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Who thinks that questionnaire participants always
respond accurately and attentively?

I propose a general methodological solution!
. . . and much more. . .
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Motivation: Respondent inattention

Respondent inattention is a big problem in questionnaire studies

▶ Can lead to biased parameter estimates, invalid inference, deteriorated
model fit, errors in hypothesis testing (e.g. Arias et al., 2020; Huang et al.,
2015; Meade & Craig, 2012)

▶ Already prevalence of 5–10% problematic (e.g. Credé, 2010; Woods, 2006)

▶ Likely present in all questionnaire data (Ward & Meade, 2023)
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Contribution (Welz, 2024)

Develop estimator for categorical data that is robust to inattention/misspecification

▶ Novel categorical analogue to robust M-estimation theory (Huber, 1964)

▶ No assumption on the type or magnitude of misspecification

▶ Generalizes MLE, attractive statistical guarantees

▶ Statistical test to identify cells/responses that cannot be fitted well
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General setup

A model {p (θ) : θ ∈ Θ} for k-dimensional categorical Z , parameter θ ∈ Rd

▶ Categorical outcome takes values in finite sample space Z = {z1, . . . , zm}

▶ Model assigns to each event z ∈ Z a probability pz (θ) = Pθ [Z = z ]

▶ Examples:
◦ Factor models/SEMs on latent variables for survey scales

◦ Discrete choice

◦ Poisson counting process. . .
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Model misspecification (Huber, 1964, AoS)

Misspecification: Instead of true p (θ∗), sample from corrupted mixture

fε = (1 − ε)p (θ∗) + εh

▶ Fraction ε ∈ [0, 1] is degree of misspecification (unspecified)
▶ Density h is type of misspecification (unspecified)

No assumptions on misspecification!
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Notation

▶ Let {Zi}Ni=1 denote N samples from fε =⇒ model is possibly misspecified!

▶ f̂N(z) = 1
N

∑N
i=1 1 {Zi = z} is empirical probability of event z ∈ Z

▶ pz (θ) is theoretical probability of z at θ (returned by model)
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Proposed estimator

The proposed estimator θ̂N minimizes over θ ∈ Θ the loss

L
(
θ, f̂N

)
=
∑
z∈Z

ρ

(
f̂N(z)
pz (θ)

)
pz (θ)

The fraction f̂N(z)/pz (θ) is called Pearson residual (Lindsay, 1994, AoS)

▶ Values close to 1 indicate good model fit, far away from 1 poor fit

▶ Avoid that classes that cannot be fitted well dominate fit

▶ Idea: Downweight influence of poorly fitted classes via choice of ρ(·)
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Choice of discrepancy function ρ(·)

Depending on the situation, one may choose from an array of ρ(·) functions

▶ Theory developed for general ρ(·)

▶ This talk (for simplicity): specific choice of ρ(·)
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Robust choice of ρ(·)(Ruckstuhl & Welsh, 2001, AoS)

For x = f̂N(z)/pz (θ) a Pearson residual at θ, use function

ρ(x) =

{
x log(x) if x ∈ [0, c],
x(log(c) + 1)− c if x > c ,

where the constant c ∈ [1,∞] is prespecified

▶ If x ∈ [0, c]: Good fit, loss behaves like MLE =⇒ no need to downweight

▶ If x > c : Bad fit =⇒ downweight influence to be linear
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Robust choice of ρ(·), for c = 1.6
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Asymptotics

θ̂N = arg min
θ∈Θ

∑
z∈Z

ρ

(
f̂N(z)
pz (θ)

)
pz (θ) ρ(x) =

{
x log(x) if x ∈ [0, c],
x(log(c) + 1)− c if x > c .

Estimand: θ0 = arg min
θ∈Θ

L
(
θ, fε

)
, equals θ∗ if ε = 0 (Fisher consistent)

Theorem (Consistency & asymptotic normality)
Under standard mild regularity conditions assumptions , it holds true that

θ̂N
a.s.−→ θ0

as N → ∞, and √
N
(
θ̂N − θ0

)
d−→ Nd

(
0,Σ (θ0)

)
,

where Σ (θ) = M(θ)−1U(θ)M(θ)−1 is MLE variance at true model def more .
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Example: Analysis of survey scales

Standard model to analyze responses to survey scales (e.g. Muthén, 1984)

▶ Suppose Zj ∈ {1, . . . ,Kj} is a response to j-th survey question, j ∈ [k]

▶ Discrete Zj is governed by unobserved discretization of latent ξj (e.g., utility)

▶ Identification: Assume ξ = (ξ1, . . . , ξk)
⊤ is multivariate standard normal

▶ θ holds the correlation parameters and discretization thresholds

Goal: Estimate correlation structure of ξ from discrete Z = (Z1, . . . ,Zk)
⊤
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Example: Analysis of survey scales

The τ -thresholds dis-
cretize ξ to Z via

Zj =



1 if ξj < τj ,1,

2 if τj ,1 ≤ ξj < τj ,2,

3 if τj ,2 ≤ ξj < τj ,3,
...
Kj if τj ,Kj−1 ≤ ξj ,
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Simulation: Correlation in bivariate 5-point-scale more

▶ Sample N = 1, 000 responses to k = 2 questions with 5 answer categories

▶ True ρ∗ = Cor[ξ1, ξ2] = 0.5, thresholds τ∗ = (−1.5,−0.5, 0.5, 1.5)⊤

▶ Estimate ρ∗ = 0.5 with robust estimator, MLE, and sample correlation

▶ What happens to estimates if a fraction ε is inattentive? Repeat 1,000 times
details

15
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Empirical application: Inattention in Big Five

Use data in Arias et al. (2020, BRM) of 100 unipolar markers of Big 5

▶ Traits measured by pairs of opposite adjectives (e.g. “talkative" vs. “silent")

▶ 5-point Likert scale on agreement with each adjective item

▶ Theory expects strong negative correlation between opposite adjectives

▶ N = 725, but some are probably inattentive (Arias et al., 2020)
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Data of Arias et al. (2020, BRM): unipolar markers; N = 725
Correlation btw. Neuroticism adjective pair “envious” vs. “not envious”:

Sample cor MLE Robust
Parameter Estimate SE Estimate SE Estimate SE

ρ −0.562 0.031 −0.618 0.025 −0.925 0.062
τ1,1 −1.370 0.061 −1.570 0.276
τ1,2 −0.476 0.043 −0.560 0.203
τ1,3 0.121 0.042 0.109 0.187
τ1,4 1.060 0.054 1.080 0.105
τ2,1 −0.857 0.049 −0.905 0.073
τ2,2 −0.004 0.041 −0.040 0.091
τ2,3 0.608 0.045 0.640 0.364
τ2,4 1.580 0.071 1.171 0.811
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Frequency of “envious” vs. “not envious” in Arias et al. (2020)
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Discussion and conclusion

▶ Developed robust estimator for categorical data

▶ Generalizes MLE, categorical analogue to M-estimation

▶ Proposed diagnostic test to identify “outlying" cells (omitted) details

▶ R package robcat will be on CRAN soon:
https://github.com/mwelz/robcat

▶ Relevant special cases: SEMs, reliability coefficients, counting
processes. . . =⇒ possibly new research line!

19

https://github.com/mwelz/robcat


Discussion and conclusion

▶ Developed robust estimator for categorical data

▶ Generalizes MLE, categorical analogue to M-estimation

▶ Proposed diagnostic test to identify “outlying" cells (omitted) details

▶ R package robcat will be on CRAN soon:
https://github.com/mwelz/robcat

▶ Relevant special cases: SEMs, reliability coefficients, counting
processes. . . =⇒ possibly new research line!

19

https://github.com/mwelz/robcat


Discussion and conclusion

▶ Developed robust estimator for categorical data

▶ Generalizes MLE, categorical analogue to M-estimation

▶ Proposed diagnostic test to identify “outlying" cells (omitted) details

▶ R package robcat will be on CRAN soon:
https://github.com/mwelz/robcat

▶ Relevant special cases: SEMs, reliability coefficients, counting
processes. . . =⇒ possibly new research line!

19

https://github.com/mwelz/robcat


Discussion and conclusion

▶ Developed robust estimator for categorical data

▶ Generalizes MLE, categorical analogue to M-estimation

▶ Proposed diagnostic test to identify “outlying" cells (omitted) details

▶ R package robcat will be on CRAN soon:
https://github.com/mwelz/robcat

▶ Relevant special cases: SEMs, reliability coefficients, counting
processes. . . =⇒ possibly new research line!

19

https://github.com/mwelz/robcat


Discussion and conclusion

▶ Developed robust estimator for categorical data

▶ Generalizes MLE, categorical analogue to M-estimation

▶ Proposed diagnostic test to identify “outlying" cells (omitted) details

▶ R package robcat will be on CRAN soon:
https://github.com/mwelz/robcat

▶ Relevant special cases: SEMs, reliability coefficients, counting
processes. . . =⇒ possibly new research line!

19

https://github.com/mwelz/robcat


Discussion and conclusion

▶ Developed robust estimator for categorical data

▶ Generalizes MLE, categorical analogue to M-estimation

▶ Proposed diagnostic test to identify “outlying" cells (omitted) details

▶ R package robcat will be on CRAN soon:
https://github.com/mwelz/robcat

▶ Relevant special cases: SEMs, reliability coefficients, counting
processes. . . =⇒ possibly new research line!

19

https://github.com/mwelz/robcat


Thank you! QR code to the paper, Welz (2024):
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Robust choice of ρ(·) (Ruckstuhl & Welsh, 2001, AoS)

For x = f̂N(z)/pz (θ) a Pearson residual at θ, use function

ρ(x) =

{
x log(x) if x ∈ [0, c],
x(log(c) + 1)− c if x > c ,

where the constant c ∈ [1,∞] is prespecified

▶ If x ∈ [0, c]: Good fit, loss behaves like MLE =⇒ no need to downweight

▶ If x > c : Bad fit =⇒ downweight influence to be linear

▶ Similar idea as Huber loss: linear loss in tails, quadratic in center



Assumptions asymptotics

Assumption Set 1
A1. c ∈ [1,+∞],

A2. Θ ⊂ Rd is compact,

A3. θ0 = argminθ∈Θ L(θ, fε) is a unique global minimum, and θ0 ∈ int Θ, where
fε(z) = (1 − ε)pz (θ∗) + εh(z) is the sampling distribution,

A4. pz (θ) is continuously differentiable with respect to θ ∈ Θ and twice
differentiable at θ0, for all cells z ∈ Z,

A5.
∥∥∥∂pz (θ)

∂θ

∥∥∥ < ∞ for all θ ∈ Θ, z ∈ Z,

A6. pz (θ) > 0 for all θ ∈ Θ, z ∈ Z.



Assumptions (cont’d) asymptotics

Assumption Set 1
A7. #

{
z ∈ Z : fε(z) > 0

}
> d ,

A8. L(θ, fε) is convex in a neighborhood of θ0,

A9. fε(z)
pz (θ0)

̸= c for any z ∈ Z.



Consistency

θ̂N = arg min
θ∈Θ

∑
z∈Z

ρ

(
f̂N(z)
pz (θ)

)
pz (θ) ρ(x) =

{
x log(x) if x ∈ [0, c],
x(log(c) + 1)− c if x > c .

Theorem (Consistency)
Under Assumptions A1–A6, it holds true that

θ̂N
a.s.−→ θ0,

as N → ∞.



Asymptotic normality

Theorem (Asymptotic normality)
Under Assumption Set 1, it holds true that

√
N
(
θ̂N − θ0

)
d−→ Nd

(
0,Σ (θ0)

)
,

as N → ∞, where
Σ (θ) = M(θ)−1U(θ)M(θ)−1.

Σ (θ0) can be consistently estimated by plug-in principle.



Diagnostic test for identifying outlying cells
Is the model misspecified for an individual event z ∈ Z? Test formulation:

H0 : pz (θ0) = fε(z) vs. H1 : pz (θ0) < fε(z)

Corollary (Limit distribution of test statistic)
Under H0 : pz (θ0) = fε(z) and the assumptions of Theorem 2, the test statistic

TN(z) =
pz

(
θ̂N

)
− fε(z)√

σ2
z (θ0)

/
N

converges to N(0, 1) as N → ∞, where σ2
z (θ) =

(
∂pz (θ)
∂θ

)⊤
Σ (θ)

(
∂pz (θ)
∂θ

)
.

That is, the test rejects if the model is misspecified for z , and otherwise does not



Definitions used in theorems asymptotics

Ω = diag(fε)− fεf ⊤
ε [estimable via f̂N ]

U(θ) = W (θ)ΩW (θ)⊤,

M(θ) =
∑
z∈Z

fε(z)

(
w ′

(
fε(z)
pz (θ0)

)
fε(k)

pz (θ)
sz (θ) sz (θ)

⊤ − w

(
fε(z)
pz (θ)

)
Qz(θ)

)
,

sz (θ) =
∂

∂θ
log pz (θ) =

1
pz (θ)

(
∂

∂θ
pz (θ)

)
,

W (θ) =

(
sz1(θ)1

{
fε(z1)

pz1(θ)
∈ [0, c]

}
, · · · , szm(θ)1

{
fε(zm)
pzm(θ)

∈ [0, c]
})

,

w(x) = 1 {x ∈ [0, c]}+ c1 {x > c} /x ,

Qz(θ) =
1

pz (θ)

(
∂2

∂θ∂θ⊤pz (θ)

)
− sz (θ) sz (θ)

⊤ .



2nd order equivalence with MLE at true model back

Lemma
Under Assumption Set 1, it holds true that

lim
ε↓0

U (θ0(ε)) = J (θ∗) and

lim
ε↓0

M (θ0(ε)) =

{
J (θ∗) if c > 1,
J (θ∗)−

∑
z∈Z 1 {h(z) > pz (θ∗)} pz (θ∗) sz (θ∗) sz (θ∗)

⊤ if c = 1.

This lemma implies that at the true model, the asymptotic covariances of θ̂N

and θ̂ MLE
N coincide



Influence function (1/3) back

Definition (Influence function)

Let θ̂N be an estimator that estimates a model {p (θ) : θ ∈ Θ} with finite
support Z. Evaluated at model density pz (θ) , θ ∈ θ, the estimator’s influence
function at a data point z ∈ Z is given by

IF
(
z , θ̂N ,p (θ)

)
= lim

ε↓0

θ̂N

(
(1 − ε)pz (θ) + ε∆z

)
ε

=
∂

∂ε
θ̂N

(
(1−ε)pz (θ)+ε∆z

)∣∣∣∣
ε=0

,

where Z ∋ y 7→ ∆z(y) = 1 {z = y} is the point mass density at point z .



Influence function (2/3) back

Theorem (Influence function)

Grant Assumption Set 1. Then, the influence function of estimator θ̂N at
cell z ∈ Z and true density p (θ∗) is given by

IF
(
z , θ̂N ,p (θ∗)

)
=


IF
(
z , θ̂ MLE

N ,p (θ∗)
)

if c > 1,[
J (θ∗)− pz (θ∗) sz (θ∗) sz (θ∗)

⊤
]−1

sz (θ∗) pz (θ∗) if c = 1,

where

IF
(
z , θ̂ MLE

N ,p (θ)
)
= J (θ)−1 sz (θ) ,

J (θ) = −
∑
z∈Z

Qz(θ)pz (θ)



Influence function (3/3) back

(a) c > 1 (b) c = 1



Simulation design (1/2) back

For misspecification fraction ε,

▶ Sample fraction 1 − ε from bivariate standard normal with ρ∗ = 0.5

▶ Sample fraction ε from N2
(
(2,−2)⊤, I

)
▶ Use discretization process to obtain (Z1,Z2)

=⇒ Cells (Z1,Z2) = (5, 1), (5, 2), (4, 1) are inflated, but some overlap with
model distribution



Simulation design (2/2)
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Simulation: Correlation of bivariate 5-point scale back
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Analysis of “envious” vs. “not envious” in Arias et al. (2020)
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Estimated correlation matrix for the Neuroticism scale

N6_N

N6_P

N5_N

N5_P

N4_N

N4_P

N3_N

N3_P

N2_N

N2_P

N1_N

N1_P

N1_P N1_N N2_P N2_N N3_P N3_N N4_P N4_N N5_P N5_N N6_P N6_N

0.0 0.1 0.2 0.3
|Robust polycor| − |Sample corr|

▶ Robustly estimated
correlations are all stronger
(ave. 0.130)

▶ MLE polyhoric correlations
are similar to sample
correlations (expected; cf.
Rhemtulla et al., 2012)

back



Loadings of the neuroticism factor in data of Arias et al. (2020)
Item Sample corr Robust polycor

N1_P 0.70 0.80
N1_N 0.56 0.66
N2_P 0.76 0.86
N2_N 0.68 0.78
N3_P 0.77 0.88
N3_N 0.66 0.74
N4_P 0.35 0.46
N4_N 0.46 0.54
N5_P 0.69 0.77
N5_N 0.67 0.73
N6_P 0.57 0.66
N6_N 0.64 0.71

Proportion variance 0.40 0.53
Cronbach’s α 0.89 0.93
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