Robust estimation and inference with categorical data

Max Welz

Erasmus School of Economics, Erasmus University Rotterdam
Soon: University of Zurich

August 27, 2024, EEA-ESEM



Who thinks that questionnaire participants always
respond accurately and attentively?



Who thinks that questionnaire participants always
respond accurately and attentively?

| propose a general methodological solution!

...and much more. ..
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Motivation: Respondent inattention
Respondent inattention is a big problem in questionnaire studies

» Can lead to biased parameter estimates, invalid inference, deteriorated
model fit, errors in hypothesis testing (e.g. Arias et al., 2020; Huang et al.,
2015; Meade & Craig, 2012)

» Already prevalence of 5-10% problematic (e.g. Credé, 2010; Woods, 2006)

» Likely present in all questionnaire data (Ward & Meade, 2023)
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Contribution (Welz, 2024)

Develop estimator for categorical data that is robust to inattention/misspecification

» Novel categorical analogue to robust M-estimation theory (Huber, 1964)
» No assumption on the type or magnitude of misspecification
» Generalizes MLE, attractive statistical guarantees

> Statistical test to identify cells/responses that cannot be fitted well
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General setup
A model {p(0) : @ € O} for k-dimensional categorical Z, parameter 6 € R?

» Categorical outcome takes values in finite sample space Z = {z,...,z,}
» Model assigns to each event z € Z a probability p, (6) = Py [Z = 2]

» Examples:
o Factor models/SEMs on latent variables for survey scales

o Discrete choice

o Poisson counting process. . .
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Model misspecification (Huber, 1964, AoS)

Misspecification: Instead of true p(0,), sample from corrupted mixture

f.=(1—-¢e)p(6.)+¢eh

» Fraction ¢ € [0, 1] is degree of misspecification (unspecified)
» Density h is type of misspecification (unspecified)

No assumptions on misspecification!



Notation

» Let {Z;}V | denote N samples from £ = model is possibly misspecified!
> ?N(z) =+ SV 1{Z = z} is empirical probability of event z € Z

» p,(0) is theoretical probability of z at @ (returned by model)



Proposed estimator

The proposed estimator 5,\, minimizes over O € O the loss

L(0.7) =D p (Z(Z)) Pz (6)

zeZ (0)
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Proposed estimator

The proposed estimator 5,\, minimizes over O € O the loss

L(B, ﬁv) => p (Z((z))) pz (0)

The fraction ?R,(z)/pz (0) is called Pearson residual (Lindsay, 1994, AoS)

» Values close to 1 indicate good model fit, far away from 1 poor fit
» Avoid that classes that cannot be fitted well dominate fit

» Idea: Downweight influence of poorly fitted classes via choice of p(-)



Choice of discrepancy function p(+)

Depending on the situation, one may choose from an array of p(-) functions

» Theory developed for general p(-)

» This talk (for simplicity): specific choice of p(-)
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Robust choice of p(-)(Ruckstuhl & Welsh, 2001, AoS)

For x = fN(z)/pz (0) a Pearson residual at €, use function

) xlog(x) if x € [0, ],
plx) = {x(log(c) T —c ifx>c

where the constant ¢ € [1, 0] is prespecified

» If x € [0, c]: Good fit, loss behaves like MLE == no need to downweight

» If x > ¢: Bad fit = downweight influence to be linear



Robust choice of p(+), for ¢ = 1.6

Loss — Robust ---

- MLE
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Robust choice of p(-), for c = 1.6
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Asymptotics

HN—argmm Zp(fN ; ) @) p(x

Estimand:

60y = arg (Tei(g L(G, t}),

x(log(c)+1)—c ifx>c.

equals 0, if ¢ = 0 (Fisher consistent)

)= {xlog(x) if x € [0, ¢,
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Asymptotics
Oy = arg‘?eigmzzp(;’:((g)))pz ©)  p(x) = {X log(x) if x € [0, c],

x(log(c)+1)—c ifx>c.

Estimand: 60y = arg gni(g L(G, t;), equals 6, if ¢ = 0 (Fisher consistent)
S

Under standard mild regularity conditions , it holds true that
Oy > 6,

as N — oo, and

VN (8 — 85) ~ Ny (0.3 (60) ).
where 32 (0) = M(0)"*U(0)M(6)! is MLE variance at true model

12



Example: Analysis of survey scales
Standard model to analyze responses to survey scales (e.g. Muthén, 1984)

» Suppose Z; € {1,..., K;} is a response to j-th survey question, j € [K]
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Example: Analysis of survey scales
Standard model to analyze responses to survey scales (e.g. Muthén, 1984)
» Suppose Z; € {1,..., K;} is a response to j-th survey question, j € [K]
» Discrete Z; is governed by unobserved discretization of latent &; (e.g., utility)
» Identification: Assume & = (&1,...,&)" is multivariate standard normal
» 0 holds the correlation parameters and discretization thresholds

Goal: Estimate correlation structure of £ from discrete Z = (Zy,..., Z)"

13



Example: Analysis of survey scales

The 7-thresholds dis-
cretize £ to Z via

(1 if& <7,

2 it << e
Z; =<3 if1.<§ <73,

TZi\Z; 1 2 3 4 5
5 | —0.02 —]
t—0.04
0.08
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Simulation: Correlation in bivariate b-point-scale

» Sample N = 1,000 responses to k = 2 questions with 5 answer categories
» True p, = Cor[&;, &] = 0.5, thresholds 7, = (—1.5,-0.5,0.5,1.5)"
» Estimate p, = 0.5 with robust estimator, MLE, and sample correlation

» What happens to estimates if a fraction ¢ is inattentive? Repeat 1,000 times

15



Simulation:

Correlation in bivariate 5-point-scale
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Simulation:

Correlation in bivariate 5-point-scale ez

Estimator = Robust F5 MLE - Sample cor
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Simulation:

Correlation in bivariate 5-point-scale ez

Estimator = Robust F5 MLE - Sample cor

€=0 €=0.1 £€=0.2
0.25-
Q
B 00— = - - - o m - - m - - - ko —— -
=
D
)
c
L -0.25-
R
o
IS}
o
B -0.50- ‘
(2]
©
m

T

Inattention fraction €

15



Empirical application: Inattention in Big Five

Use data in Arias et al. (2020, BRM) of 100 unipolar markers of Big 5
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Empirical application: Inattention in Big Five
Use data in Arias et al. (2020, BRM) of 100 unipolar markers of Big 5

» Traits measured by pairs of opposite adjectives (e.g. “talkative" vs. “silent")
» 5-point Likert scale on agreement with each adjective item
» Theory expects strong negative correlation between opposite adjectives

» N = 725, but some are probably inattentive (Arias et al., 2020)

16



Data of Arias et al. (2020, BRM): unipolar markers; N = 725
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Data of Arias et al. (2020, BRM): unipolar markers; N = 725

Correlation btw. Neuroticism adjective pair ‘envious’ vs. ‘not envious':
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Data of Arias et al. (2020, BRM): unipolar markers; N = 725

Correlation btw. Neuroticism adjective pair vs.
Sample cor MLE
Parameter Estimate @ SE  Estimate SE
p —0.562 0.031 —0.618 0.025
T1,1 —1.370 0.061
T2 —0.476 0.043
T13 0.121 0.042
T4 1.060 0.054
21 —0.857 0.049
2,2 —0.004 0.041
723 0.608 0.045

T2 1.580 0.071



Data of Arias et al. (2020, BRM): unipolar markers; N = 725

Correlation btw. Neuroticism adjective pair

VS.

Sample cor MLE Robust
Parameter Estimate @ SE  Estimate @ SE  Estimate SE
) —0.562 0.031 —0.618 0.025 —0.925 0.062
T11 —1.370 0.061 —1.570 0.276
T1,2 —0.476 0.043 —0.560 0.203
T13 0.121 0.042 0.109 0.187
T14 1.060 0.054 1.080 0.105
™1 —0.857 0.049 —0.905 0.073
2.2 —0.004 0.041 —0.040 0.091
T3 0.608 0.045 0.640 0.364
T4 1.580 0.071 1.171 0.811
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Frequency of “envious” vs. “not envious in Arias et al. (2020)
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Discussion and conclusion
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Discussion and conclusion

» Developed robust estimator for categorical data
» Generalizes MLE, categorical analogue to M-estimation
» Proposed diagnostic test to identify “outlying" cells (omitted)

» R package robcat will be on CRAN soon:
https://github.com/mwelz/robcat

» Relevant special cases: SEMs, reliability coefficients, counting
processes. .. = possibly new research line!

19
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Thank you! QR code to the paper, Welz (2024):

[=]
[=]
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Robust choice of p(-) (Ruckstuhl & Welsh, 2001, AoS)

For x = fy(z)/ps (8) a Pearson residual at 6, use function

) xlog(x) if x € [0, ],
plx) = {X(Iog(c) +1)—c ifx>c,

where the constant ¢ € [1, 00] is prespecified
> If x € [0, c]: Good fit, loss behaves like MLE = no need to downweight
» If x > ¢: Bad fit = downweight influence to be linear

» Similar idea as Huber loss: linear loss in tails, quadratic in center



Assumptions

Al. c e [l,+oq],
A2. © C RY is compact,

A3. Bg = argmingece L(0, 1) is a unique global minimum, and 6, € int ©, where
f.(z) = (1 — €)p, (0.) + ch(z) is the sampling distribution,

A4. p,(0) is continuously differentiable with respect to @ € ® and twice
differentiable at Oy, for all cells z € Z,

A5, ‘

8’5—6(,")“ <ooforall@c®,zc Z,

A6. p,(0)>0forall@ e ®, zc Z.



Assumptions (cont'd)

Assumption Set 1
A7 #{ze Z:f(z) >0} > d,

A8. L(0,t.) is convex in a neighborhood of 6y,

A9. pf((;) #c foranyze Z.



Consistency

x(log(c)+1)—c ifx>c.

Oy = arg‘rgr;i(g E;p(;/:((z)))pz 0) p(x) = {Xlog(X) if x € [0, ],

Under Assumptions A1-A6, it holds true that
é\N E} OOa

as N — oo.



Asymptotic normality

Under Assumption Set 1, it holds true that
VN (éN _ 00> N Nd(O, 5 (90)),

as N — oo, where
2 (0)=M(0)UO)M(6) .

32 (8p) can be consistently estimated by plug-in principle.



Diagnostic test for identifying outlying cells

Is the model misspecified for an individual event z € Z7 Test formulation:

Ho : pz (60) = £-(2) vs. Hi : p, (60) < £(2)

Corollary (Limit distribution of test statistic)
Under Ho : p, (60) = £-(z) and the assumptions of Theorem 2, the test statistic

p: (On) — £(2)
\/02(60) /N

.
converges to N(0,1) as N — oo, where 02 (0) = (a,g_(go)> 3 (0) <‘9”5—g")).

Tn(z) =

That is, the test rejects if the model is misspecified for z, and otherwise does not



Definitions used in theorems

W(0) = <szl(9)]1 {:(f;)) € [0,c]} s, ()1 {;iz(g)) e [O,c]} )

w(x) =1{x €]0,c]} + cl {x > c} /x,

Q:(6) = pzte) (00%0“’2 (0)) ~5(0)s(0)




2nd order equivalence with MLE at true model

Lemma
Under Assumption Set 1, it holds true that

imU (6o(c)) = J(0.)  and

el0
. ] J(.) ifc>1
iy M (8o(2)) = {J (8.) = Xyen 1 {h(2) > pr (6)} 2 (6.) 52 (6.) 52 (6.)T ifc =1

This lemma implies that at the true model, the asymptotic covariances of 8y
and 6,MF coincide



Influence function (1/3)

Definition (Influence function)

Let By be an estimator that estimates a model {p () : 8 € ©} with finite
support Z. Evaluated at model density p, (€),0 € 6, the estimator’s influence
function at a data point z € Z is given by

IF (2.00.p(0)) —tim 2= O 18 _ 05 (1), (0)en)

e=0

where Z 5y — A,(y) = 1{z = y} is the point mass density at point z.



Influence function (2/3)

Grant Assumption Set 1. Then, the influence function of estimator Oy at
cell z € Z and true density p(6.) is given by

IF <z, g MLE p(e*)> ifc>1,

IF (2.00.p(6.)) = [J(e*) —p:(0.)s,(0.)s, (e*f}_lsz (6.)p(0.) ifc=1,

where
IF (z, gMLE (9)) —J(0) s, (0),
J (0) == Z Qz(g)pz (0)

zeZ



Influence function (3/3)

|1F]

o - row &

|IF|



Simulation design (1/2)

For misspecification fraction ¢,

» Sample fraction 1 — & from bivariate standard normal with p, = 0.5
» Sample fraction £ from N, ((2, -2)7, I)

» Use discretization process to obtain (Z;, Z5)

— Cells (Z1, Z2) = (5,1),(5,2),(4,1) are inflated, but some overlap with
model distribution



Simulation design (2/2)




Simulation: Correlation of bivariate 5-point scale

Estimator - Robust £ MLE

€=0 €=0.1 £€=0.2
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Analysis of “envious” vs. “not envious” in Arias et al. (2020)

Relative
Frequency
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Estimated correlation matrix for the Neuroticism scale

|Robust polycor| — |Sample corr| H
00 01 02 03

N1_P-
N1 N- » Robustly estimated
N2_P - correlations are all stronger
N2_N- (ave. 0130)
N3_P- » MLE polyhoric correlations
N3_N- are similar to sample
NP -. correlations (expected; cf.
4N Rhemtulla et al., 2012)
N5 _P-
N5_N-
N6_P-
N6_N-

NT P NI NN2 PN2NN3PN3NN4PNANNS PN5S NNG P N6 N



Loadings of the neuroticism factor in data of Arias et al. (2020)

[tem Sample corr Robust polycor

N1 P 0.70 0.80
N1 N 0.56 0.66
N2 P 0.76 0.86
N2 N 0.68 0.78
N3 P 0.77 0.88
N3 N 0.66 0.74
N4 P 0.35 0.46
N4 N 0.46 0.54
N5 P 0.69 0.77
N5 N 0.67 0.73
N6 P 0.57 0.66
N6 N 0.64 0.71
Proportion variance 0.40 0.53

Cronbach’s « 0.89 0.93
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