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Cluster sampling

I Non i.i.d. dataset
– independent between different clusters
– allow dependence within the same cluster

I Cluster structure is common in economics
– school, family, hospital, firm, industry, region,...

I Researcher knows cluster g = 1, . . . , G and observes
{
{(Ygj , Xgj)}

ng

j=1

}G
g=1

– each observation can be grouped into one cluster
– ng: cluster size of g-th cluster
– n =

∑G
g=1 ng: observations in total

– (Ygj , Xgj) ⊥ (Yg′`, Xg′`) but (Ygj , Xgj)�⊥ (Yg`, Xg`) in general
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Contribution

1. Derive asymptotic properties of nonparametric regression under cluster sampling
– We allow unbounded and heterogeneous cluster sizes ng

2. Can cover both individual and cluster-level regressors
3. Propose cluster-robust bandwidth selection methods
4. Verify cluster-robust variance estimator

– Unbounded cluster causes dependence even in local neighborhood

I Potential applications
– Semiparametric regression
– Nonparametric auction estimation
– Regression discontinuity design
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Related literature

I Cluster sampling in econometrics
– C. B. Hansen (2007): parametric regression with homogeneous cluster sizes
– Djogbenou, MacKinnon, and Nielsen (2019); B. E. Hansen and S. Lee (2019):

heterogeneous cluster sizes
I Nonparametric regression under cluster dependence

– limited, even with homogeneous cluster sizes
– Lin and Carroll (2000); Wang (2003); Bhattacharya (2005); P. Hu, Peng, and X. Hu

(2024)
I Nonparametric regressions with other dependence

– Robinson (1983), B. E. Hansen (2008), Vogt (2012): time series dependence
– Robinson (2011), J. Lee and Robinson (2016): spatial dependence
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Data generating process
I Outcome: Ygj ∈ R, Regressor: Xgj =

(
X

(ind)>
gj , X

(cls)>
g

)>
∈ Rd = Rdind × Rdcls

I DGP:

Ygj = m (Xgj) + egj , (1)
E [egj | Xg] = E [egj | Xgj ] = 0,

E
[
e2gj | Xg

]
= E

[
e2gj | Xgj

]
= σ2 (Xgj) ,

E [egjeg` | Xg] = E
[
egjeg` | X

(ind)
gj , X

(ind)
g` ;X(cls)

g

]
= σ

(
X

(ind)
gj , X

(ind)
g` ;X(cls)

g

)
for j 6= `.

where
Xg =

(
Xg1, . . . , Xgng

)
I Goal: estimate E [Ygj | Xg] = m (Xgj)

I This setup allows cluster random effects and cluster-level regressors
I Assume that dind ≥ 1

I Assume that Xgj have identical marginal distribution with the density f(Xgj)1. Setup 7



Nadaraya-Watson estimator

I NW estimator is

m̂nw (x) =

∑G
g=1

∑ng

j=1K
(
Xgj−x
h

)
Ygj∑G

g=1

∑ng

j=1K
(
Xgj−x
h

) , (2)

where
– h > 0 is bandwidth
– K : Rd → R is a product kernel function K (X) =

∏d
q=1 k

(
X(q)

)
– k : R→ R is a univariate kernel function satisfying

– boundedness
– symmetry
–
∫∞
−∞ k(u)du = 1 (normalization)

–
∫∞
−∞ u

2k(u)du ≡ κ2 <∞ and
∫∞
−∞ u

4k(u)du <∞
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Local linear estimator
I LL estimator is

m̂LL (x) =

G∑
g=1

ng∑
j=1

KLL (Xgj , x)Ygj , (3)

where

KLL (u, x) = e>1

(
X>x WxXx

)−1
[

1
u− x

]
Kh (u− x) ,

e1 =


1
0
...
0

 ,Xx =

 1 (X1,1 − x)>

...
...

1 (XG,nG − x)>

 ,Wx =

 Kh (X1,1 − x) O
. . .

O Kh (XG,nG − x)

 ,
and Kh (·) = 1

hd
K
( ·
h

)
I m̂LL (x) is also the minimizer β0 for the localized squared error

min
β0,β1

G∑
g=1

ng∑
j=1

K

(
Xgj − x

h

)(
Ygj − β0 − β>1 (Xgj − x)

)2
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Main assumptions
Assumption

1. nhd →∞
2. hd → 0 and (maxg≤G ng)h

dind = O(1)

3. [Smoothness conditions]: there exists some neighborhood N of
x =

(
x(ind)>, x(cls)>

)>
such that

– m(x) and f(x) are twice continuously differentiable
– f

(
x(ind), x(ind);x(cls)

)
is continuously differentiable

– densities for
(
X

(ind)
gj , X

(ind)
g` , X

(ind)
gt ;X

(cls)
g

)
and(

X
(ind)
gj , X

(ind)
g` , X

(ind)
gt , X

(ind)
gs ;X

(cls)
g

)
, σ2(x), and σ

(
x(ind), x(ind);x(cls)

)
are

continuous

4. f(x) > 0 and (only for LL) K has a compact support

I Remark: Condition 2 is stronger than hd → 0

I Remark: Condition 1 and 2 implies (maxg≤G ng) /n→ 0 and G→∞
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Asymptotic bias
I Let κ2 =

∫∞
−∞ u

2k(u)du

Theorem
As nhd →∞, (maxg≤G ng)h

dind = O(1),

E [m̂nw(x) | X1, · · · , XG] = m(x) + h2Bnw(x) + op
(
h2
)

+Op

(√
1

nhd−2

)
,

where Bnw(x) = κ2
∑d

q=1

(
1
2mqq(x) + f(x)−1fq(x)mq(x)

)
. Also,

E [m̂LL(x) | X1, · · · , XG] = m(x) + h2BLL(x) + op
(
h2
)
,

where BLL(x) = 1
2κ2

∑d
q=1mqq(x).

I Remark: bias is same as the i.i.d. case, but require generalized conditions
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Asymptotic variance

I m̂∗(x) ∈ {m̂nw(x), m̂LL(x)}

Theorem

As nhd →∞, (maxg≤G ng)h
dind = O(1), and

(
1
n

∑G
g=1 n

2
g

)
hdind → λ ∈ [0,∞),

Var [m̂∗(x) | X1, · · · , XG]

=
Rdkσ

2(x)

f(x)nhd
+
λRdclsk f

(
x(ind), x(ind);x(cls)

)
σ
(
x(ind), x(ind);x(cls)

)
f(x)2nhd

+ op

(
1

nhd

)
,

where
Rk =

∫ ∞
−∞

k (u)2 du.

I Remark: variance has an additional term due to cluster dependence
2. Asymptotic Theory 13



Consistency and asymptotic normality
Theorem
For m̂∗(x) ∈ {m̂nw(x), m̂LL(x)}
I m̂∗(x)

p→ m (x)

I Under additional assumptions, detail

√
nhd

(
m̂∗(x)−m(x)− h2B∗(x)

)
d−→ N

(
0,
Rdkσ

2(x)

f(x)
+
λRdclsk f

(
x(ind), x(ind);x(cls)

)
σ
(
x(ind), x(ind);x(cls)

)
f(x)2

)

if
(

1
n

∑G
g=1 n

2
g

)
hdind → λ ∈ [0,∞)

I Remark: bias h2B∗(x) exists
– vanishes if undersmoothing nhd+4 = o(1) holds

I Remark: additional term exists
– vanishes if (maxg≤G ng)h

dind = o(1) holds2. Asymptotic Theory 14



Uniform convergence

Theorem
I Suppose that

– cn is a growing sequence satisfying the condition

cn = O

((
max
g≤G

ng

)2/d

(log n)
1/d

)
, (4)

and for some s ≥ 2,
(maxg≤G ng)

2
log n

n1−(2/s)hd
= O(1) (5)

– smoothness conditions hold uniformly
– some regularity conditions detail

I Then,
sup
‖x‖≤cn

|m̂∗ (x)−m (x)| = op (1) proof (6)
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Cluster-Robust variance estimation

I CR-variance estimator

V̂ =
Rdkσ̂

2
nw (x)

f̂(x)
+
λ̂Rdclsk f̂

(
x(ind), x(ind);x(cls)

)
σ̂nw

(
x(ind), x(ind);x(cls)

)(
f̂(x)

)2
where σ̂2nw (x) and σ̂nw

(
x(ind), x(ind);x(cls)

)
are estimated using

êgj = Ygj − m̂nw (Xgj)

I We can construct CI form this after normalization
– 95% CI for m(x) + h2Bnw(x) is[

m̂nw(x)− 1.96×
√
V̂√

nhd
, m̂nw(x) +

1.96×
√
V̂√

nhd

]
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Data generating process
I Number of clusters: G = 100
I Cluster sizes

– ng = 20 for g = 1, . . . , G− 1
– nG ∈ {20, 100}

– (maxg≤G ng) /n ≈ {0.02, 0.09}
I Generated 500 datasets from Setup 1 or 2
I Setup 1 (homoskedastic errors):

Ygj = sin (2Xgj) + 2 exp
(
−16X2

gj

)
+ 0.5egj , (7)

or
Setup 2 (heteroskedastic errors):

Ygj = Xgj sin (2πXgj) + σ (Xgj) egj , (8)

σ (Xgj) =
2 + cos (2πXgj)

5
,

I where Xgj =
√
ρx (X1)g +

√
1− ρx (X2)gj and egj =

√
ρecg +

√
1− ρeugj

– (X1)g ∼ N (0, 1), (X2)gj ∼ N (0, 1), cg ∼ N (0, 1), and ugj ∼ N (0, 1)
independently3. Simulation 18



Simulation setup

I Given true bias
I Compare three 95% CIs

1. [CI] ignore additional term in variance
2. [CICR] ignore additional term in variance, but use jackknife estimator for σ2 (x)
3. [CIλ] estimate additional term in variance, and use jackknife estimator for σ2 (x)

I Evaluated by coverage
I Use analytical bias correction with bias

I Bandwidth is selected in cluster-robust way detail
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Coverage and average length of 95% CI for each standard error
(mnw, Setup 1, x = 0.75)

maxng = 20 maxng = 100
CI CICR CIλ CI CICR CIλ

(ρX , ρe)=(0.2,0.2) 0.925 0.931 0.954 0.915 0.920 0.952
{0.192} {0.195} {0.217} {0.189} {0.192} {0.217}

(ρX , ρe)=(0.2,0.5) 0.879 0.886 0.960 0.861 0.869 0.951
{0.192} {0.195} {0.246} {0.188} {0.192} {0.250}

(ρX , ρe)=(0.5,0.2) 0.920 0.925 0.956 0.906 0.908 0.954
{0.191} {0.194} {0.227} {0.188} {0.191} {0.228}

(ρX , ρe)=(0.5,0.5) 0.857 0.867 0.964 0.833 0.844 0.957
{0.191} {0.195} {0.261} {0.188} {0.191} {0.267}
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Coverage and average length of 95% CI for each standard error
(mnw, Setup 2, x = 0.8)

maxng = 20 maxng = 100
CI CICR CIλ CI CICR CIλ

(ρX , ρe)=(0.2,0.2) 0.893 0.897 0.931 0.882 0.886 0.923
{0.167} {0.170} {0.187} {0.165} {0.168} {0.187}

(ρX , ρe)=(0.2,0.5) 0.844 0.850 0.918 0.831 0.836 0.924
{0.167} {0.171} {0.209} {0.164} {0.168} {0.211}

(ρX , ρe)=(0.5,0.2) 0.903 0.909 0.936 0.878 0.884 0.927
{0.166} {0.170} {0.191} {0.164} {0.167} {0.192}

(ρX , ρe)=(0.5,0.5) 0.826 0.837 0.932 0.806 0.816 0.924
{0.166} {0.170} {0.218} {0.164} {0.167} {0.223}
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Other results covered in the paper

I Bandwidth selection detail

I Simulation for bandwidth selection detail

I Empirical illustration detail
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Conclusion and future work

Conclusion
I We allow growing and bounded size clusters
I The theory can cover cluster-level regressors
I Derive asymptotic properties of nonparametric regression under cluster sampling

– key condition (maxg≤G ng)h
dind = O(1)

I We propose cluster-robust variance estimator and bandwidth selection
Future work (open questions)
I Boundary analysis
I Local polynomial regressions and series regressions
I Cluster bootstrap inference
I Uniform inference
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Thank you!

Email: yuya.shimizu [at] wisc.edu
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Assumptions for asymptotic normality

Assumption
1. There exists some r ≥ 2 such that

1.1 for any x̃ =
(
x̃(ind)>, x̃(cls)>

)> ∈ N , E
[
|e|2r | X = x̃

]
≤ v2 <∞,

1.2 for some constant C > 0, (
∑G

g=1 n
r
g)

1/r

n1/4 ≤ C <∞,
1.3 and 1

nr/2hdr−d = O(1).

2. We also assume nhd+4 = O(1),

Rdkf(x)σ2(x) + λRdclsk f2

(
x(ind), x(ind);x(cls)

)
σ
(
x(ind), x(ind);x(cls)

)
> 0,

and maxg≤G
n4
g

n → 0 as n→∞.

back
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Assumptions for uniform convergence

Assumption
For some s ≥ 2,

E |Yi|s < B1 <∞, (9)

and
sup
x

E [|Yi|s | Xi = x] f (x) < B2 <∞. (10)

We also assume that
(maxg≤G ng)

2 log n

n1−(2/s)hd
= O(1), (11)

δn = inf‖x‖≤cn f(x) > 0, and δ−1
n

((
logn

nhd

)1/2
+ h2

)
= o(1).

Assumption
For some 0 < L <∞, K has compact support, that is, K(u) = 0 for ‖u‖ > L. Furthermore, K is
Lipschitz, i.e., for some Λ <∞ and for all u, u′ ∈ R, |K(u)−K (u′)| ≤ Λ ‖u− u′‖.

back
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Sketch of proof for uniform convergence

1. Divide 1
nhd

∑G
g=1

∑ng

j=1K
(
Xgj−x
h

)
Ygj into the tail |Ygj | > τn and the other part

2. The tail can be bounded by inequalities
3. Control the other part by the following lemma

Lemma (Bernstein’s inequality for cluster sampling)

For random variables under cluster sampling
{
{Ygj}

ng

j=1

}G
g=1

with bounded ranges

[−B,B] and zero means,

P
[∣∣∣Ỹ1 + · · ·+ ỸG

∣∣∣ > ε
]
≤ 2 exp

{
−1

2

ε2

v + (maxg≤G ng)Bε/3

}
for every ε > 0 and v ≥ Var

(
Ỹ1 + · · ·+ ỸG

)
, where Ỹg =

∑ng

j=1 Ygj

back
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Optimal bandwidth
I Minimizes asymptotic integrated MSE (IMSE) with some weight w(x)

IMSE(h) = h4B̄ +
Rdkσ̄

2

nhd
+ constant + (negligible term)

where

B̄ =

∫
Rd

Bnw(x)2f(x)w(x)dx and σ̄2 =

∫
Rd

σ2(x)w(x)dx

I When (maxg≤G ng)n
−dind/(d+4) → 0, optimal bandwidth is standard

h0 =

(
dRK σ̄

2

4B̄

)1/(d+4)

n−1/(d+4) (12)

I h0 does not satisfy (maxg≤G ng)h
dind = O(1)

– recommend using Cross-Validation in this case
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Cross-Validation
I Issue for standard leave-one-out cross-validation: dependence within clusters
I Leave-one-cluster-out cross-validation is

CV(h) ≡ 1

n

G∑
g=1

ng∑
j=1

ẽgj (h)2w (Xgj) , (13)

where ẽgj (h) = Ygj − m̃−g (Xgj , h) and m̃−g (x, h) is estimated without cluster g
I We show that

E [CV(h)] = σ2w + IMSEG−1(h)

where
σ2w = E

[
e2gjw (Xgj)

]
and

IMSEG−1(h) ≡
G∑
g=1

ng
n
E−g

[∫
Rd

{m (x)− m̃−g (x, h)}2 f (x)w (x) dx

]
I We can choose hCR-ROT = arg min CV(h)Appendix 32



Rule of thumb

I For i.i.d. data, easy to implement method is proposed by Fan and Gijbels (1996)

hROT =

(
dRK σ̌

2

4B̌

)1/(d+4)

n−1/(d+4),

where B̌ and σ̌2 are computed
– by the 4th order global polynomial regression
– under homoskedastic standard error assumption

I For cluster sampling, we propose hCR-ROT
– replace B̌ and σ̌2 by leave-one-cluster-out estimator

back
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Simulation: bandwidth choice

I Compare four methods of bandwidth choice:
1. [ROT] rule of thumb by Fan and Gijbels (1996)
2. [CR-ROT] cluster robust rule of thumb
3. [CV] leave-one-out cross-validation
4. [CR-CV] leave-one-cluster-out cross-validation

I Evaluated by the average squared error (ASE):

ASE(h) =
1

ngrid

ngrid∑
k=1

{m̂nw (uk, h)−m (uk)}2 ,

where the grid points
{
u1, . . . , ungrid

}
are evenly distributed

– We set ngrid = 50

Appendix 34



Baseline data generating process
I Number of clusters: G = 100
I Cluster sizes

– ng = 20 for g = 1, . . . , G− 1
– nG ∈ {20, 100}

– (maxg≤G ng) /n ≈ {0.02, 0.09}
I Generated 500 datasets from Setup 1 or 2
I Setup 1 (homoskedastic errors):

Ygj = sin (2Xgj) + 2 exp
(
−16X2

gj

)
+ 0.5egj , (14)

or
Setup 2 (heteroskedastic errors):

Ygj = Xgj sin (2πXgj) + σ (Xgj) egj , (15)

σ (Xgj) =
2 + cos (2πXgj)

5
,

I where Xgj =
√
ρx (X1)g +

√
1− ρx (X2)gj and egj =

√
ρecg +

√
1− ρeugj

– (X1)g ∼ N (0, 1), (X2)gj ∼ N (0, 1), cg ∼ N (0, 1), and ugj ∼ N (0, 1)
independentlyAppendix 35



Mean of ASE(h) for mnw in Setup 1 with maxg≤G ng = 100 and
ρX = ρe = 0.5
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Appendix 36



Mean of ASE(h) for mnw in Setup 2 with maxg≤G ng = 100 and
ρX = ρe = 0.5
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Coverage and average length of 95% CI for each standard error
(mnw, Setup 1, x = 0.75, with bias)

maxng = 20 maxng = 100
CI CICR CIλ CI CICR CIλ

(ρX , ρe)=(0.2,0.2) 0.918 0.925 0.953 0.907 0.914 0.948
{0.192} {0.195} {0.217} {0.189} {0.192} {0.217}

(ρX , ρe)=(0.2,0.5) 0.880 0.888 0.956 0.861 0.868 0.949
{0.192} {0.195} {0.246} {0.188} {0.192} {0.250}

(ρX , ρe)=(0.5,0.2) 0.916 0.921 0.956 0.906 0.910 0.951
{0.191} {0.194} {0.227} {0.188} {0.191} {0.228}

(ρX , ρe)=(0.5,0.5) 0.859 0.865 0.960 0.837 0.845 0.955
{0.191} {0.195} {0.261} {0.188} {0.191} {0.267}
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Coverage and average length of 95% CI for each standard error
(mnw, Setup 2, x = 0.8, with bias)

maxng = 20 maxng = 100
CI CICR CIλ CI CICR CIλ

(ρX , ρe)=(0.2,0.2) 0.772 0.783 0.821 0.782 0.791 0.840
{0.167} {0.170} {0.187} {0.165} {0.168} {0.187}

(ρX , ρe)=(0.2,0.5) 0.737 0.745 0.842 0.734 0.743 0.852
{0.167} {0.171} {0.209} {0.164} {0.168} {0.211}

(ρX , ρe)=(0.5,0.2) 0.748 0.756 0.819 0.752 0.758 0.829
{0.166} {0.170} {0.191} {0.164} {0.167} {0.192}

(ρX , ρe)=(0.5,0.5) 0.701 0.714 0.846 0.707 0.718 0.853
{0.166} {0.170} {0.218} {0.164} {0.167} {0.223}

back
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Empirical illustration

I Poverty targeting dataset from Alatas et al. (2012)
I Human errors could happen during poverty ranking process in villages
I Alatas et al. (2012) investigated this concern by running a nonparametric

regression
– the mistarget rate (Ygj) on the order in the ranking process (Xgj)

I n = 3784 observations, G = 431 villages, and each village has ng ∈ [4, 9]
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Cluster-robust cross-validation function CV(h)
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Local linear estimation and 95% CIs on Alatas et al. (2012)’s
dataset
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