Nonparametric Regression under Cluster Sampling

Yuya Shimizu

University of Wisconsin-Madison

EEA-ESEM August, 2024

Cluster sampling

Non i.i.d. dataset

- independent between different clusters
- allow dependence within the same cluster
- Cluster structure is common in economics
 - school, family, hospital, firm, industry, region,...
- Researcher knows cluster $g = 1, \ldots, G$ and observes $\left\{ \{(Y_{gj}, X_{gj})\}_{j=1}^{n_g} \right\}_{q=1}^G$
 - each observation can be grouped into one cluster
 - n_g : cluster size of g-th cluster
 - $n = \sum_{g=1}^{G} n_g$: observations in total
 - $(Y_{gj}, X_{gj}) \perp (Y_{g'\ell}, X_{g'\ell})$ but $(Y_{gj}, X_{gj}) \not\perp (Y_{g\ell}, X_{g\ell})$ in general

Introduction

Contribution

- 1. Derive asymptotic properties of nonparametric regression under cluster sampling
 - We allow unbounded and heterogeneous cluster sizes n_g
- 2. Can cover both individual and cluster-level regressors
- 3. Propose cluster-robust bandwidth selection methods
- 4. Verify cluster-robust variance estimator
 - Unbounded cluster causes dependence even in local neighborhood
- Potential applications
 - Semiparametric regression
 - Nonparametric auction estimation
 - Regression discontinuity design

Related literature

Cluster sampling in econometrics

- C. B. Hansen (2007): parametric regression with homogeneous cluster sizes
- Djogbenou, MacKinnon, and Nielsen (2019); B. E. Hansen and S. Lee (2019): heterogeneous cluster sizes
- ▶ Nonparametric regression under cluster dependence
 - limited, even with homogeneous cluster sizes
 - Lin and Carroll (2000); Wang (2003); Bhattacharya (2005); P. Hu, Peng, and X. Hu (2024)
- ▶ Nonparametric regressions with other dependence
 - Robinson (1983), B. E. Hansen (2008), Vogt (2012): time series dependence
 - Robinson (2011), J. Lee and Robinson (2016): spatial dependence

Introduction

Outline

1. Setup

2. Asymptotic Theory

3. Simulation

Introduction

Outline

1. Setup

2. Asymptotic Theory

3. Simulation

Data generating process

▶ Outcome: $Y_{gj} \in \mathbb{R}$, Regressor: $X_{gj} = \left(X_{gj}^{(\mathrm{ind})\top}, X_g^{(\mathrm{cls})\top}\right)^{\top} \in \mathbb{R}^d = \mathbb{R}^{d_{\mathrm{ind}}} \times \mathbb{R}^{d_{\mathrm{cls}}}$ ▶ DGP:

$$Y_{gj} = m (X_{gj}) + e_{gj}, \qquad (1)$$
$$\mathbb{E} [e_{gj} \mid \mathbf{X}_g] = \mathbb{E} [e_{gj} \mid X_{gj}] = 0, \\\mathbb{E} [e_{gj}^2 \mid \mathbf{X}_g] = \mathbb{E} [e_{gj}^2 \mid X_{gj}] = \sigma^2 (X_{gj}), \\\mathbb{E} [e_{gj}e_{g\ell} \mid \mathbf{X}_g] = \mathbb{E} \left[e_{gj}e_{g\ell} \mid X_{gj}^{(\mathrm{ind})}, X_{g\ell}^{(\mathrm{ind})}; X_g^{(\mathrm{cls})} \right] \\= \sigma \left(X_{gj}^{(\mathrm{ind})}, X_{g\ell}^{(\mathrm{ind})}; X_g^{(\mathrm{cls})} \right) \text{ for } j \neq \ell.$$

where

$$\mathbf{X}_g = \left(X_{g1}, \dots, X_{gn_g} \right)$$

► Goal: estimate $\mathbb{E}[Y_{gj} \mid \mathbf{X}_g] = m(X_{gj})$

This setup allows cluster random effects and cluster-level regressors

▶ Assume that $d_{ind} \ge 1$

1. Setup Assume that X_{gj} have identical marginal distribution with the density $f(X_{gj})$

Nadaraya-Watson estimator

NW estimator is

$$\hat{m}_{\mathsf{nw}}\left(x\right) = \frac{\sum_{g=1}^{G} \sum_{j=1}^{n_g} K\left(\frac{X_{gj}-x}{h}\right) Y_{gj}}{\sum_{g=1}^{G} \sum_{j=1}^{n_g} K\left(\frac{X_{gj}-x}{h}\right)},$$

where

- h > 0 is bandwidth
- $K: \mathbb{R}^d \to \mathbb{R}$ is a product kernel function $K(X) = \prod_{q=1}^d k\left(X^{(q)}\right)$
- $-\ k:\mathbb{R}\rightarrow\mathbb{R}$ is a univariate kernel function satisfying
 - boundedness
 - symmetry

$$\begin{array}{l} - \ \int_{-\infty}^{\infty} k(u) \mathrm{d}u = 1 \ \text{(normalization)} \\ - \ \int_{-\infty}^{\infty} u^2 k(u) \mathrm{d}u \equiv \kappa_2 < \infty \ \text{and} \ \int_{-\infty}^{\infty} u^4 k(u) \mathrm{d}u < \infty \end{array}$$

(2)

Local linear estimator

$$\hat{m}_{\mathsf{LL}}(x) = \sum_{g=1}^{G} \sum_{j=1}^{n_g} K_{\mathsf{LL}}(X_{gj}, x) Y_{gj},$$
(3)

where

$$K_{\mathsf{LL}}(u, x) = \mathbf{e}_{1}^{\top} \left(\mathbf{X}_{x}^{\top} \mathbf{W}_{x} \mathbf{X}_{x} \right)^{-1} \begin{bmatrix} 1 \\ u - x \end{bmatrix} K_{h}(u - x),$$

$$\mathbf{e}_{1} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \mathbf{X}_{x} = \begin{bmatrix} 1 & (X_{1,1} - x)^{\top} \\ \vdots & \vdots \\ 1 & (X_{G,n_{G}} - x)^{\top} \end{bmatrix}, \mathbf{W}_{x} = \begin{bmatrix} K_{h}(X_{1,1} - x) & O \\ & \ddots & \\ O & & K_{h}(X_{G,n_{G}} - x) \end{bmatrix},$$
and $K_{h}(\cdot) = \frac{1}{hd}K\left(\frac{\cdot}{h}\right)$

• $\hat{m}_{LL}(x)$ is also the minimizer β_0 for the localized squared error

$$\min_{\beta_0,\beta_1} \sum_{g=1}^{G} \sum_{j=1}^{n_g} K\left(\frac{X_{gj} - x}{h}\right) \left(Y_{gj} - \beta_0 - \beta_1^\top (X_{gj} - x)\right)^2$$

1. Setup

Outline

1. Setup

2. Asymptotic Theory

3. Simulation

2. Asymptotic Theory

Main assumptions

Assumption

1. $nh^d \rightarrow \infty$

- 2. $h^d \to 0$ and $(\max_{g \leq G} n_g) h^{d_{\text{ind}}} = O(1)$
- 3. [Smoothness conditions]: there exists some neighborhood \mathcal{N} of

 $x = (x^{(\mathrm{ind})\top}, x^{(\mathrm{cls})\top})^{\top}$ such that

- -m(x) and f(x) are twice continuously differentiable
- $f(x^{(\mathrm{ind})},x^{(\mathrm{ind})};x^{(\mathrm{cls})})$ is continuously differentiable
- densities for $\left(X_{gj}^{(\mathrm{ind})},X_{g\ell}^{(\mathrm{ind})},X_{gt}^{(\mathrm{ind})};X_{g}^{(\mathrm{cls})}
 ight)$ and

 $\left(X_{gj}^{(\mathrm{ind})}, X_{g\ell}^{(\mathrm{ind})}, X_{gt}^{(\mathrm{ind})}, X_{gs}^{(\mathrm{ind})}; X_{g}^{(\mathrm{cls})}\right)$, $\sigma^2(x)$, and $\sigma\left(x^{(\mathrm{ind})}, x^{(\mathrm{ind})}; x^{(\mathrm{cls})}\right)$ are continuous

4. f(x) > 0 and (only for LL) K has a compact support

• **Remark:** Condition 2 is stronger than $h^d \rightarrow 0$

Remark: Condition 1 and 2 implies $(\max_{g \leq G} n_g) / n \to 0$ and $G \to \infty$ 2. Asymptotic Theory

Asymptotic bias

• Let
$$\kappa_2 = \int_{-\infty}^{\infty} u^2 k(u) du$$

Theorem

As
$$nh^d o \infty$$
, $\left(\max_{g \leq G} n_g\right) h^{d_{\mathrm{ind}}} = O(1)$,

$$\mathbb{E}\left[\hat{m}_{\rm nw}(x) \mid X_1, \cdots, X_G\right] = m(x) + h^2 B_{\rm nw}(x) + o_p\left(h^2\right) + O_p\left(\sqrt{\frac{1}{nh^{d-2}}}\right),$$

where $B_{\mathrm{nw}}(x) = \kappa_2 \sum_{q=1}^d \left(\frac{1}{2} m_{qq}(x) + f(x)^{-1} f_q(x) m_q(x) \right)$. Also,

$$\mathbb{E}\left[\hat{m}_{\mathrm{LL}}(x) \mid X_1, \cdots, X_G\right] = m(x) + h^2 B_{\mathrm{LL}}(x) + o_p\left(h^2\right),$$

where $B_{LL}(x) = \frac{1}{2}\kappa_2 \sum_{q=1}^{d} m_{qq}(x)$.

2. Asymptotic Theory bias is same as the i.i.d. case, but require generalized conditions

Asymptotic variance

▶
$$\hat{m}_*(x) \in {\hat{m}_{nw}(x), \hat{m}_{LL}(x)}$$

Theorem

As
$$nh^d o \infty$$
, $(\max_{g \le G} n_g) \, h^{d_{\mathrm{ind}}} = O(1)$, and $\left(rac{1}{n} \sum_{g=1}^G n_g^2
ight) h^{d_{\mathrm{ind}}} o \lambda \in [0,\infty)$,

$$\begin{aligned} & \operatorname{Var}\left[\hat{m}_{*}(x) \mid X_{1}, \cdots, X_{G}\right] \\ &= \quad \frac{R_{k}^{d} \sigma^{2}(x)}{f(x) n h^{d}} + \frac{\lambda R_{k}^{d_{\mathrm{cls}}} f\left(x^{(\mathrm{ind})}, x^{(\mathrm{ind})}; x^{(\mathrm{cls})}\right) \sigma\left(x^{(\mathrm{ind})}, x^{(\mathrm{ind})}; x^{(\mathrm{cls})}\right)}{f(x)^{2} n h^{d}} + o_{p}\left(\frac{1}{n h^{d}}\right), \end{aligned}$$

where

$$R_k = \int_{-\infty}^{\infty} k\left(u\right)^2 \mathrm{d}u.$$

Remark: variance has an additional term due to cluster dependence

2. Asymptotic Theory

Consistency and asymptotic normality

Theorem

if

- For $\hat{m}_*(x) \in \{\hat{m}_{nw}(x), \hat{m}_{LL}(x)\}$
 - $\blacktriangleright \hat{m}_*(x) \stackrel{p}{\to} m(x)$
 - Under additional assumptions,

₩ detail

$$\begin{split} & \sqrt{nh^d} \left(\hat{m}_*(x) - m(x) - h^2 B_*(x) \right) \\ & \stackrel{d}{\longrightarrow} \quad \mathrm{N}\left(0, \frac{R_k^d \sigma^2(x)}{f(x)} + \frac{\lambda R_k^{d_{\mathrm{cls}}} f\left(x^{(\mathrm{ind})}, x^{(\mathrm{ind})}; x^{(\mathrm{cls})} \right) \sigma\left(x^{(\mathrm{ind})}, x^{(\mathrm{ind})}; x^{(\mathrm{cls})} \right)}{f(x)^2} \right) \\ & \left(\frac{1}{n} \sum_{g=1}^G n_g^2 \right) h^{d_{\mathrm{ind}}} \to \lambda \in [0, \infty) \end{split}$$

- **Remark:** bias $h^2B_*(x)$ exists
 - vanishes if undersmoothing $nh^{d+4} = o(1)$ holds
- Remark: additional term exists

2. Asymptotic Theory if $(\max_{g \leq G} n_g) h^{d_{\text{ind}}} = o(1)$ holds

Uniform convergence

Theorem

Suppose that

- c_n is a growing sequence satisfying the condition

$$c_n = O\left(\left(\max_{g \le G} n_g\right)^{2/d} \left(\log n\right)^{1/d}\right),\tag{4}$$

and for some
$$s \ge 2$$
,

$$\frac{(\max_{g \le G} n_g)^2 \log n}{n^{1 - (2/s)} h^d} = O(1)$$
(5)

- smoothness conditions hold uniformly
- some regularity conditions

► Then,

$$\sup_{\|x\| \le c_n} \left| \hat{m}_* \left(x \right) - m \left(x \right) \right| = o_p \left(1 \right)$$

(6)

Cluster-Robust variance estimation

CR-variance estimator

$$\hat{V} = \frac{R_k^d \hat{\sigma}_{nw}^2\left(x\right)}{\hat{f}(x)} + \frac{\hat{\lambda} R_k^{d_{cls}} \hat{f}\left(x^{(ind)}, x^{(ind)}; x^{(cls)}\right) \hat{\sigma}_{nw}\left(x^{(ind)}, x^{(ind)}; x^{(cls)}\right)}{\left(\hat{f}(x)\right)^2}$$

where
$$\hat{\sigma}_{nw}^2(x)$$
 and $\hat{\sigma}_{nw}(x^{(ind)}, x^{(ind)}; x^{(cls)})$ are estimated using $\hat{e}_{gj} = Y_{gj} - \hat{m}_{nw}(X_{gj})$

▶ We can construct CI form this after normalization

- 95% CI for
$$m(x) + h^2 B_{nw}(x)$$
 is

$$\left[\hat{m}_{\mathsf{nw}}(x) - \frac{1.96 \times \sqrt{\hat{V}}}{\sqrt{nh^d}}, \hat{m}_{\mathsf{nw}}(x) + \frac{1.96 \times \sqrt{\hat{V}}}{\sqrt{nh^d}}\right]$$

2. Asymptotic Theory

Outline

1. Setup

2. Asymptotic Theory

3. Simulation

3. Simulation

Data generating process

Number of clusters: G = 100
Cluster sizes

n_g = 20 for g = 1,...,G-1
n_G ∈ {20,100}
(max_{g≤G} n_g) /n ≈ {0.02, 0.09}

Generated 500 datasets from Setup 1 or 2
Setup 1 (homoskedastic errors):

$$Y_{gj} = \sin(2X_{gj}) + 2\exp\left(-16X_{gj}^2\right) + 0.5e_{gj},\tag{7}$$

or

Setup 2 (heteroskedastic errors):

$$Y_{gj} = X_{gj} \sin (2\pi X_{gj}) + \sigma (X_{gj}) e_{gj},$$
(8)
$$\sigma (X_{gj}) = \frac{2 + \cos (2\pi X_{gj})}{5},$$

• where $X_{gj} = \sqrt{\rho_x} (X_1)_g + \sqrt{1 - \rho_x} (X_2)_{gj}$ and $e_{gj} = \sqrt{\rho_e} c_g + \sqrt{1 - \rho_e} u_{gj} - (X_1)_g \sim \mathcal{N}(0, 1), (X_2)_{gj} \sim \mathcal{N}(0, 1), c_g \sim \mathcal{N}(0, 1), \text{ and } u_{gj} \sim \mathcal{N}(0, 1)$
independently

3. Simulation

Simulation setup

Given true bias

- ► Compare three 95% Cls
 - 1. [CI] ignore additional term in variance
 - 2. $[CI_{CR}]$ ignore additional term in variance, but use jackknife estimator for $\sigma^{2}(x)$
 - 3. $[CI_{\lambda}]$ estimate additional term in variance, and use jackknife estimator for $\sigma^{2}(x)$
- Evaluated by coverage
- Use analytical bias correction with bias

Coverage and average length of 95% CI for each standard error ($m_{\rm nw}$, Setup 1, x = 0.75)

	$\max n_g = 20$			$\max n_g = 100$			
	CI	CI_{CR}	CI_{λ}	CI	CI_{CR}	CI_{λ}	
$(\rho_X, \rho_e) = (0.2, 0.2)$	0.925	0.931	0.954	0.915	0.920	0.952	
	$\{0.192\}$	$\{0.195\}$	$\{0.217\}$	$\{0.189\}$	$\{0.192\}$	$\{0.217\}$	
$(\rho_X, \rho_e) = (0.2, 0.5)$	0.879	0.886	0.960	0.861	0.869	0.951	
	$\{0.192\}$	$\{0.195\}$	$\{0.246\}$	$\{0.188\}$	$\{0.192\}$	$\{0.250\}$	
$(\rho_X, \rho_e) = (0.5, 0.2)$	0.920	0.925	0.956	0.906	0.908	0.954	
	$\{0.191\}$	$\{0.194\}$	$\{0.227\}$	$\{0.188\}$	$\{0.191\}$	$\{0.228\}$	
$(\rho_X, \rho_e) = (0.5, 0.5)$	0.857	0.867	0.964	0.833	0.844	0.957	
	$\{0.191\}$	$\{0.195\}$	$\{0.261\}$	$\{0.188\}$	$\{0.191\}$	$\{0.267\}$	

Coverage and average length of 95% CI for each standard error (m_{nw} , Setup 2, x = 0.8)

	$\max n_g = 20$			$\max n_g = 100$			
	CI	CI_{CR}	CI_{λ}	CI	CI_{CR}	CI_{λ}	
$(\rho_X, \rho_e) = (0.2, 0.2)$	0.893	0.897	0.931	0.882	0.886	0.923	
	$\{0.167\}$	$\{0.170\}$	$\{0.187\}$	$\{0.165\}$	$\{0.168\}$	$\{0.187\}$	
$(\rho_X, \rho_e) = (0.2, 0.5)$	0.844	0.850	0.918	0.831	0.836	0.924	
	$\{0.167\}$	$\{0.171\}$	$\{0.209\}$	$\{0.164\}$	$\{0.168\}$	$\{0.211\}$	
$(\rho_X, \rho_e) = (0.5, 0.2)$	0.903	0.909	0.936	0.878	0.884	0.927	
	$\{0.166\}$	$\{0.170\}$	$\{0.191\}$	$\{0.164\}$	$\{0.167\}$	$\{0.192\}$	
$(\rho_X, \rho_e) = (0.5, 0.5)$	0.826	0.837	0.932	0.806	0.816	0.924	
	$\{0.166\}$	$\{0.170\}$	$\{0.218\}$	$\{0.164\}$	$\{0.167\}$	$\{0.223\}$	

Other results covered in the paper

- ► Bandwidth selection detail
- ► Simulation for bandwidth selection → detail
- ► Empirical illustration → detail

Conclusion and future work

Conclusion

- ► We allow growing and bounded size clusters
- ► The theory can cover cluster-level regressors
- > Derive asymptotic properties of nonparametric regression under cluster sampling
 - key condition $(\max_{g \leq G} n_g) h^{d_{\text{ind}}} = O(1)$
- ▶ We propose cluster-robust variance estimator and bandwidth selection

Future work (open questions)

- Boundary analysis
- Local polynomial regressions and series regressions
- Cluster bootstrap inference
- Uniform inference

Thank you!

Email: yuya.shimizu [at] wisc.edu Homepage: https://yshimizu-econ.github.io/

References I

Alatas, Vivi et al. (2012). "Targeting the poor: evidence from a field experiment in Indonesia". In: American Economic Review 102.4, pp. 1206–1240. Bhattacharva, Debopam (2005), "Asymptotic inference from multi-stage samples". In: Journal of Econometrics 126.1, pp. 145–171. Djogbenou, Antoine A, James G MacKinnon, and Morten Ørregaard Nielsen (2019). "Asymptotic theory and wild bootstrap inference with clustered errors". In: Journal of *Econometrics* 212.2, pp. 393–412. Fan, Jianging and Irene Gijbels (1996). Local Polynomial Modelling and Its Applications: Monographs on Statistics and Applied Probability. Vol. 66. CRC Press. Hansen, Bruce E (2008). "Uniform convergence rates for kernel estimation with dependent data". In: Econometric Theory 24.3, pp. 726-748. Hansen, Bruce E and Seojeong Lee (2019). "Asymptotic theory for clustered samples". In: Journal of Econometrics 210.2, pp. 268–290.

Reference

References II

- Hansen, Christian B (2007). "Asymptotic properties of a robust variance matrix estimator for panel data when T is large". In: *Journal of Econometrics* 141.2, pp. 597–620.
- Hu, Pingbo, Xiuyuan Peng, and Xinglin Hu (2024). "Some new asymptotic results for series estimation under clustered dependence". In: Statistics & Probability Letters, p. 110156.
- Lee, Jungyoon and Peter M Robinson (2016). "Series estimation under cross-sectional dependence". In: *Journal of Econometrics* 190.1, pp. 1–17.
- Lin, Xihong and Raymond J Carroll (2000). "Nonparametric function estimation for clustered data when the predictor is measured without/with error". In: *Journal of the American Statistical Association* 95.450, pp. 520–534.
- Robinson, Peter M (1983). "Nonparametric estimators for time series". In: Journal of Time Series Analysis 4.3, pp. 185–207.
- (2011). "Asymptotic theory for nonparametric regression with spatial data". In: Journal of Econometrics 165.1, pp. 5–19.

Reference

References III

- Vogt, Michael (2012). "Nonparametric regression for locally stationary time series". In: *The Annals of Statistics* 40.5, pp. 2601–2633.
- Wang, Naisyin (2003). "Marginal nonparametric kernel regression accounting for within-subject correlation". In: *Biometrika* 90.1, pp. 43–52.

Assumptions for asymptotic normality

Assumption

1. There exists some r > 2 such that 1.1 for any $\widetilde{x} = (\widetilde{x}^{(\mathrm{ind})\top}, \widetilde{x}^{(\mathrm{cls})\top})^{\top} \in \mathcal{N}, \mathbb{E}[|e|^{2r} \mid X = \widetilde{x}] \leq \overline{v}^2 < \infty,$ 1.2 for some constant C > 0, $\frac{\left(\sum_{g=1}^{G} n_g^r\right)^{1/r}}{1/4} \leq C < \infty$, 1.3 and $\frac{1}{\pi r/2 h dr - d} = O(1)$. 2. We also assume $nh^{d+4} = O(1)$, $R_k^d f(x)\sigma^2(x) + \lambda R_k^{d_{\text{cls}}} f_2\left(x^{(\text{ind})}, x^{(\text{ind})}; x^{(\text{cls})}\right) \sigma\left(x^{(\text{ind})}, x^{(\text{ind})}; x^{(\text{cls})}\right) > 0,$ and $\max_{q < G} \frac{n_g^4}{n} \to 0$ as $n \to \infty$.

🍽 back

Assumptions for uniform convergence

Assumption		
For some $s \ge 2$,	$\mathbb{E}\left Y_{i}\right ^{s} < B_{1} < \infty,$	(9)
and	$\sup_{x} \mathbb{E}\left[\left Y_{i}\right ^{s} \mid X_{i} = x\right] f\left(x\right) < B_{2} < \infty.$	(10)
We also assume that	$\frac{(\max_{g \le G} n_g)^2 \log n}{n^{1 - (2/s)} h^d} = O(1),$	(11)
$\delta_n = \inf_{\ x\ \le c_n} f(x) > 0$, and $\delta_n^{-1}\left(\left(\frac{\log n}{nh^d}\right)^{1/2} + h^2\right) = o(1).$	

Assumption

For some $0 < L < \infty$, K has compact support, that is, K(u) = 0 for ||u|| > L. Furthermore, K is Lipschitz, i.e., for some $\Lambda < \infty$ and for all $u, u' \in \mathbb{R}$, $|K(u) - K(u')| \le \Lambda ||u - u'||$.

➡ back

Sketch of proof for uniform convergence

1. Divide $\frac{1}{nh^d} \sum_{g=1}^G \sum_{j=1}^{n_g} K\left(\frac{X_{gj}-x}{h}\right) Y_{gj}$ into the tail $|Y_{gj}| > \tau_n$ and the other part

- 2. The tail can be bounded by inequalities
- 3. Control the other part by the following lemma

Lemma (Bernstein's inequality for cluster sampling) For random variables under cluster sampling $\left\{ \{Y_{gj}\}_{j=1}^{n_g} \right\}_{g=1}^G$ with bounded ranges [-B, B] and zero means,

$$\mathbb{P}\left[\left|\widetilde{Y}_{1} + \dots + \widetilde{Y}_{G}\right| > \varepsilon\right] \le 2 \exp\left\{-\frac{1}{2} \frac{\varepsilon^{2}}{v + (\max_{g \le G} n_{g})B\varepsilon/3}\right\}$$

for every $\varepsilon > 0$ and $v \ge \operatorname{Var}\left(\widetilde{Y}_{1} + \dots + \widetilde{Y}_{G}\right)$, where $\widetilde{Y}_{g} = \sum_{j=1}^{n_{g}} Y_{gj}$

→ back

Optimal bandwidth

 \blacktriangleright Minimizes asymptotic integrated MSE (IMSE) with some weight w(x)

$$IMSE(h) = h^4 \bar{B} + \frac{R_k^d \bar{\sigma}^2}{nh^d} + \text{constant} + (\text{negligible term})$$

where

$$\bar{B} = \int_{\mathbb{R}^d} B_{\mathsf{nw}}(x)^2 f(x) w(x) \mathrm{d}x \qquad \text{and} \qquad \bar{\sigma}^2 = \int_{\mathbb{R}^d} \sigma^2(x) w(x) \mathrm{d}x$$

▶ When $(\max_{g \leq G} n_g) n^{-d_{ind}/(d+4)} \rightarrow 0$, optimal bandwidth is standard

$$h_0 = \left(\frac{dR_K\bar{\sigma}^2}{4\bar{B}}\right)^{1/(d+4)} n^{-1/(d+4)}$$
(12)

- ▶ h_0 does not satisfy $(\max_{g \leq G} n_g) h^{d_{\text{ind}}} = O(1)$
 - $-\,$ recommend using Cross-Validation in this case

Cross-Validation

► Issue for standard leave-one-out cross-validation: dependence within clusters

Leave-one-cluster-out cross-validation is

$$CV(h) \equiv \frac{1}{n} \sum_{g=1}^{G} \sum_{j=1}^{n_g} \tilde{e}_{gj}(h)^2 w(X_{gj}),$$
(13)

where $\tilde{e}_{gj}(h) = Y_{gj} - \tilde{m}_{-g}(X_{gj}, h)$ and $\tilde{m}_{-g}(x, h)$ is estimated without cluster g \blacktriangleright We show that

$$\mathbb{E}\left[\mathrm{CV}(h)\right] = \overline{\sigma}_w^2 + \mathrm{IMSE}_{G-1}(h)$$

where

$$\overline{\sigma}_{w}^{2} = \mathbb{E}\left[e_{gj}^{2}w\left(X_{gj}\right)\right]$$

and

$$\text{IMSE}_{G-1}(h) \equiv \sum_{g=1}^{G} \frac{n_g}{n} \mathbb{E}_{-g} \left[\int_{\mathbb{R}^d} \left\{ m\left(x\right) - \widetilde{m}_{-g}\left(x,h\right) \right\}^2 f\left(x\right) w\left(x\right) \mathrm{d}x \right]$$

Appendix We can choose $h_{CR-ROT} = \arg \min CV(h)$

Rule of thumb

For i.i.d. data, easy to implement method is proposed by Fan and Gijbels (1996)

$$h_{\mathsf{ROT}} = \left(\frac{dR_K\check{\sigma}^2}{4\check{B}}\right)^{1/(d+4)} n^{-1/(d+4)},$$

where \check{B} and $\check{\sigma}^2$ are computed

- by the 4th order *global* polynomial regression
- under homoskedastic standard error assumption
- **For cluster sampling**, we propose h_{CR-ROT}
 - replace \check{B} and $\check{\sigma}^2$ by leave-one-cluster-out estimator

➡ back

Simulation: bandwidth choice

► Compare four methods of bandwidth choice:

- 1. [ROT] rule of thumb by Fan and Gijbels (1996)
- 2. [CR-ROT] cluster robust rule of thumb
- 3. [CV] leave-one-out cross-validation
- 4. [CR-CV] leave-one-cluster-out cross-validation

► Evaluated by the average squared error (ASE):

$$ASE(h) = \frac{1}{n_{grid}} \sum_{k=1}^{n_{grid}} \left\{ \hat{m}_{nw} \left(u_k, h \right) - m \left(u_k \right) \right\}^2,$$

where the grid points $\left\{u_1,\ldots,u_{n_{\rm grid}}\right\}\,$ are evenly distributed – We set $n_{grid}=50$

Baseline data generating process

Number of clusters: G = 100
Cluster sizes

n_g = 20 for g = 1,...,G-1
n_G ∈ {20,100}
(max_{g≤G} n_g) /n ≈ {0.02, 0.09}

Generated 500 datasets from Setup 1 or 2
Setup 1 (homoskedastic errors):

$$Y_{gj} = \sin(2X_{gj}) + 2\exp\left(-16X_{gj}^2\right) + 0.5e_{gj},\tag{14}$$

or

Append

Setup 2 (heteroskedastic errors):

$$Y_{gj} = X_{gj} \sin (2\pi X_{gj}) + \sigma (X_{gj}) e_{gj},$$
(15)
$$\sigma (X_{gj}) = \frac{2 + \cos (2\pi X_{gj})}{5},$$

$$\bullet \text{ where } X_{gj} = \sqrt{\rho_x} (X_1)_g + \sqrt{1 - \rho_x} (X_2)_{gj} \text{ and } e_{gj} = \sqrt{\rho_e} c_g + \sqrt{1 - \rho_e} u_{gj}$$

$$- (X_1)_g \sim \mathcal{N}(0, 1), (X_2)_{gj} \sim \mathcal{N}(0, 1), c_g \sim \mathcal{N}(0, 1), \text{ and } u_{gj} \sim \mathcal{N}(0, 1)$$

independently

Mean of ASE(h) for m_{nw} in Setup 1 with $\max_{g \leq G} n_g = 100$ and $\rho_X = \rho_e = 0.5$

Mean of ASE(h) for $m_{\rm nw}$ in Setup 2 with $\max_{g \le G} n_g = 100$ and $\rho_X = \rho_e = 0.5$

Coverage and average length of 95% CI for each standard error (m_{nw} , Setup 1, x = 0.75, with bias)

	$\max n_g = 20$			$\max n_g = 100$			
	CI	CI_{CR}	CI_{λ}	CI	CI_{CR}	CI_{λ}	
$(\rho_X, \rho_e) = (0.2, 0.2)$	0.918	0.925	0.953	0.907	0.914	0.948	
	$\{0.192\}$	$\{0.195\}$	$\{0.217\}$	$\{0.189\}$	$\{0.192\}$	$\{0.217\}$	
$(\rho_X, \rho_e) = (0.2, 0.5)$	0.880	0.888	0.956	0.861	0.868	0.949	
	$\{0.192\}$	$\{0.195\}$	$\{0.246\}$	$\{0.188\}$	$\{0.192\}$	$\{0.250\}$	
$(\rho_X, \rho_e) = (0.5, 0.2)$	0.916	0.921	0.956	0.906	0.910	0.951	
	$\{0.191\}$	$\{0.194\}$	$\{0.227\}$	$\{0.188\}$	$\{0.191\}$	$\{0.228\}$	
$(\rho_X, \rho_e) = (0.5, 0.5)$	0.859	0.865	0.960	0.837	0.845	0.955	
	$\{0.191\}$	$\{0.195\}$	$\{0.261\}$	$\{0.188\}$	$\{0.191\}$	$\{0.267\}$	

Coverage and average length of 95% CI for each standard error (m_{nw} , Setup 2, x = 0.8, with bias)

	$\max n_g = 20$			$\max n_g = 100$			
	CI	CI_{CR}	CI_{λ}	CI	CI_{CR}	CI_{λ}	
$(\rho_X, \rho_e) = (0.2, 0.2)$	0.772	0.783	0.821	0.782	0.791	0.840	
	$\{0.167\}$	$\{0.170\}$	$\{0.187\}$	$\{0.165\}$	$\{0.168\}$	$\{0.187\}$	
$(\rho_X, \rho_e) = (0.2, 0.5)$	0.737	0.745	0.842	0.734	0.743	0.852	
	$\{0.167\}$	$\{0.171\}$	$\{0.209\}$	$\{0.164\}$	$\{0.168\}$	$\{0.211\}$	
$(\rho_X, \rho_e) = (0.5, 0.2)$	0.748	0.756	0.819	0.752	0.758	0.829	
	$\{0.166\}$	$\{0.170\}$	$\{0.191\}$	$\{0.164\}$	$\{0.167\}$	$\{0.192\}$	
$(\rho_X, \rho_e) = (0.5, 0.5)$	0.701	0.714	0.846	0.707	0.718	0.853	
	$\{0.166\}$	$\{0.170\}$	$\{0.218\}$	$\{0.164\}$	$\{0.167\}$	$\{0.223\}$	

Empirical illustration

- Poverty targeting dataset from Alatas et al. (2012)
- Human errors could happen during poverty ranking process in villages
- Alatas et al. (2012) investigated this concern by running a nonparametric regression
 - the mistarget rate (Y_{gj}) on the order in the ranking process (X_{gj})
- ▶ n = 3784 observations, G = 431 villages, and each village has $n_g \in [4, 9]$

Cluster-robust cross-validation function CV(h)

Appendix

41

Local linear estimation and 95% CIs on Alatas et al. (2012)'s dataset

🍽 back