Misguided Effort

Christoph Drobner¹, Yesim Orhun²

August 26 2024

¹Technical University of Munich ²University of Michigan

EEA-ESEM Rotterdam

Motivation

- You submitted to a top journal
- You think highly about the quality of your work
- You receive a rejection

- You submitted to a top journal
- You think highly about the quality of your work
- You receive a rejection
 - What do you learn about the quality of your work and the fairness of the review process?
 - How do these inferences affect your future effort?

- Psychology literature: people attribute their achievements to their own merits but their failures to external fundamentals (see Mezulis et al., 2004, for a review).
 - Rejection: "the review process is unfair"
 - Acceptance: "my work is great"

- Heidhues et al. (2018) and Hestermann and Le Yaouanq (2021) model attribution bias as an inference problem.
 - Individuals observe an outcome, but cannot identify the effect of one's ability (e.g., scholarship quality) and the external fundamental (e.g., fairness of review process).
 - Individuals with miscalibrated priors about their ability draw misguided inferences about the external fundamental.
 - Misguided inference leads to suboptimal decision making.

- Heidhues et al. (2018) and Hestermann and Le Yaouanq (2021) model attribution bias as an inference problem.
 - Individuals observe an outcome, but cannot identify the effect of one's ability (e.g., scholarship quality) and the external fundamental (e.g., fairness of review process).
 - Individuals with miscalibrated priors about their ability draw misguided inferences about the external fundamental.
 - Misguided inference leads to suboptimal decision making.
- Experiments confirm misguided inference (Goette and Kozakiewicz, 2022; Marray et al., 2020) but they do not study the causal impact on decision making.

Biased beliefs about one's ability

 \rightarrow Misguided inferences about environment

 \rightarrow Future decisions

Biased beliefs about one's ability

```
\rightarrow Misguided inferences about environment
```

 \rightarrow Future decisions

Labor Market Setup:

- Work on an ability-based task
- Hold biased beliefs about how skilled they are
- Receive feedback
- Can make inferences about the returns to effort from feedback
- Work on a subsequent effort-task

Experimental Design

- Logic quiz with 12 questions (Civelli et al., 2018)
- EASY and DIFFICULT quiz versions (Moore and Healy, 2008).
 - Questions 1-7 are common.
 - Questions 8-12 vary across EASY and DIFFICULT quiz versions.

Question (3/12)

- Beliefs about likelihood of scoring in the top half among a group of 4.
- Performance prior: $\gamma \in (0,1)$
- Incentivized with the Binarized Scoring Rule (Prize of 1\$).

- Participants receive payments from two different evaluators (evaluator 1 and evaluator 2):
 - Performance Evaluator: \$2 if they score in the top half, and \$0 otherwise
 - Random Evaluator: \$2 if a coin toss lands on heads, and \$0 otherwise
- We randomly assign these roles to evaluator 1 and evaluator 2.

- Payoff feedback is based on logic quiz performance, the outcome of the coin toss and the randomly assigned evaluator roles:
 - BOTH HIGH (Evaluator 1: \$2, Evaluator 2: 2) \rightarrow high ability type.
 - BOTH LOW (Evaluator 1: \$0, Evaluator 2: $0) \rightarrow 0$ ability type.
 - MIXED 1 (Evaluator 1: \$2, Evaluator 2: \$0)
 - MIXED 2 (Evaluator 1: \$0, Evaluator 2: \$2)
- $\mathrm{MIXED}~1$ and $\mathrm{MIXED}~2$ groups do not learn their ability type and proceed to period 2.

Work on a real effort-task

- Choose how much to work (1–25 decoding tasks).
- Payment is based on evaluator 1 type from period 1:
 - If evaluator 1 is chance based, no payment (zero returns to effort).
 - If evaluator 1 is performance based, 10 cents per task (positive returns to effort).

Please enter text decoded from the number. This is achieved by looking up the corresponding letter for each number.

L	s	x	R	т	Е	z	I	w	н	
0	8	1	5	6	3	9	7	4	2	
03976										

- Beliefs about likelihood that evaluator 1 is the performance based evaluator (returns to effort beliefs).
- Returns to effort beliefs: $heta \in (0,1)$

Theoretical Predictions

• MIXED 1 and MIXED 2 payoff feedback provides no information about participants' relative performance in the logic quiz.

$$Pr(H|s_{i} = H, s_{-i} = L) = \frac{Pr(H)Pr(s_{i} = H, s_{-i} = L|H)}{Pr(s_{i} = H, s_{-i} = L)} = \gamma$$
(1)

- $\bullet~\rm MIXED~1$ and $\rm MIXED~2$ payoff feedback flips the direction of learning about the returns to effort.
- Mixed 1:

$$Pr(P|s_1 = H, s_2 = L) = \frac{Pr(P)Pr(s_1 = H, s_2 = L|P)}{Pr(s_1 = H, s_2 = L)} = \gamma$$
(2)

• Mixed 2:

$$Pr(P|s_1 = L, s_2 = H) = \frac{Pr(P)Pr(s_1 = L, s_2 = H|P)}{Pr(s_1 = L, s_2 = H)} = 1 - \gamma$$
(3)

Misguided inference

- Definitions:
 - Prior Bias: $\Delta \gamma \stackrel{\text{def}}{=} \gamma \gamma^*$; Overconfidence: $\Delta \gamma > 0$; Underconfidence $\Delta \gamma < 0$
 - Misguided inference: $\Delta \theta \stackrel{\text{def}}{=} \theta \theta^*$
- Bayesian misguided inference:
 - MIXED 1: $\Delta \theta = \theta \theta^* = \gamma \gamma^* = \Delta \gamma$
 - MIXED 2: $\Delta \theta = \theta \theta^* = 1 \gamma (1 \gamma^*) = \gamma^* \gamma = -\Delta \gamma$

- Definitions:
 - Prior Bias: $\Delta \gamma \stackrel{\text{def}}{=} \gamma \gamma^*$; Overconfidence: $\Delta \gamma > 0$; Underconfidence $\Delta \gamma < 0$
 - Misguided inference: $\Delta \theta \stackrel{\text{def}}{=} \theta \theta^*$
- Bayesian misguided inference:
 - MIXED 1: $\Delta \theta = \theta \theta^* = \gamma \gamma^* = \Delta \gamma$
 - MIXED 2: $\Delta \theta = \theta \theta^* = 1 \gamma (1 \gamma^*) = \gamma^* \gamma = -\Delta \gamma$
- Hypothesis 1: Overconfident individuals will be positively misguided in MIXED 1 and negatively misguided in MIXED 2. Underconfident individuals will be negatively misguided in MIXED 1 and positively misguided in MIXED 2. More generally, the difference in misguided inference between MIXED 1 and MIXED 2 increases monotonically in prior bias.

Assume that the expected utility from exerting effort *e* depends on expected returns to effort provision, θωe, and convex costs of effort, c(e):
 u(e, θ) = θωe - c(e)

- Assume that the expected utility from exerting effort *e* depends on expected returns to effort provision, θωe, and convex costs of effort, *c*(*e*):
 u(*e*, θ) = θω*e c*(*e*)
- Hypothesis 2: The expected utility-maximizing effort is monotonically increasing in returns to effort beliefs θ and consequently monotonically increasing in the degree of misguided inference Δθ.

Causal inference

- Our design orthogonally manipulates
 - Extent of prior bias, by quiz difficulty assignment
 - Direction of misguided inference, by evaluator type assignment
- Without confounding effort provision
 - No learning about ability
 - No motivational effects through payoff differences

Results

- N=2,011, US sample on Prolific, half of them women.
- N=1,004 received mixed payoff feedback in period 1 and proceed to period 2
- Completion fee: \$2; average bonus payments: \$1.7.
- Treatments are balanced by observable characteristics.

- Higher confidence in EASY compared to DIFFICULT (*p* < 0.001).
- Average performance priors in EASY: 66.7%.
- Average performance priors in DIFFICULT: 51.4%.

- Higher overconfidence in EASY compared to DIFFICULT (p < 0.001).
- Average prior bias in EASY: 15.4%.
- Average prior bias in DIFFICULT: 1.7%.

- With aggregate overconfidence, hypothesis 1 predicts higher returns to effort beliefs in MIXED 1 compared to MIXED 2.
- Why? Overconfident individuals infer that evaluator 1 is more likely performance based when they receive a high payoff from evaluator 1 (MIXED 1).

Returns to effort beliefs (θ)

- Higher returns to effort beliefs in MIXED 1 compared to MIXED 2 (p < 0.001).
- Average returns to effort belief in MIXED 1: 64.0%.
- Average returns to effort belief in MIXED 2: 43.9%.

- Higher misguided inference in MIXED 1 compared to MIXED 2 (*p* < 0.001).
- Average misguided inference in MIXED 1: 13.2%.
- Average misguided inference in MIXED 2: -5.9%.

Are subjects perfect Bayesians?

Decomposition of misguided inference

Misguided inference as a function of prior bias

Panel A: Overconfident Individuals

Panel B: Underconfident Individuals

Misguided inference $\Delta \theta$ as a function of prior bias $\Delta \gamma$

Dependent Variable:	Misguided Inference			
	(1)	(2)		
Mixed 1	19.088***	19.091***		
	(1.704)	(1.896)		
Prior Bias	-0.759***	-0.228		
	(0.043)	(0.226)		
Mixed 1*Prior Bias	1.655***	0.771***		
	(0.053)	(0.279)		
Constant	-5.876***	-5.885		
	(1.352)	(1.521)		
Observations	1,004	1,004		
Instrumental Variables	No	Yes		

Do misguided inferences about the returns to effort causally affect effort provision in period 2?

- Distribution is bi-modal: most people either quit after working on one task or work on all 25 tasks.
- MIXED 1 group is more likely to solve maximum (p = 0.011), and MIXED 2 group is more likely to solve minimum (p = 0.003).
- Average decoding tasks solved are different (p < 0.001):
 - Mixed 1: 13.8
 - Mixed 2: 11.8

Dependent Variable:	Tasks Solved			
	(1)	(2)		
Misguided Inference	0.023***	0.108***		
	(0.008)	(0.033)		
Constant	12.716***	12.405***		
	(0.318)	(0.345)		
Observations	1004	1004		
Instrumental Variables	No	Yes		

- We predict the level of effort provision with and without misguided returns to effort beliefs.
- We denote the difference between these predictions *misguided effort*.

Misguided effort

Conclusion

- We show that overconfident individuals attribute poor initial labor market outcomes to low returns to effort in the economic environment, and therefore, put less effort into a subsequent real-effort task.
- Underconfident individuals also learn in a misguided manner and adjust their efforts accordingly, but in the opposite direction.
- With misguided learning, it is hard for meritocracy to work. Initial prior biases and initial feedback may have long-lasting consequences on who succeeds.

- Questions?
- Contact: christoph.drobner@tum.de