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Cluster sampling

» Non i.i.d. dataset

— independent between different clusters
— allow dependence within the same cluster

» Cluster structure is common in economics
— school, family, hospital, firm, industry, region,...

G
» Researcher knows cluster g = 1,...,G and observes {{(Yg],Xg])}J 1} )

each observation can be grouped into one cluster
— ng: cluster size of g-th cluster

n= Zf 1 Mg: observations in total
— (Yy5, Xg5) L (Ygre, Xgr0) but (Yyj, Xg;) & (Yye, Xge) in general
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Contribution

1. Derive asymptotic properties of nonparametric regression under cluster sampling

— We allow and
2. Can cover both individual and
3. Propose bandwidth selection methods
4. Verify variance estimator

- cluster causes dependence even in local neighborhood

» Potential applications

— Semiparametric regression
— Nonparametric auction estimation
— Regression discontinuity design
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Related literature

» Cluster sampling in econometrics

— C. B. Hansen (2007): parametric regression with homogeneous cluster sizes
— Djogbenou, MacKinnon, and Nielsen (2019); B. E. Hansen and S. Lee (2019):
heterogeneous cluster sizes

» Nonparametric regression under cluster dependence
— limited, even with homogeneous cluster sizes
— Lin and Carroll (2000); Wang (2003); Bhattacharya (2005); P. Hu, Peng, and X. Hu
(2024)
» Nonparametric regressions with other dependence

— Robinson (1983), B. E. Hansen (2008), Vogt (2012): time series dependence
— Robinson (2011), J. Lee and Robinson (2016): spatial dependence
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Data generating process

(1)

A T
» Outcome: Yy; € R, Regressor: X ; = (X;}nd)T,Xéds)T) € R = Rdind x Rdeis
» DGP:
Yg; = m(Xgj) + egjs
Eleg; | Xg] = E[egj | Xg5] =0,
[9]|X] [91|X91]—‘72(ng)7
(ind ind cls
E[egjeqe | Xg] [egyeyi | X )ngse );ng l )}
a( md md ,X(ds)> for j # 4.
where
Xy = (Xgl, o ,Xgng)
» Goal: estimate E[Y,; | X,] = m (Xg;)
» This setup allows and

» Assume that dj,qg > 1

1 ser® Assume that X; have identical marginal distribution with the density f(X|,

i)



Nadaraya-Watson estimator

» NW estimator is

S5 K (K5 vy
S K (Kr)

Mnw (T) =

where
— h > 0 is bandwidth
— K :R%— Ris a product kernel function K (X) = [¢_, k (X(@)
— k:R — R is a univariate kernel function satisfying

— boundedness

- symmetry

- f°° du =1 (normalization)

-/ (w)du = kg < o0 and [ utk(u)du < oo

1. Setup



Local linear estimator

» LL estimator is

G ng
ZZKLL 9> %) Ygj
g=1j=1
where
-1 1
K (u,z) = e] (XTW X ) { e }Kh(u—a:),
1
0 1 (X1,1 — l‘)T Kh (X171 — :L')
e = . 7XI = 7Wz =
6 1 (Xc,nc —x)T 0]

and Kj, (-) = = K (7)
» 1 (z) is also the minimizer 3y for the localized squared error

G ng
g)ugizz < >(ng—5o—51T(

1. Setup

(3)

o

Kh (XGan — 1‘)

Xgj — 37))2
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Main assumptions

Assumption

1. nh? = oo

2. h? — 0 and (maxy<g n,) hdnd = O(1)

3. [Smoothness conditions]: there exists some neighborhood N of
T = (x(ind)T,x(dS)T)T such that

— m(x) and f(z) are twice continuously differentiable
- is continuously differentiable

— densities for and
, 02(x), and are
continuous

4. f(x) > 0 and (only for LL) K has a compact support

» Remark: Condition 2 is stronger than h% — 0

5 Asymptotm lﬂggrky Condition 1 and 2 implies (max,<gng) /n — 0 and G — oo



Asymptotic bias
> Let ko = ffo

[e.o]

u?k(uw)du

Theorem

As nhd — 0o, (maxy<g ng) hdnd = O(1),

A 1
E [ifuw(z) | X1, -, Xg] = m(z) + h* Buw(2) + 0p (h%) + Op ( nhd—2> ’

where Buy(z) = kg Y0_ (3mgq(7) + f(2) 72 fo(x)mg(x)). Also,
E[rs(z) | X1, , Xa] = m(z) + h*Bii(z) + o, (h?)

where By (z) = 3k 22:1 Mgq().

> Rew]ark: bias is same as the i.i.d. case, but require generalized conditions
2. Asymptotic

eory



Asymptotic variance
> 1 (x) € {mhnw (), mrL(z)}
Theorem

As nhd — 0o, (maxy<g ng) hdnd = O(1), and < S ) hdind — X € [0, 00),

g=1"g

Var [ (z) | X1, , Xq]

R(ki;O'Q(IE) N )\]—l)(/(l f ( (ind) l(in(l);l,(('ls)) o (1/,(111(1)_’ J,(111<{); ;IT((:IS’)) N 1
f(x)nhd f(x)2nhd P\ nhd

where

Ry = /oo k (u)? du.

— 00

» Remark: variance has an additional term due to cluster dependence

2. Asymptotic Theory



Consistency and asymptotic normality
Theorem
For m(z) € {1hnw(z), miL(x)}
> 1 (z) B m(x)
» Under additional assumptions,

Vnhd (i (z) — m(z) — h*B.(z))

d R%Oj(ﬂf) . /\]?Z/( ‘\‘f ('I.(1J14l) ) "I,(iwl\): ,’l‘(‘(l‘q)) & (,1‘(’1“([\). ',l,('iud): v1,(<'J§)> )
2

— N<O,

f() f(x)

i <% ¢ nﬁ) hdima 5 X € [0, 00)

g=1

» Remark: bias h?B, () exists
— vanishes if undersmoothing nh9t* = o(1) holds
» Remark: additional term exists

_ ; ; dina —
2. Asymptotic Th\é%pylshes if (maxg<ang)h o(1) holds



Uniform convergence

Theorem

» Suppose that
— ¢, Is a growing sequence satisfying the condition

2/d a
. 1
¢, =0 ((rgngaé( ng> (logn) ) ,

(maxg<c ng)2 logn
-/ pd

and for some s > 2,

=0(1)

— smoothness conditions hold uniformly
— some regularity conditions
» Then,

S i (1) = @) = 0, (1)

(6)
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Cluster-Robust variance estimation

» CR-variance estimator

R ], . 1s . , . .
Rzoﬁw (ZL') )\]’)f Is / ( (ind Hml):‘l‘((l )) Fnw (f,,(md)”,(

where 62, (x) and 6y (z(ind),x(ind); l’(ds)) are estimated using
égj = ng — Mnw (ng)
» We can construct Cl form this after normalization
- 95% Cl for m(z) + h?Baw(z) is

() L96 X VV (I)+1.96X\/‘7
nw \/W i nw nhd

2. Asymptotic Theory
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Data generating process

» Number of clusters: G = 100
» Cluster sizes
-ng=20forg=1,...,G—-1
~ ne € {20,100}
- (maxg<gng) /n ~ {0.02,0.09}
» Generated 500 datasets from Setup 1 or 2
» Setup 1 (homoskedastic errors):

Yy = sin (2Xy;) + 2exp (—16X7;) + 0.5eg;,

or
Setup 2 (heteroskedastic errors):

Yy = Xg4jsin (27‘1’ng) +o (ng) €gj>

24 cos (27X ,;)

» where Xg; = /0, (X1), + V1 — 1. (X2),; and eg; = /g + V1 — poug,

= (X1), ~N(0,1), (X2),; ~ N (0,1), ¢y ~ N (0,1), and ug; ~ N (0,1)
independently

3. Simulation
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Simulation setup

» Given true bias
» Compare three 95% Cls

1. [CI] ignore in variance
2. ] | ignore in variance, but use jackknife estimator for o2 (z)
3. [C'],] estimate in variance, and use jackknife estimator for o2 (z)

» Evaluated by coverage
» Use analytical bias correction

» Bandwidth is selected in cluster-robust way

3. Simulation



Coverage and average length of 95% ClI for each standard error
(muw, Setup 1, z = 0.75)

max ng = 20 max ng = 100

CI Clcr ClI, CI Clcr ClI,

(px,pe)=(0.2,0.2)  0.925 0.931 0.954 0.915 0.920 0.952
{0.192} {0.195} {0.217} {0.189} {0.192} {0.217}

(px,pe)=(0.2,0.5) 0.879 0.886 0.960 0.861 0.869 0.951
{0.192} {0.195} {0.246} {0.188} {0.192} {0.250}

(px,pe)=(0.5,0.2)  0.920 0.925 0.956 0.906 0.908 0.954
{0.191} {0.194} {0.227} {0.188} {0.191} {0.228}

(px,pe)=(0.5,0.5)  0.857 0.867 0.964 0.833 0.844 0.957
{0.191} {0.195} {0.261} {0.188} {0.191} {0.267}
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Coverage and average length of 95% ClI for each standard error
(muy, Setup 2, z =0.8)

max ng = 20 max ng = 100

CI Clcr ClI, CI Clcr ClI,

(px,pe)=(0.2,0.2)  0.893 0.897 0.931 0.882 0.886 0.923
{0.167} {0.170} {0.187} {0.165} {0.168} {0.187}

(px,pe)=(0.2,0.5) 0.844 0.850 0.918 0.831 0.836 0.924
{0.167} {0.171} {0.209} {0.164} {0.168} {0.211}

(px,pe)=(0.5,0.2)  0.903 0.909 0.936 0.878 0.884 0.927
{0.166} {0.170} {0.191} {0.164} {0.167} {0.192}

(px,pe)=(0.5,0.5)  0.826 0.837 0.932 0.806 0.816 0.924
{0.166} {0.170} {0.218} {0.164} {0.167} {0.223}
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Other results covered in the paper

» Bandwidth selection
» Simulation for bandwidth selection
» Empirical illustration

3. Simulation



Conclusion and future work

Conclusion
» We allow
» The theory can cover

» Derive asymptotic properties of nonparametric regression under cluster sampling
— key condition (maxy<g n,)h%nd = O(1)

» We propose variance estimator and bandwidth selection
Future work (open questions)

» Boundary analysis

» Local polynomial regressions and series regressions

» Cluster bootstrap inference

» Uniform inference

3. Simulation



Thank youl!

Email: yuya.shimizu [at] wisc.edu

Homepage: https://yshimizu-econ.github.io/
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Assumptions for asymptotic normality

Assumption

1. There exists some r > 2 such that
1.1 forany T = (':E(ind)—r,f(ds)—r)—r EN,E[lel*r | X =7] <% < oo,

G r\1/7
1.2 for some constant C > 0, (_:T;# < C < oo,

1.3 and W = O(l)
2. We also assume nh?*t* = O(1),

R,‘if(m)a%x) + )\chlsfz (aj(ind)7 I(ind);$(cls)> . <l_(ind), x(ind); l,(cls)) >0,

4
n
and maxg<g - — 0 as n — oo.

Appendix



Assumptions for uniform convergence

Assumption

For some s > 2,

E|Y:|® < B1 < oo,
and
supE[|V;|° | Xi = 2] f () < B2 < co.
We also assume that 5
(maxg<gng) logn o) (
nl—(2/s)pd B 2

6 = infiaj<c, F(@) > 0, and 8" ((252)"* + h2) = o(1).

nhd

(9)
(10)

Assumption

For some 0 < L < oo, K has compact support, that is, K(u) = 0 for ||u|| > L. Furthermore, K is
Lipschitz, i.e., for some A < oo and for all u,u’ € R, |K(u) — K (v')| < Aflu— /|

Appendix




Sketch of proof for uniform convergence

1. Divide —3 Zg n Z ( i z) Yy; into the tail |Yy;| > 7,, and the other part

2. The ta|| can be bounded by inequalities
3. Control the other part by the following lemma

Lemma (Bernstein's inequality for cluster sampling)

G
For random variables under cluster sampling {{ng}?i 1} . with bounded ranges
g:

[—B, B] and zero means,

1 g
% Yo| >e| <2
H 1] e exp{ 2v+(maxg<gng)B€/3}

for every ¢ > 0 and v > Var (171 4t }7@) where Yg = an Yy

Appendix



Optimal bandwidth

» Minimizes asymptotic integrated MSE (IMSE) with some weight w(x)

d =2
Rjo
nhd

IMSE(h) = h'B + +

where

B —/ Bow ()% f (x)w(z)dx and > —/ o (x)w(x)dx
Rd R4
» When (max,<g ng)n~%ma/(@+4) — 0, optimal bandwidth is standard

_9 1/(d+4)
ho = (dRKf’ ) =1/ (@) (12)
4B

> ho does not satisfy (max,<g ng) h%nd = O(1)

— recommend using Cross-Validation in this case
Appendix
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Cross-Validation

Issue for standard leave-one-out cross-validation: dependence within clusters
Leave-one-cluster-out cross-validation is

Ng

"(h) —722(,” h)* w Xgi), (13)

g=1 j=1

where ey; (h) = Yy — m_g (Xgj, k) and m_g (x, h) is estimated without cluster g
We show that
E[CV(h)] =72 + IMSEg_1(h)

where
and

G n )
IMSEg_1(h) = —JE_, {m(z) —m_g (z,h)}" f(z)w(z)dz
=37 | (@)

We can choose /icp rot = arg min CV(h)



Rule of thumb

» For i.i.d. data, easy to implement method is proposed by Fan and Gijbels (1996)

o\ 1/(d+4)
hror = <dRKU > p1/(d4)

4B

where B and 52 are computed

— by the 4th order global polynomial regression
— under homoskedastic standard error assumption

» For cluster sampling, we propose
— replace B and 52 by

Appendix



Simulation: bandwidth choice

» Compare four methods of bandwidth choice:
1. [ROT] rule of thumb by Fan and Gijbels (1996)

2. ] ] cluster robust rule of thumb
3. [CV] leave-one-out cross-validation
4. [ ] leave-one-cluster-out cross-validation

» Evaluated by the average squared error (ASE):

1 Ngrid X
ASE(h) = —— >~ {ritnw (g, h) — m (ug)} |
Ngrid =1
where the grid points {ul, e Ungg } are evenly distributed

— We set ngpiqg = 50
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Appendix

Baseline data generating process
Number of clusters: G = 100

Cluster sizes

-ng=20forg=1,...,G—-1

- ng € {20,100}

- (maxg<gng) /n ~ {0.02,0.09}
Generated 500 datasets from Setup 1 or 2
Setup 1 (homoskedastic errors):

Yy = sin (2Xy;) + 2exp (—16X7;) + 0.5eg;,

or

Setup 2 (heteroskedastic errors):
Yyj = Xgjsin (27Xy;) + 0 (Xg5) €g;,

2+ cos (21X g5)

G(ng) = 5( )

where Xg; = /0. (X1), + V1 — . (X2),; and egj = \/pocg + V1 — poug;

— (X1), ~ N (0,1), (X2),; ~ N (0,1), ¢g ~ N (0,1), and ug; ~ N (0,1)

independently



Mean of ASE(h) for m,, in Setup 1 with max,<¢n, =100 and
PX = Pe = 0.5

©
3
S | ) —— Mean of hgor =0.0288
I 1 - = Mean of hcr-ror =0.0295
I H - -+ Mean of hey =0.0471
s | ! - = - Mean of hegcy =0.0473
o | i
o 1 -
! !
N ! !
—~ 3 - | i
< s ! )
3 ; :
< I !
— o | H
o — 1
c 2 7 | :
© o | i
L7} .
= | 1
© ! H
(=} I !
O_ ] B
=] | !
! )
g ) !
3 | hin = 0.0524
3 ; arghnin
1
"

0.02 0.04 0.06 0.08
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Mean of ASE(h) for m,, in Setup 2 with max,<¢n, =100 and
PX = Pe = 0.5

[}
=}
S 2 —— Mean of hror =0.0886
o 1 — — Mean of heg-ror = 0.0866
- - -+ Mean of hcy =0.0467
© " - = - Mean of hcr-cy =0.047
=} b
S ]
o ; |
. 1
5 ! '
~ & 1 !
s o . |
3 : |
< © 1 [
s 8 4 1 X
3 ! |
= o 1 !
=} -' 1
S N 1
=} 1 1
M 1
5 ) .
S 1 1
e argmin ¥ 0.0476 !
N \
1
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Coverage and average length of 95% ClI for each standard error
(muy, Setup 1, x = 0.75, with bias)

max ng = 20 max ng = 100

CI Clcr ClI, CI Clcr ClI,

(px,pe)=(0.2,0.2)  0.918 0.925 0.953 0.907 0.914 0.948
{0.192} {0.195} {0.217} {0.189} {0.192} {0.217}

(px,pe)=(0.2,0.5)  0.880 0.888 0.956 0.861 0.868 0.949
{0.192} {0.195} {0.246} {0.188} {0.192} {0.250}

(px,pe)=(0.5,0.2)  0.916 0.921 0.956 0.906 0.910 0.951
{0.191} {0.194} {0.227} {0.188} {0.191} {0.228}

(px,pe)=(0.5,0.5)  0.859 0.865 0.960 0.837 0.845 0.955
{0.191} {0.195} {0.261} {0.188} {0.191} {0.267}
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Coverage and average length of 95% ClI for each standard error
(muw, Setup 2, z = 0.8, with bias)

max ng = 20 max ng = 100

CI Clcr ClI, CI Clcr CIy

(px,pe)=(0.2,0.2) 0.772 0.783 0.821 0.782 0.791 0.840
{0.167} {0.170} {0.187} {0.165} {0.168} {0.187}

(px,pe)=(0.2,0.5)  0.737 0.745 0.842 0.734 0.743 0.852
{0.167} {0.171} {0.209} {0.164} {0.168} {0.211}

(px,pe)=(0.5,0.2)  0.748 0.756 0.819 0.752 0.758 0.829
{0.166} {0.170} {0.191} {0.164} {0.167} {0.192}

(px,pe)=(0.5,0.5) 0.701 0.714 0.846 0.707 0.718 0.853
{0.166} {0.170} {0.218} {0.164} {0.167} {0.223}
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Empirical illustration

» Poverty targeting dataset from Alatas et al. (2012)

» Human errors could happen during poverty ranking process in villages

» Alatas et al. (2012) investigated this concern by running a nonparametric
regression
— the mistarget rate (Y,;) on the order in the ranking process (X;)

» n = 3784 observations, G = 431 villages, and each village has n, € [4,9]
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Cluster-robust cross-validation function CV(h)
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Local linear estimation and 95% Cls on Alatas et al. (2012)’s
dataset

Mistargeting rate
0.34
!

0.28
|

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Order in ranking process
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