have considered a version of the
KS model with heterogeneous �rms facing �nancial friction. Their model
features a new endogenous state variable capturing misallocation, which cre-
ates low-frequency uncertainty about growth. Donadelli and Grüning (2016)
�nd that the risk-premium is higher in the KS model with endogenous labour
decisions and wage rigidity. Donadelli and Grüning (2021) explore how �scal
policies a�ect innovation dynamics and welfare in the KS model.

2 Model

2.1 Short summary of the non-linear model

In this section, we bire�y summarise the four key non-linear equations of the
endogenous growth model of FW. In the Online Appendix, we include full
derivation of the FW model, and explain how it di�ers from the seminal asset
pricing model of KS.

The �rst equation captures the positive relation between the growth rate
and R&D spending:

Gt+1 ≡
At+1

At
= 1− ϕ+ χsζt . (1)

where Gt+1 is the growth rate of technology, At, and st ≡ St/At is detrended
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spending on R&D. ϕ measures the obsolescence of technology (patent obso-
lescence in KS), which is zero in FW but positive in KS. Parameter 0 < ζ < 1
captures decreasing returns in innovation. χ is a constant, which helps to cal-
ibrate productivity growth. We will show that the introduction of patent ob-
solescence signi�cantly improves the asset pricing implications of the model.

The second equation is the usual Euler equation, which takes the constant
relative risk aversion (CRRA) form:

1 = β

(
ct+1

ct

)− 1
ψ

G
− 1
ψ

t+1rt, (2)

where rt is the risk-free real interest rate, and ct ≡ Ct/At is detrended con-
sumption, and ψ is the elasticity of intertemporal substitution (EIS). In con-
trast to FW, we have relaxed their ψ = 1 choice to ψ > 1, which is the usual
choice in long-run risk literature.

The third equilibrium condition describes the optimal path of investment
spending:

s1−ζt =

(
1

1 + rt + η

)(
ζχω̄Zt+1L+ (1− ϕ)s1−ζt+1

)
(3)

Note that the discount rate, rt + η is higher than the risk-free rate, rt since
η > 0 is chosen such that the steady-state of rt+η matches corporate discount
rates in post-war US data1. ζχω̄Zt+1L is the pro�ts of the monopolist, and
we assume that labour is �xed (L = 1) (see online appendix for the derivation
of the pro�t function).2 The value of a claim to pro�ts is equal to vt. Perfect
competition and free entry to the innovation sector imply that the marginal
bene�t of innovation, vt is equal to the marginal cost, s1−ζt . Hence, the Euler
equation (3) is associated with pricing the pro�t claim. When ϕ = 0, we are
back to the expression of FW in their Appendix E.2.

The fourth is the usual market clearing:

ΨZtL = ct + st, (4)

1Cash-�ows from innovative projects are highly uncertain and the discount rates used
to evaluate them are also signi�cantly higher than the risk-free rate�see FW for corporate
discount rates of about fourteen percent in real terms.

2We deviate from FW and consider an oligopolistic setup in the sense of Benigno and

Fornaro (2017), whose setup slightly changes the ω̄ of FW to ω̄ ≡(ξ − 1)(α/ξ)
1

1−α , where
α is the share of intermediate inputs in production and ξ is the gross markup. In this way
the input share and the markup can be calibrated separately, so that ξ ̸= 1/α.
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where ΨZtL is the value added (GDP).3

Finally, the exogenous component of technology is given by an AR(1)
process in logs:

log(Zt+1/Z) ≡ ẑt+1 = ρẑt + σtεt+1, (5)

where σt captures stochastic volatility, and the innovation comes from a
standard Normal distribution: εt ∼ N(0, 1). σ2

t follows the process in Bansal
et al. (2010):

σ2
t+1 = σ2 + v1(σ

2
t − σ2) + σwε

w
t+1

where εwt ∼ N(0, 1). Since we choose Z = 1 it is true that ẑt = log(Zt) −
log(Z) = log(Zt) = zt. For given stochastic processes {zt, σ2

t }∞t=0, the model
can be reduced to two equations in two variables, {ct}∞t=0 and {Gt+1}∞t=0 as
in FW.

2.2 Model solution strategy

To present an approximate closed-form solution of the model, we make the
following simpli�cation that is frequently used in macro-�nance literature.
First, we derive loglinear solution of the macroeconomic model of FW with
CRRA preferences. Second, we calculate asset prices assuming lognormality
of the Euler equations containing Epstein-Zin curvature. This way, we can
present the main mechanisms of the model with a closed-form solution that
is comparable to those in the exogenous growth literature.

2.3 Loglinear macroeconomic model

The combination of equations (2) and (3), as well as equation (4) can be
approximated to the �rst-order as

ĉt = γczt and ĝt+1 = γgzt (6)

where

γc ≡
1

sc

1
ψ
G

1
ψ + 1−ζ

ζ
G

G−1+ϕ

[
(G

1
ψ − β(ρ(1− ϕ)− η))− (1− sc)

1
ζ
(G

1
ψ − β(1− ϕ− η))ρ

]
1
ψ
G

1
ψ + G

G−1+ϕ

[
1−ζ
ζ
(G

1
ψ − β(ρ(1− ϕ)− η)) + 1

ψ
(1− ρ)1−sc

sc
1
ζ

] ,

3In particular, the value added is given by Yt−
∫ 1

0
xj,tdj = ΨAtZtL where Yt is output,∫ 1

0
xj,tdj is the sum of intermediate inputs, and Ψ ≡ (α/ξ)α/(1−α)(1 − α/ξ) is a positive

constant.
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γg ≡
(G

1
ψ − β(1− ϕ− η))ρ+ 1−ρ

ψsc

G
1
ψ

ψ
+ G

G−1+ϕ

[
1−ζ
ζ
(G

1
ψ − β(ρ(1− ϕ)− η)) + (1−sc)

ψsc

1−ρ
ζ

] ,
where sc is the share of consumption in GDP. Hence, 1 − sc is the share of
R&D spending in GDP. Variables are written in log-deviation from steady-
state: ĉt ≡ log(ct/c) and ĝt+1 = log(Gt+1/G). The omission of the time
subscript refers to deterministic steady-states. With ψ = 1 and ϕ = 0 we
obtain the formulas in FW (see section E.2 of their Appendix).

Expected consumption growth,∆ĉtotalt+1 can be decomposed into the growth
rate of a cyclical term, ∆ĉt+1, and the trend growth rate, ĝt+1:

∆ĉtotalt+1 = ∆ĉt+1 + ĝt+1

= γc∆ẑt+1 +γgẑt

= [−γc(1− ρ) +γg]ẑt. (7)

For reasonable calibrations of the model γc > 0, γg > 0, and γc > γg. Since
0 < ρ < 1, the cyclical term, −γc(1 − ρ) always has negative reaction to
positive shocks, zt. The trend growth term, γg, is always positive. As long as
the shock is su�ciently persistent, |γc(ρ− 1)| < γg i.e. the negative cyclical
component, γc(ρ− 1) is smaller in absolute value than the trend component,
consumption growth, ∆ĉtotalt+1 , will be procyclical in the endogenous growth
model.4

The bottom panel of Figure 2 shows the sensitivity of −(1−ρ)γc+γg (and
its components, −(1− ρ)γc and γg in the top panel) to the persistence of the
shock, ρ, the curvature of the investment function, ζ, patent obsolescence, ϕ,
growth rate, g, IES, ψ, gross markup, ξ, and R&D spending-to-GDP ratio,
1 − sc. A higher ζ and ϕ increase hysteresis e�ects, and make the trend
component, γg react more keenly to supply shocks. Notably, −(1− ρ)γc+γg
turns to positive for highly persistent shocks of ρ > 0.95: this is mainly be-
cause the negative cyclical component, −(1 − ρ)γc is shrinking for larger ρ.
The trend component, γg is positive and slightly decreasing with ρ. For each
parameter, the total e�ect, −(1− ρ)γc+γg is governed by the trend compo-
nent, γg. When IES is increasing, households view �uctuations in current
total consumption less negatively, so the reaction of total consumption to

4The exogenous growth endowment model of Bansal et al. (2010) predicts rising con-
sumption only for permanent technology shocks. In the endogenous growth model per-
manent shocks are not needed as the endogenous trend component picks up the role of
permanent shocks.
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shocks, −(1 − ρ)γc+γg also decreases. The total e�ect also increases with
more investment spending, which enhances the trend component.

Insert Figure 2 here.

3 Calibration

We mainly follow the calibration strategy of FW and explain when we diverge
from it (see calibration in Table 1). Time is in quarters. χ, α, and β are
chosen to target three moments: i) consumption growth rate of 1.82 percent
per annum (based on annual US data 1929-2017), ii) an R&D spending-to-
GDP ratio of 2.46 (based on annual US data 1953-2017), and iii) a risk-free
rate of 2.40 percent per annum, which is higher than 0.32 estimated from
US data 1929-2017.5 Hence, the resulting values for χ, α, and β are 1.4181,
0.1627, and 0.9955, respectively.

Insert Table 1 here.

Instead of setting a wedge η to increase the discount rate for pro�ts,
we use patent obsolescence, ϕ, which is another tool to induce a corporate
discount rate of about 14 percent in line with post-war US data (see FW).
Hence, we apply a quarterly obsolescence rate of 3.75 percent, which the BLS
uses to calculate the stock of intangible capital in the US. Figure 3 shows
that the price-consumption ratio, the risk-free rate and the risk-premia are
more sensitive to ϕ than η.

Regarding the curvature of the innovation spending function ζ, FW argues
that a value close to one might be the relevant choice. However, we stick to
the estimate 0.83, used in KS. To be clear, a value of ζ closer to one would
further raise risk-premia as it would make hysteresis e�ects stronger.

A risk-aversion of ten and an EIS of 1.85 mimics the choices of KS and are
standard in the long-run risk literature (both are one in FW since they do not
focus on the macro-�nancial implications of their model). The linearisation
coe�cient, κ1 is close to one as in Campbell and Shiller (1988); see asset
pricing section below.

5We could choose a higher β and achieve somewhat lower risk-free rate at the cost of
having a growth rate below one percent per annum (half of the value in US data), which
would also reduce the risk-premia below one percent (around six percent in US data)�see
also the mid-panel of Figure 3 for the positive correspondence between the growth rate
and the risk-free rate.
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Unlike the crises-experiment-like calibration of FW, our macro-�nance
perspective requires more conservative calibration of the technology shock. In
particular, we set ρ = 0.9925 and σ = 0.0064 to match the standard deviation
of the business cycle frequency of consumption growth (cycles between 6 and
32 quarters isolated through the band-pass �lter of Christiano and Fitzgerald,
2003), which are in the ballpark of the business cycle literature as well as
KS. In our model the steady-state of the technology shock is �xed to one for
simplicity, Z = 1. The AR(1) parameter and the size of the innovation in the
stochastic volatility shock process�v1 and σw, respectively�are reasonably
close to the values in Bansal et al. (2010).

The leverage, ϕlev on equity premium is 1.67 as in KS. The net markup
ξ − 1 is 20 percent, which is lower than the choice of KS.

4 Loglinear-lognormal asset pricing

Using the Campbell-Shiller (1988) log-linear approximation for the return on
the consumption claim we write:

rc,t+1 = κ0 + κ1pc,t+1 − pc,t +∆ctotalt+1 (8)

where rc,t+1 = log(Rc,t+1) is the log return on the consumption claim and
pc,t+1 = log(Pc,t+1) is the log of the price-consumption ratio. κ0 ≡ log(1 +
exp(pc))−κ1pc and κ1 ≡ exp(pc)/(1+exp(pc)) are constants. Note that ∆c

total
t+1 =

∆ct+1 + g + gt+1, where gt+1 = log(Gt+1).
We guess that the solution for the price-consumption ratio takes the form

of:
pc,t = η0 + η1zt + η2σ

2
t (9)

where η0, η1 and η2 are constants, which are determined below. Below we
show that positive technology shocks raise asset prices, η1 > 0, while a rise
in uncertainty reduce asset valuations, η2 < 0.

We assume that the pricing kernel and the return on the consumption
claim are jointly conditionally log-normally distributed:
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0 = log(Et[exp(mt+1 + rc,t+1)]) (10)

= Et[mt+1 + rc,t+1] +
1

2
V art[mt+1 + rc,t+1]

= log(Et[exp(θlog(β) + θ(1− 1/ψ)∆ctotalt+1 + θ(κ0 + κ1pc,t+1 − pc,t))])

= log(Et[exp(const.+ θ(1− 1/ψ)[γc(zt+1 − zt) + γgzt]

+θκ1η1zt+1 − θη1zt + θκ1η2σ
2
t+1 − θη2σ

2
t )])

= const.+ θ(1− 1/ψ)[γc(ρ− 1) + γg]zt +
1

2
θ2(1− 1/ψ)2γ2cσ

2
t

+θη1(κ1ρ− 1)zt +
1

2
θ2κ21η

2
1σ

2
t + θη2(κ1v1 − 1)σ2

t +
1

2
θ2κ21η

2
2σ

2
w

where const. ≡ θ[log(β) + κ0 + η0(κ1 − 1) + (1 − 1/ψ)g] are constants, and
θ ≡ (1−γ)/(1−1/ψ) appears due to Epstein-Zin preferences, which separates
risk-aversion, γ from the inverse of the elasticity of intertemporal substitu-
tion (EIS) 1/ψ. When θ = 1 we obtain CRRA preferences with γ = 1/ψ
(assuming that 1/ψ ̸= 1).

The third row uses the return representation of the pricing kernel in the

case of Epstein-Zin preferences (Mt+1 = βθ
(
ct+1

ct
Gt+1

)− θ
ψ
rθ−1
c,t+1). Further,

we use the Campbell-Shiller log-linear approximation for the return on the
consumption claim from equation (8), the expression for total consumption
growth, ∆ctotalt+1 , and the price-consumption ratio from equations (7) and (9)
respectively. In the last two rows, we have applied the log-normality assump-
tion.

The last two rows in equation (10) imply the following exclusion restric-
tions (for constants, zt-terms, and σ2

t -terms, respectively):

η0 =
log(β) + (1− 1/ψ)g + κ0 +

1
2
θκ21η

2
2σ

2
w

1− κ1
, (11)

η1 =
(1− 1/ψ)[γc(ρ− 1) + γg]

1− κ1ρ
, (12)

η2 =
1

2

[(θ − θ/ψ)2γ2c + θ2κ21η
2
1]

θ(1− κ1v1)
. (13)

As long as the shock is su�ciently persistent, |γc(ρ − 1)| < γg i.e. the
positive trend component, γg outweighs the negative reaction of the cyclical
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component |γc(ρ−1)|. On the mid-left panel of Figure 3, one can see that η1
is positive for highly persistent shocks only (ρ > 0.95), which are consistent
with the estimates in the business cycle literature. Our calibration of ψ >
1 ensures that the price-consumption ratio responds positively to cyclical
technology shocks η1 > 0, which is a core assumption in the long-run risk
literature. η2 < 0 captures the negative e�ects of volatility on asset prices.

Insert Figure 3 here.

Note that the η coe�cients are directly comparable to those in the ex-
ogenous growth literature with long-run risk. Notably, Bansal et al. (2010)

reports a negative coe�cient, η1 =
(1−1/ψ)(ρ−1)

1−κ1ρ < 0 for ψ > 1 (see the second

component of equation (6) in their paper). Hence in endowment (Bansal et
al., 2010) or production models of exogenous growth where positive transi-
tory shocks lead to a fall in the price-consumption ratio η1 < 0 if ψ > 1.
The sign and size of η coe�cients are important for the risk-free rate and the
equity premium (see equations (14) and (15) below, respectively).

Risk-free rate. To derive an expression for the risk-free rate recall log
version of the return representation of the pricing kernel. In line with the
strategy of de Groot et al. (2022) we substitute in for rc,t+1 from equation
(8) and impose the restrictions from equations (11) and (12) on the resulting
equation. Applying a lognormality assumption for the pricing kernel we
derive the risk-free rate as:

rf,t = −log(β) + g

ψ
− 1

ψ
[−γc(1− ρ) + γg]zt (14)

−1
2
γ2γ2cσ

2
t +

1

2
(1/ψ − γ)(1− γ)γ2cσ

2
t +

1

2
(θ − 1)κ21η

2
1σ

2
t +

1

2
θκ21η

2
2σ

2
w

In the absence of uncertainty, σ2
t = σ2

w = zt = 0, the risk free is the log
of the growth-adjusted discount factor, g/ψ − log(β). In the case of CRRA
preferences, θ = 1⇔1/ψ = γ, precautionary savings e�ect is −1

2
γ2γ2cσ

2
t ,

which is growing with risk-aversion γ, the sensitivity of cyclical consumption
to technology γc, and the variance of the shock σ2

t . Hence, the precautionary
savings e�ect keeps the unconditional risk free rate below the steady-state
risk-free rate. This is because the lognormal approximation allows for the
variance of the shock�a measure of uncertainty. Higher uncertainty leads to
precautionary savings, which drives down the risk-free rates.

The expression, − 1
ψ
[−γc(1 − ρ) + γg]zt, in the �rst row shows that the

risk-free rate rises in response to negative temporary technology shocks as
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long as the shock is su�ciently persistent: ρ > 0.95. In particular, sup-
ply disruptions lead to persistently lower spending on innovation causing a
shortage in demand which is greater than the shock itself (see also FW). The
upshot is a rise in the risk-free rate, which is in contrast to the logic from
exogenous growth models (see e.g. Bansal et al. 2010), where the risk-free
rate rises in response to negative technological innovations since there is no
trend component when only temporary shocks are considered.

With Epstein-Zin preferences, θ ̸=1⇔1/ψ ̸= γ and ψ > 1 (see the second,
third, and fourth terms in row two, which are negative in total), precaution-
ary savings are stronger. The endogenous growth mechanism a�ects precau-
tionary savings through η1, which appear joint with Epstein-Zin preferences.
Persistent low growth episodes in the endogenous growth model magnify pre-
cautionary savings e�ect as long as η1 > 0. Stochastic volatility captured by
the last term, 1

2
θκ21η

2
2σ

2
w is another source of uncertainty and, thus, has a

negative in�uence on the risk-free rate.
Equity premium. The levered6 excess return on the consumption claim

is given by

ϕlevlogEt[exp(rc,t+1 − rf,t)] = ϕlev[ Etrc,t+1 − rf,t +
1

2
V art[rc,t+1]] (15)

= −ϕlevCovt(mt+1 − Etmt+1, rc,t+1 − Etrc,t+1)

= ϕlev[γγcκ1η1σ
2
t + (1− θ)(κ21η

2
1σ

2
t + κ21η

2
2σ

2
w)]

In the �rst row 1
2
V art[rc,t+1] is the so-called Jensen-term that appears in

lognormal approximations. The conditional covariance in the second row
contains the innovation component of the pricing kernel mt+1 − Etmt+1 and
of the return on the consumption claim rc,t+1 − Etrc,t+1 respectively (see
the Online Appendix). In row three, the �rst term ϕlevγγcκ1η1σ

2
t is due to

CRRA preferences. The second term ϕlev(1−θ)κ21η21σ2
t arises due to Epstein-

Zin preferences (θ ̸= 1), and raises the equity premium (even in the absence
of stochastic volatility with constant variances). The last term, ϕlev(1 −
θ)κ21η

2
2σ

2
w appears due to stochastic volatility.

To understand the key role of patent obsolescence ϕ in macro-�nance we
contrast it with the discount rate wedge η. The macro literature considers
ϕ and η to be very similar tools keeping the discount rate high and the

6We could have alternatively introduced a multiplicative constant leverage term for
expected consumption growth in the log-linear approximation of the return in equation
(8), as in Bansal et al. (2010).
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growth rate low. Next, we show that patent obsolescence is more e�ective in
matching a low growth rate and risk-free rate.

On the top panel of Figure 3, we assess the sensitivity of the price-
consumption ratio η1, the unconditional risk-free rate and the equity pre-
mium to the choice of either the patent obsolescence rate, ϕ or the discount
rate wedge η. Figure 3 suggests that all three measures are much more sen-
sitive to the choice of ϕ relative to η. Technically, ϕ reduces the growth rate
and the positively-related risk-free rate directly through equation (1)�see
also the mid-panel of Figure 3. With η, the risk-free rate and the growth
rate are only indirectly-related by discounting the pro�ts in equation (3).

In general, a positive choice of ϕ leads to higher precautionary savings
through increased η1, and helps to �t a low risk-free rate and a high eq-
uity premium. Positive patent obsolescence makes low-growth episodes more
persistent, i.e. it increases the trend component of consumption γg (see the
top panel of Figure 2) and magni�es long-run risks. In sum, we �nd that
the patent obsolescence channel is essential for jointly matching risk-free
rate and risk-premia.7 The bottom panel shows the sensitivity of the price-
consumption ratio, the risk-free rate and the equity premium to the R&D
spending-to-GDP ratio 1− sc. Higher investment spending raises the growth
rate, the risk-free rate and the price-consumption ratio through the trend
component (see also Figure 2). Whereas higher investment spending lowers
the equity premium as the cyclical component of the equity premium (see
part on Figure 3) shrinks more than the rise in the trend component (see
Epstein-Zin part on Figure 3). Below we show that this prediction of the
loglinear-lognormal model is reversed in the non-linearly solved model (see
section 5), where investment spending entails risk correction so economies
with higher R&D spending-to-GDP ratio exhibit higher equity premia at the
stochastic steady-state.

5 Results

In this section, we calculate macroeconomic and �nancial moments based
on the loglinear-lognormal model solution. For robustness, we also include

7The Online Appendix further shows that risk-premia increase with the IES and the
markup. This tells us that the direct positive in�uence of a higher IES on η1 (see IES=1/ψ
in the nominator of equation (12)) is stronger than the negative indirect in�uence that
the IES has on consumption growth (see Figure 2).
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a numerical solution of the model with third-order perturbation, which the
computational literature (see e.g. Caldara et al. (2012)) �nds to be highly
accurate. We consider third-order perturbation for two reasons. First, the
loglinearly-solved macroeconomic model did not include Epstein-Zin curva-
ture to facilitate the closed-form solution (except the asset pricing part, which
is solved with the assumption of lognormality). Second, Pohl et al. (2018)
has shown inaccuracies of the solution when the Campbell-Shiller loglinear
approximation is used for the return on the consumption claim.

In Table 2 we report moments of the R&D spending-to-GDP ratio, con-
sumption growth, risk-free rate, equity premia, and price-consumption ratio.
We report US empirical moments for the so-called long-sample, including pre-
WWII data (1929-2017), as well as the short-sample, excluding pre-WWII
data (in our case 1953-2017). The starting date of the short sample follows
from the availability of the R&D investment spending data for the US. The
long-sample implies a higher standard deviation of consumption growth and
lower standard deviation of the risk-free rate. In the absence of physical cap-
ital our model better matches moments of the long-sample similar to Bansal
et al. (2010).

Insert Table 2 here.

We also report simulated moments from the benchmark models solved
in two ways: loglinear-lognormal (see columns LL) and fully non-linear with
third-order perturbation (see columns NL). In addition, we consider models
including stochastic volatility (see columns titled LL+SV and NL+SV). In
columns 1-4, the deterministic steady state is the same across models and
solution methods.

In line with KS we assess how the model matches business cycle and
low frequencies of the US data. For the standard deviations of consumption
growth, risk-free rate, equity return and price-consumption ratio, we report
both business cycle (cycles between 6 and 32 quarters, denoted as (bc)) and
growth cycle (cycles between 100 and 200 quarters as de�ned in KS, denoted
as (gc)) frequencies. We have chosen the standard deviation of the technology
shock such that it closely matches the standard deviation of consumption
growth at the business cycle frequency over 1929-2017.

The third-order perturbation solution NL includes higher-order terms
implying positive risk-correction. Hence, the NL solution better matches
the standard deviation of the return on equity. Due to the positive risk-
correction, the unconditional mean of the R&D spending-to-GDP ratio as
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well as the unconditional mean of consumption growth in the stochastic
steady-state is somewhat in excess of the empirical moments. The discrep-
ancy between the moments at the stochastic (also called the ergodic mean
of the distribution) and the deterministic steady-state can be traced back
to the non-linearities of the model, which are re�ected by the third-order
perturbation solution.

Adding time-varying and stochastic volatility to the models (see column
titles including SV) improves the �t of the model to �nancial data moments.
In particular, stochastic volatility raises standard deviation of the return on
equity as it implies more uncertainty in growth prospects. Higher uncertainty
due to stochastic volatility implies a rise in precautionary savings, which
pushes the risk-free rate below the value of the benchmark model in the
case of the LL solution8). The model with stochastic volatility o�ers more
reasonable prediction for the standard deviation of equity in the setting with
LL solution (about sixteen in the model versus nineteen in the data) relative
to the NL solution, which overshoots the empirical value (thirty-�ve versus
nineteen). Notably, the model with SV can capture the full variation in the
price-consumption ratio (including all frequencies).

In the last column entitled NL1, we also consider a robustness check where
we set the discount factor such that the model exactly matches E[s/y] at the
stochastic steady-state. In this scenario the mean and standard deviation of
the equity premium calculated from simulated data signi�cantly falls short
of the empirical moments. The comparision of column 2 and 5 reveals that
a 0.13 percentage point increase in the R&D spending-to-GDP ratio raises
consumption growth by 0.71 percentage points and quadruples the mean
of the equity premia (from 31 to 130 basis points). Hence, economies with
more R&D activity require higher excess returns for the risks associated with
investment projects.

8This is not true for the NL and NL+SV cases due to the positive risk-correction
induced by the third-order solution. In the absence of further frictions such production
capital with adjustment costs, the tight positive comovement between the growth rate
and the risk-free rate in the stochastic steady-state dominates the negative in�uence of
the precautionary savings e�ect on the risk-free rate.
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6 Conclusion

We show approximate closed-form solution for asset prices in a simpli�ed
endogenous growth model. Our closed-form solution method makes it clear
that asset prices rise when the positive trend component dominates the neg-
ative cyclical component. We point to the importance of patent obsolescence
in keeping the growth rate and risk-free rate low. A solution of the model
with third-order perturbation, and the extension with stochastic volatility
helps better explain some key �nancial moments such as the volatility of
the price-consumption ratio as well as the mean and variance of the equity
premium.
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Table 1: Benchmark Calibration
γ 10 χ 1.4181 ζ 0.83 α 0.1627 ρ 0.992 ϕlev 1.67
ψ 1.85 β 0.9955 κ1 0.995 ϕ 0.0375 σ 0.0064 ξ 1.20

Notes: we parameterise the persistence of the shock ρ, the curvature of innovation tech-
nology ζ, the patent obsolescence ϕ, the risk-aversion γ, the elasticity of intertemporal
substitution ψ, the gross markup ξ, and the linearisation constant κ1 in the Campbell-
Shiller equation, and the leveraging factor ϕlev based on previous estimates. The discount
factor β, the share of intermediate inputs in production, α the level parameter of the
innovation technology χ, and the size of the shock σ are chosen to target the following
four moments: the mean and standard deviation of consumption growth rate, 1.82 and
1.34 percent per annum respectively, at the business cycle frequency of US data 1929-2017;
the R&D spending-to-GDP ratio of 2.46 percent (data is only available from 1953); and
the risk-free rate of 2.40 percent per annum. We also consider an extension of the bench-
mark model with stochastic volatility. The AR(1) and the shock-size parameters of the
time-varying volatility process are given by v1 = 0.995, and σw = 0.0008%, respectively.

Figure 1: Research and Development (R&D) spending (total and main com-
ponents) as a share of US Gross Domestic Product (GDP).
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Figure 2: the sensitivity of the cyclical and trend components of consump-
tion growth to the parameters of the model, the growth rate, and the R&D
spending�to�GDP ratio.
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Notes: circles denote the benchmark parametrisation in Table 1. The horizontal black line marks the zero
on the vertical axis. The cyclical and trend components of expected consumption growth as a function
of the technology shock are given by −(1− ρ)γc and γg respectively. Parameters include the persistence
of the shock ρ, the curvature of innovation technology ζ, the patent obsolescence ϕ, the growth rate g,
the elasticity of intertemporal substitution ψ, the gross markup ξ, and the R&D spending-to-GDP ratio
1− sc.
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Figure 3: the sensitivity of the price-consumption ratio, the risk-free rate,
and the equity premium to the parameters, the calibrated growth rate, and
the R&D spending-to-GDP ratio (based on the loglinear-lognormal solution
in the absence of stochastic volatility)
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Notes: circles denote the benchmark parametrisation in Table 1. The horizontal black line (middle left)
marks the zero on the vertical axis. Parameters include the patent obsolescence ϕ, the discount rate
wedge η, the persistence of the shock ρ, the growth rate g, and the R&D spending-to-GDP ratio 1 − sc.
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Table 2: Empirical and Simulated Moments

US data US data LL LL+SV NL NL+SV NL1
1929-2017 1953-2017 (1) (2) (3) (4) (5)

E[s/y] 2.46* 2.46 2.46 2.46 2.59 2.66 2.46
E[∆ctotal] 1.82 1.92 1.82 1.82 2.48 3.05 1.77

AC1(∆ctotal) 0.48 0.46 � � 0.08 0.37 0.05
σ(∆ctotal) 2.10 1.21 0.65 0.65 2.65 4.09 2.63

σ(∆ctotal)(bc) 1.34 0.85 � � 1.34 1.67 1.35
σ(∆ctotal)(gc) 0.81 0.25 � � 0.32 0.66 0.30

E[rf ] 0.32 0.86 1.72 1.38 2.45 2.57 2.40
σ(rf ) 2.78 1.62 0.35 0.41 1.02 1.52 0.98

σ(rf )(bc) 1.54 0.69 � � 0.13 0.19 0.12
σ(rf )(gc) 1.30 0.53 � � 0.23 0.32 0.23

ϕlevE[rc − rf ] 5.81 5.93 1.02 2.22 1.30 1.43 0.31
σ(rc) 19.49 17.36 5.37 6.55 15.16 35.19 5.54

σ(rc)(bc) 17.03 15.86 � � 5.19 11.26 2.75
σ(rc)(gc) 4.74 4.86 � � 4.18 5.16 4.10
E[pc] 3.41 3.57 � � 6.30 6.43 6.21
σ(pc) 0.46 0.39 0.06 0.10 0.14 0.53 0.06

σ(pc)(bc) 0.14 0.11 � � 0.02 0.06 0.01
σ(pc)(gc) 0.20 0.21 � � 0.04 0.11 0.02
AC1(pc) 0.87 0.87 � � 0.99 0.99 0.99

Notes: E[.], σ(.), AC1(.) means unconditional mean, standard deviation, and �rst-order
autocorrelation. Variables reported are the following: the R&D spending-to-GDP ratio
s/y, the consumption growth including both cyclical and trend components ∆ctotal, the
risk-free rate rf , the return on the consumption claim rc, and the price-consumption ratio
pc. *US data for s/y is only available from 1953. In the title of the columns, LL refers
to the model solved with loglinear-lognormal (LL) assumption. LL+SV is the model with
stochastic volatility (SV) solved in the LL-way. NL is the model solved non-linearly solved
with third-order perturbation simulated 100 times for 10000 periods. The column entitled
NL+SV refers to the model with stochastic volatility solved in the NL-way. In each of the
NL solutions, we assume that the stochastic discount factor in the macroeconomic part of
the model contains Epstein-Zin curvature (see equation (3)) . The deterministic steady-
state is the same across columns (1)-(4). For NL1 in column (5), we set β = 0.99615 to
achieve E[s/y] = 2.46. For the standard deviations, we also report the statistics for the
business cycle frequency, (bc) for cycles between 6-32 quarters and, for the growth cycle
window, (gc), the cycles between 100-200 quarters. We isolate these frequencies using
the band-pass �lter of Christiano and Fitzgerald (2003). In the data, the levered return
on the consumption claim ϕlevE[rc − rf ] corresponds to the excess return on dividends.
We use CRSP data to calculate the annualised return on dividend. Risk-free rate refers
to the estimated annualised real return on 3-month US Treasury Bills (see more in the
Online Appendix). Dividends are calculated as the di�erence between the cum-dividend
and ex-dividend returns. The price-consumption ratio is captured by the price-dividend
ratio in the data.
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