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Abstract

Inflation density forecasts are a fundamental input for a medium-term oriented central
bank, such as the European Central Bank (ECB). We show that a quantile regression forest,
capturing a general non-linear relationship between euro area (headline and core) inflation
and a large set of determinants, is competitive with state-of-the-art linear benchmarks and
judgemental survey forecasts. The median forecasts of the quantile regression forest are very
collinear with the Eurosystem inflation point forecasts, displaying similar deviations from
“linearity”. Given that the Eurosystem modelling toolbox is overwhelmingly linear, this finding
suggests that the expert judgement embedded in the projections may be characterized by some
mild non-linearity. Finally, we provide an example of how the model is used in real-time to
gauge the risks to the Eurosystem inflation projections.
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1 Introduction

The mandate of the European Central Bank (ECB) is to maintain price stability over the medium-
term. The medium-term orientation implies that sources of fluctuations with temporary effects
on inflation are likely to be looked through, while driving forces of a more persistent nature may
influence monetary policy decisions. Consequently, the inflation projections, which synthesize
the views of the Eurosystem staff on inflation dynamics, play a pivotal role in shaping monetary
policy decisions. However, economic projections are inherently surrounded by uncertainty, and
policy decisions hinge on a careful evaluation of the likelihood of various hypothetical current and
future scenarios, defined as ”risk assessment”, rather than solely relying on point forecasts.

Modelling inflation dynamics in the euro area continues to pose a challenge, due to the many
potential driving factors of inflation, the difficulty in capturing their relationship with inflation
dynamics and the relatively short historical sample available for econometric analysis (see, for
example, Koester et al., 2021). One of the core debates centers on whether a linear or non-linear
relationship better characterizes the interaction of inflation with its numerous determinants. In
this respect, the expanding literature on macroeconomics@risk underscores the importance of con-
sidering non-linearity in the dynamics of key policy-relevant variables, such as GDP and inflation,
for the soundness of the risk assessment conducted by central banks. In particular, Adrian et al.
(2019) show that the dynamics in the upper and lower quantiles of the GDP predictive density
are associated with the dynamics of comprehensive indices of financial conditions. Carriero et al.
(2016), Chavleishvili and Manganelli (2019), López-Salido and Loria (2020), Adams et al. (2021),
Korobilis et al. (2021), Goulet Coulombe et al. (2022), Kiley (2022), Amburgey and McCracken
(2023a), Amburgey and McCracken (2023b), Botelho et al. (2023), Boyarchenko et al. (2023),
Chavleishvili et al. (2023) and Chavleishvili and Kremer (2023) show that similar considerations
also concern the density forecasts of inflation and other macroeconomic variables.

The comprehensive overview of the Eurosystem economic analysis conducted in Darracq Pariès
et al. (2021) as part of the recent ECB strategy review, reveals the predominant utilization of linear
models within the Eurosystem modeling toolkit. In this paper, we introduce a novel non-linear
model for euro area inflation density forecasting. Specifically, to capture the relationship of a set of
potential predictors and inflation, we employ the quantile regression forest (QRF) of Meinshausen
(2006), which is a variant of the random forest of Breiman (2001). The random forest is an
ensemble technique, combining a number of non-linear predictive models, called regression trees.
Regression trees split the predictor sample into (potentially many) subsets, called “leaves”, and
predict the target variable by computing the average value within each leaf. Quantile regression
forests are based on the same principles but additionally estimate empirical quantiles of the target
variable’s distribution, enabling density forecasting.

Compared to the literature cited above, the QRF can capture more general forms of non-linearity
because it does not assume any specific parametric relationship between predictors and the target
variables. For example, unlike many @risk models, we do not impose linearity on the relationship
between predictive quantiles and their potential determinants. Additionally, the QRF can easily
accommodate a large number of predictors, enabling us to include all potentially relevant infor-
mation for inflation. This flexibility is a significant advantage over current @risk applications,
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which are typically limited to a handful of variables and, to manage a sufficiently comprehensive
information set, have to rely on summary measures of financial or general economic conditions.

We measure headline inflation as the rate of change of the Harmonized Index of Consumer Prices
(HICP), and we also consider a measure of “core inflation”, specifically the rate of change of
the Harmonized Index of Consumer Prices excluding Energy and Food prices (HICPex).1 The
potential determinants of headline and core inflation in our model are broadly inspired by the
Phillips Curve framework and include measures of inflation expectations, cost pressures, real
activity and financial variables.

In our empirical application, we evaluate the QRF in a recursive out-of-sample exercise over an
evaluation sample spanning the last twenty years and ending in December 2022. We focus on
density forecasts up to the one-year-ahead horizon and we compare the accuracy of the QRF
predictions with those from a state-of-the-art linear benchmark (a combination of a large number
of Bayesian VAR models, VARCOMB) and survey forecasts (the ECB Survey of Professional
Forecasters, SPF). Additionally, we compare the median QRF predictions with institutional fore-
casts (the published Eurosystem Inflation Projections, BMPE); for this comparison, we use only
the median QRF, as the institutional forecasts are publicly available as point forecasts. We con-
duct tests of correct calibration of the forecasts as developed by Rossi and Sekhposyan (2019).
We then use the continuous ranked probability score (CRPS) of Gneiting and Raftery (2007), a
proper scoring rule that evaluates both calibration and sharpness, allowing us to rank the different
forecasting methods.

We find that the QRF produces well-calibrated density forecasts for euro area inflation and is
competitive with state-of-the-art linear and survey forecasting methods for headline and, in par-
ticular, for core inflation. The QRF’s predictive performance is notably strong at horizons of up
to six months, but declines compared to linear models and survey forecasts at longer horizons.
For instance, when assessing the predictions for current year inflation conducted over the last two
quarters of the year, QRF density forecasts are much sharper around the true value than the SPF
counterparts. Moreover, the relative forecasting performance of the QRF and VARCOMB varies
over time. The QRF did not perform well during and immediately after the Great Financial Crisis
of 2007-2009, but it outperformed VARCOMB during the extended period of low inflation in the
euro area before the COVID pandemic. These results indicate that euro area inflation dynamics
may exhibit some degree of non-linearity. However, the differences in accuracy between QRF and
VARCOMB are relatively small, suggesting that the non-linearity is relatively mild.

Interestingly, the evidence of non-linearity is stronger for core than headline inflation. Since our
measure of core inflation excludes the energy and the food components of headline inflation, our
results imply that the evidence of non-linearity in energy and food prices is much less compelling
than for the other inflation components. The stronger non-linearity of core inflation is further
highlighted when we examine the contribution of different predictors to the inflation forecasts
using Shapley values (see Shapley, 1952; Strumbelj and Kononenko, 2010; Lundberg and Lee,

1In the rest of the paper, we refer to HICPex inflation as to core inflation. Despite the popularity of ”exclusion
measures” of consumer prices to proxy core inflation, there are numerous other measures of core inflation, with
advantages and shortcomings. Policy-makers typically consider a range of different measures rather than settling
on a single one. For more details, see for example Lenza (2011) and Ehrmann et al. (2018).
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2017; Buckmann and Joseph, 2022). Our analysis of the functional forms relating the different
predictors to inflation shows that most relevant predictors have an essentially linear relationship
with inflation. However, measures of inflation expectations exhibit a state-dependent relation-
ship, particularly with core inflation. We conclude that the QRF is a valuable addition to the
Eurosystem forecasting toolbox. However, it should be seen more as a complement rather than a
substitute for existing methods used to forecast inflation.

Turning to the comparison of the QRF median forecasts with the judgemental Eurosystem infla-
tion forecasts, we find that both sets of forecasts exhibit similar accuracy and dynamics. Specifi-
cally, when examining the gaps between our median VARCOMB forecasts and both the median
QRF and the Eurosystem forecasts - a rough measure of “distance from linearity” - we observe
a strong positive correlation. This suggests that both the QRF and the Eurosystem forecasts
exhibit similar deviations from linearity, despite the Eurosystem’s reliance on an overwhelmingly
linear modelling toolbox. This finding implies that the judgemental component of the Eurosystem
forecasts tends to incorporate a mild non-linearity in the projected inflation dynamics. Overall,
it is remarkable that the QRF produces predictions competitive with those of the SPF and the
Eurosystem forecasts, considering that both the SPF and Eurosystem forecasts also incorporate
expert judgement informed by news on likely future events, such as VAT changes, fiscal plans or
geopolitical developments like the invasion of Ukraine.

We also discuss how the QRF is used to assess the risks surrounding the Eurosystem projections
and illustrate how this assessment played out in real-time over the period of euro area disinflation
that began at the end of 2022 and continued until the first quarter of 2024, the last quarter
for which inflation data is available at the time of writing. Notably, we highlight how the QRF
signalled some downside risks to the Eurosystem inflation projections in the second half of 2023,
which eventually materialized.

In addition to the @risk literature cited above, this paper contributes to the extensive literature
on inflation forecasting and the broader literature on potential non-linearity in inflation dynam-
ics. Regarding the former, comprehensive surveys of the literature can be found in Faust and
Wright (2013) and, more recently, in Banbura et al. (2024). For the latter, a substantial body
of research examines the likelihood of changes in the shape of the Phillips Curve and the factors
that may explain such changes. For an extensive survey and a systematization of the debate,
see Del Negro et al. (2020). Several studies in this literature highlight the differing relationships
between inflation and its determinants in high and low inflation regimes, or generally emphasize
the state-dependence nature of these relationships of inflation with its determinants (see, for ex-
ample Akerlof et al., 1996; Fahr and Smets, 2010; Benigno and Ricci, 2011; Lindé and Trabandt,
2019; Forbes et al., 2021; Clark et al., 2022; Costain et al., 2022; Cavallo et al., 2023; Benigno
and Eggertsson, 2023).

In addition, our paper relates to a growing literature on the virtues of ensemble methods, which
are becoming more and more popular in the econometric literature for prediction (Fernandez
et al., 2001; Avramov, 2002; Sala-I-Martin et al., 2004; Inoue and Kilian, 2008; Bai and Ng,
2009; Wright, 2009; Rapach and Strauss, 2010; Faust et al., 2013; Ng, 2013; Jin et al., 2014;
Varian, 2014; Wager and Athey, 2018; Athey et al., 2019; Clark et al., 2021). Giannone et al.
(2021) demonstrates that ensemble methods can be particularly successful due to their ability
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to effectively manage model uncertainty. Medeiros et al. (2021) shows that the random forest
performs well for US inflation prediction. Compared to that paper, we focus on euro area inflation
and, more importantly, on density forecasts, which are crucial for the risk assessment at the core of
monetary policy decisions. Despite their relevance for policy-making institutions, density forecasts
remain relatively underexplored in the machine learning literature,

The rest of the paper is organized as follows. In section 2, we discuss our empirical strategy.
Section 3 presents the results of our out-of-sample forecasting accuracy assessment. Section 4
examines the contribution of different predictors to our inflation forecasts using Shapley values.
Section 5 analyzes how the QRF was utilized at the ECB for policy analysis and how it performed
in real-time during the period of rapid disinflation that began at the end of 2022 in the euro area.
Section 6 concludes.

2 Empirical models, data and out-of-sample evaluation

2.1 The quantile regression forest

We adopt a “direct” forecasting scheme, which requires to estimate the relationship of inflation
at time t with its determinants at time t-h, for a generic forecasting horizon h. Then, we apply
the estimated model on the data at time t to produce an inflation forecast at time t+h. The
variable that we fit in our model is πht , i.e. the annualized growth rate of the Harmonized Index
of Consumer Prices or of the Harmonized Index of Consumer Prices excluding energy and food
prices (HICP or HICPex, defined as Pt below), at the forecast horizons of 3, 6, 9 and 12 months
ahead (h = 3, 6, 9 and 12):

πht = (12/h) × [ln(Pt) − ln(Pt−h)]

Formally, we would like to estimate a non-linear relationship between our target concept of infla-
tion πht , its lags and a set of determinants xt−h:

πht = m(π1t−h...π
1
t−h−p;xt−h...xt−h−k) + εt

and then obtain an inflation forecast as

π̂ht+h = m(π1t ...π
1
t−p;xt...xt−k)

Rather than tightly parameterizing m(.), we capture quite general forms of non-linearity by
resorting to machine learning techniques. In particular, we estimate the potentially non-linear
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relationship of inflation with its determinants by means of the quantile regression forest (QRF)
developed by Meinshausen (2006), which is a variant of the random forest of Breiman (2001),
allowing for density forecasting.

A quantile regression forest is an ensemble method which combines the results from a certain
(potentially large) number of non-linear models, called regression trees. A regression tree fits a
specific target variable (headline or core inflation, in our case) by repeatedly splitting the sample
of the potential predictors in different sub-samples. Once the final split is achieved, the predicted
value of the target variable associated with a specific sub-sample is represented by the sample
mean or median of the target variable in that sub-sample, called “leaf”, for point prediction. In
our paper, we focus on density prediction, which can be carried out by computing the empirical
quantiles of the target variable associated with each leaf, as suggested in Meinshausen (2006). The
sub-sample splits in a regression tree are obtained through a process defined as binary recursive
partitioning, an iterative process that splits the data into partitions. The process continues
until the splits achieve an improvement in terms of a statistical criterion, such as the mean
squared error in the fit for inflation (our target variable) or, alternatively, until the splitting
process hits a stopping rule which, in our case, is that any leaf contains at least ten data points.
Trees are simple models yet they tend to overfit, which makes them bad predicting tools. Many
“relatively” uncorrelated regression trees are built to maximize the advantages of combining them,
via the following two steps. First, the observations from the original data are bootstrapped with
replacement before constructing any new tree. Notice that inflation may be auto-correlated, and
we also include two lags of inflation in the inflation determinants, so that the bootstrap procedure
does not impair the ability of our model to account for the potential autoregressive dynamics of
inflation. Second, the splits are computed, at each node, only by looking at a randomly selected
set of the regressors. The default choice for the size of the latter set, which we take in this paper,
is to draw a third of the variables for each split. Finally, we set the number of combined regression
trees, i.e. the size of the forest, to the default value of 500.2

2.2 Benchmark models

We compare the predictions from the quantile regression forest to several benchmarks.

First, we consider a state-of-the-art linear model, i.e. an equally weighted combination of 500
VAR models, which we define as VARCOMB. We choose as benchmark the combination of indi-
vidual BVAR models to be as close as possible to the QRF, which is also a combination of models,
i.e. regression trees. The main difference between VARCOMB and QRF lies in the possible non-
linearity captured by the latter. Each individual VAR model includes inflation (headline or core),
plus four randomly selected indicators from our dataset. The data are stationarized, before enter-
ing the VAR models, and the latter are specified with two lags to mimic the procedures we follow
in the QRF. The models are estimated using bayesian techniques. The prior distributions for the
lag coefficients and error variances are in the Normal-Inverse Wishart class and are parameterized
to shrink the model estimates toward the parameters of a random walk model, in the tradition

2Probst et al. (2019) discusses the default specification choices for random forests and quantile regression forests
and also elaborates on the techniques to tune the model.
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of the Minnesota prior (Litterman, 1979; Doan et al., 1984; Banbura et al., 2010).3 The prior
hyperparameters are treated as random variables and their value is drawn from their posterior,
following Giannone et al. (2015).

Our second benchmark consists in the headline and core inflation density forecasts from the
ECB Survey of Professional Forecasters (SPF).4 The SPF is conducted on a quarterly basis and
its participants are experts affiliated with financial or non-financial institutions based within
Europe. For this paper, we gathered the historical vintages, aggregated across experts, appearing
at the beginning of February 2002 until November 2022, for headline inflation, and February 2017
to November 2022, for core inflation. The density forecasts are available for two definitions of
inflation, i) year-on-year inflation5 and ii) inflation in the current year.6 In terms of methodology,
the experts use a mix of models and expert judgement and provide a probabilistic assessment of
inflation falling in certain pre-specified ranges of values.

Our third benchmark consists in the Eurosystem headline and core inflation projections (BMPE,
in short).7 These institutional forecasts are also prepared on a quarterly basis and are published
at the beginning of the third month of each quarter. For these forecasts, we look at the vintages
published from March 2002 to December 2022, both for headline and core inflation. Notice that
the BMPE do not provide a density forecast for a large part of the sample, so we only compare
these projections to the point forecasts of the QRF. In terms of methodology, the BMPE are also
based on model analysis complemented by expert judgement.

In our forecasting evaluation, we adapt the data availability of the QRF and the VARCOMB
models to mimic the data availability of the SPF and the BMPE forecasters. Appendix A provides
more details on how we match the timing across the different sets of forecasts.

For our assessment of the density forecasts, it is convenient to work with a probability density
function. Therefore, for all our density forecasts (QRF, VARCOMB and SPF), we follow the
practice in the literature (see, for example, Adrian et al., 2019) and fit a skew-t distribution
(Azzalini and Capitanio, 2003).8 As also shown in Montes Galdon et al. (2022), the skew-t
distribution is an appropriate choice because it is a flexible parametric density that allows for fat
tails, as well as asymmetries.

In the appendix B, we also provide a comparison of the median QRF forecasts with the forecasts
from a random walk model (RW), a popular benchmark of non-forecastability, which as in Atkeson

3The data are stationary, so we center the prior on all the lag coefficients to zero.
4Details on the survey and the historical data are available at https://www.ecb.europa.eu/stats/ecb_surveys/

survey_of_professional_forecasters/html/index.en.html.
5For example, for the vintage in the first quarter of the year “t”, the experts provide an assessment of inflation

between the fourth quarter of year “t-1” and the fourth quarter of year “t”.
6The concept of inflation in the current year “t” is, effectively, the average year-on-year growth rate of inflation

over the four quarters of year “t”.
7See https://www.ecb.europa.eu/pub/projections/html/index.en.html for more information on the BMPE

projections.
8See the details in appendix A. Strictly speaking, we would not need to fit a distribution to the VARCOMB

forecasts, which are already a draw from the posterior distribution of VARCOMB. We fit the skew-t distribution
also for VARCOMB only for comparability purposes, but all the results in the paper are robust to using the original
posterior draws.
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and Ohanian (2001), forecasts inflation at time “t+h” as

π̂12t+h = π12t

2.3 Data

Beside headline HICP and HICP excluding energy and food, our two target variables, our database
contains 60 variables. The data is obtained from the ECB Statistical Data Warehouse (SDW)
and comes from a variety of original sources. Broadly speaking, the dataset is inspired by the
Phillips Curve framework, covering different areas of the economy, and the choice of the variables
is similar to de Bondt et al. (2018).

Specifically, we include measures of cost pressures (for example, commodity prices, exchange rates,
wages and producer prices); survey and hard data on economic activity (for example, European
Commission surveys on prices, employment expectations, confidence measures, industrial produc-
tion, euro area business cycle indicators, various productivity measures); measures of inflation
expectations (for example, survey and market-based measures over different forecast horizons);
and financial variables (for example, interest rates, monetary aggregates, asset prices, bank lend-
ing).

Our sample ranges from December 1991 to December 2022 and the frequency of the data is
monthly. We stationarize the data, when needed. We also de-seasonalize the data in accordance
with our out-of-sample logic. Specifically, for all vintages of our out-of-sample exercise, we es-
timate the seasonal components by using only the data which would have been available to a
forecaster in that vintage. See appendix A for more details.

2.4 Out-of-sample evaluation

Our out-of-sample exercise is based on a recursive updating scheme. When implementing the
recursive scheme, we align with the date of publication of the survey and institutional forecasts,
which have a quarterly frequency. In other words, for the sake of the comparison with those
benchmarks, we run the QRF and VARCOMB only once per quarter, and with a data availability
that is comparable to that of the SPF and the BMPE forecasters.9

Specifically, first, we estimate our models with data up to December 2001 (which is our first
“t”), as the SPF first cut-off date is around mid-January 2002. Instead, when comparing to the
BMPE, we estimate using data up to January 2002. We produce forecasts for inflation at the
three, six, nine and twelve months horizon (t+h). Then, we continue to update the estimation
sample by adding one quarter (effectively, three months) at a time, and we repeat all the steps

9Notice, however, that as our data is ex post revised, we are not able to reproduce the exact same data releases
forecasters would have in real-time.
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of the forecasting exercise until exhaustion of the sample. Our evaluation sample ranges until
December 2022.10

The target variable for which we compute our measures of forecasting accuracy, both for headline
and core HICP, is defined in terms of year-on-year growth rates. We adopt this convention because
some of the benchmarks against which we compare (for example, the BMPE) are not seasonally
adjusted. In other words, for the generic horizon h, we compute the measures of forecasting
accuracy in terms of the variable11

πtargett+h = ln(Pt+h) − ln(Pt+h−12)

The only exception to this rule is for the exercise in which we compare our density forecasts with
those of the SPF for the current year, where we conform to the practice of the SPF, which reports
(headline and core) inflation in the current year in terms of the average year-on-year growth rate
over the four quarters of the year.

In order to gauge the ability of the different models to capture the dynamics of inflation in different
regimes, we focus both on the average accuracy over the whole sample and on the evolution of the
measures of accuracy over time (Giacomini and Rossi, 2009, 2010; Rossi and Sekhposyan, 2016).

3 Results

Figure 1 reports the year-on-year growth rates of HICP (solid line) and HICPex (dashed line),
our target measures of headline and core inflation.

The figure shows the different regimes through which euro area inflation went over time. Notably,
after the convergence toward the level of about 2% achieved in the early 90’s, both headline
and core inflation were quite stable until the financial crisis of 2007-2009. In the run-up to the
financial crisis, headline inflation markedly increased, fueled by a large increase in commodity
prices, while core inflation remained stable. The recession ensuing from the financial crisis led to
a sudden and large drop in headline inflation and a more delayed slowdown in core inflation. After
the Great Recession and the initial rebound of inflation, headline and core entered a protracted
period of relatively low inflation. Finally, the post-pandemic environment has been characterized
by a sudden increase in both headline and core inflation to levels which, especially for headline
inflation, are unprecedented in the euro area sample. Kuik et al. (2022) describes the role played
by the turmoil in energy markets caused by the Russian invasion of Ukraine for the increase in
euro area inflation. After the initial boost to inflation affecting mainly the energy component of
inflation, the upside pressure on consumer prices became more broad based and, in the course of
2022 has affected the whole basket of prices, leading to a strong increase also of core inflation12.

10The evaluation of the QRF and VARCOMB forecasts, released at the monthly frequency, gives the same results
as the evaluation based on the quarterly frequency and is available upon request.

11It may be worth reminding here that, as described above, to produce a forecast for “t+h” the variable we fit
in our models is instead the annualized growth rate of prices between “t-h” and “t”.

12See Giannone et al. (2014) for a quantification of the pass-through of commodity price shocks to core inflation
components
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Figure 1: Headline and Core Inflation
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Note: Headline inflation: black solid line; Core inflation: blue dashed line. Inflation is defined in terms of year-on-
year growth rates of prices and the sample ranges from January 1993 to December 2022.

3.1 A comparison of the density forecasts of QRF versus state-of-the-art linear
and judgemental forecasts

As a first step of our forecasting evaluation, we assess whether the density forecasts produced by
the QRF, the VARCOMB and the SPF are correctly calibrated. A density forecast is correctly
calibrated if, once it “assigns a certain probability to an event, then the event should occur with
the stated probability over successive observations” (Elliott and Timmermann, 2016).

Defining as p(yt) a generic density forecast, we assess its correct calibration by testing whether
the probability integral transform (the cumulative density function corresponding to p(yt), PIT
in short) of the realizations of the yt process is distributed as an U(0, 1) (Diebold et al., 1998).
Several methods to test for correct calibration have been proposed in the literature (see, for
example Diebold et al., 1998; Berkowitz, 2001; Corradi and Swanson, 2006; Hong et al., 2007;
González-Rivera and Sun, 2015; Knüppel, 2015). We rely on the test procedure described in
Rossi and Sekhposyan (2019), based on the Kolmogorov-Smirnov test, which has also a graphical
representation.13 Figure 2 presents the results for headline inflation and Figure 3 for core inflation.

We accept the null hypothesis that the QRF, VARCOMB and SPF density forecasts for headline

13Notice that our forecasts are multi-step, since we look at forecast horizons ranging from three to twelve months
ahead. Hence, for our tests we follow the suggestion of Rossi and Sekhposyan (2019) and we compute critical values
from a block version of the weighted bootstrap of Inoue (2001). The computations are carried out by using the
replication codes kindly provided in Rossi and Sekhposyan (2019).
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Figure 2: Headline Inflation, test of uniformity of PITs
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Note: Red lines: 1% critical values of the Kolmogorov-Smirnov test of PIT uniformity (dashed) and 45% degree
line; Black line: Cumulative distribution function (CDF) of the PITs. If the probability density function of the
PIT is a U(0,1), the CDF should be the 45% degree line. Left Column: QRF; Middle Column: VARCOMB; Right
Column: SPF. The four rows correspond to the four forecasting horizons in the paper.

inflation are well calibrated. For core inflation, we have a slightly different picture. Both the QRF
and VARCOMB14 are less well calibrated, and for VARCOMB we also fail to accept the null of
well calibrated forecasts for the forecasting horizons beyond three months. As in the empirical
application of Rossi and Sekhposyan (2019), we find that the VARCOMB forecasts tend to be
positively biased, especially in the last decade before the pandemic (see also figure 5).

Calibration is a desirable property for density forecasts. However, Hamill (2000) highlights how
calibration is only a necessary condition for a model to mirror the ideal forecaster, i.e. to per-
fectly capture the actual cumulative distribution function. Gneiting et al. (2007) argues that
maximizing sharpness, given calibration, helps to better approximate the ideal forecaster. For
this reason, we also evaluate the relative accuracy of the density forecasts by a proper scoring
rule, i.e. the continuous ranked probability score (CRPS) of Gneiting and Raftery (2007). The
CRPS measures the “distance” of the predictive cumulative distribution function from the empir-
ical cumulative distribution function associated with the observations of the target variable. The
lower the CRPS, the more accurate a specific density forecast. Scoring rules such as the CRPS
measure simultaneously calibration and sharpness (i.e. the concentration) of density forecasts.
Hence, looking at the CRPS allows us to complement the assessment of calibration conducted
above. Another advantage of scoring rules is that they also allow us to rank different models.
Table 1 reports the results for headline (Panel A) and core inflation (Panel B).

14The SPF euro area core inflation forecasts are only available since 2017 and, hence the sample at our disposal
is too short for a reliable assessment of the forecast accuracy.
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Figure 3: Core Inflation, test of uniformity of PITs
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Note: Red lines: 1% critical values of the Kolmogorov-Smirnov test of PIT uniformity (dashed) and 45% degree
line; Black line: Cumulative distribution function (CDF) of the PITs. If the probability density function of the
PIT is a U(0,1), the CDF should be the 45% degree line. Left Column: QRF; Middle Column: VARCOMB; Right
Column: SPF. The four rows correspond to the four forecasting horizons in the paper.

Table 1: CRPS of different models for headline and core inflation

Horizon QRF BVAR SPF

Panel a: Headline Inflation

h=3 0.29 0.28

h=6 0.50 0.49

h=9 0.74 0.67

h=12 0.93 0.88 0.87

Panel b: Core Inflation

h=3 0.14 0.14

h=6 0.23 0.24

h=9 0.31 0.32

h=12 0.37 0.39

Note: CRPS for QRF (second column), VARCOMB (third column) and SPF (fourth column). The SPF are only
available for the one-year-ahead forecasting horizon.

For headline inflation, we find that the QRF and VARCOMB have almost the same accuracy at
the horizons of three and six months ahead. For the longer horizons, instead, the VARCOMB is
more accurate than the QRF. For core inflation, instead, the QRF shows either a comparable or
a slightly more accurate forecast accuracy than VARCOMB at all forecasting horizons. In gen-
eral, our results suggest that the QRF is competitive with the state-of-the-art linear benchmark,
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particularly at the short horizons.

When we restrict our attention to the target defined in terms of year-on-year growth rates, the
comparison with the SPF can only be carried out for the horizon of one year ahead and headline
inflation. At that horizon, the accuracy of the SPF density forecasts is comparable to that of
VARCOMB and it is superior to that of the QRF.

In order to get an idea of how the QRF compares to the SPF at shorter horizons than one year
ahead, we assess the relative accuracy of the QRF and the SPF forecasts to predict inflation over
the current year, as defined in sub-section 2.2. The prediction of inflation over the current year is
reported in the SPF at each quarter of the year and, hence, it allows us to assess the SPF density
forecasting accuracy at horizons which are shorter than one year ahead. Figure 4 below reports
the charts with the observed average inflation (headline inflation, left and core inflation, right)
for QRF and the SPF.

Figure 4: Headline and core inflation, density forecasts of QRF and SPF for the current year
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Note: Red Area: 16th to 84th quantile of the QRF, current year for headline inflation (left panels) and core inflation
(right panels); Dashed Lines: 16th to 84th quantile of the SPF, current year for headline inflation (left panels) and
core inflation (right panels). The four rows correspond to the four quarters of each year in which the assessment is
made.

For headline inflation, we have data over the 2002-2022 sample, while core inflation results are
based on a shorter sample, ranging from 2017 to 2022. Interestingly, the QRF is as accurate or,
especially in the third and fourth quarter of the year, more accurate than the SPF. In particular,
QRF density forecasts are sharper around the actual value of inflation than the SPF. To appreciate
the quantitative relevance of this point, Table 2 reports the CRPS for current year headline
inflation forecasts of the QRF and the SPF.15

15For core inflation we have too few points, so we don’t report CRPS.
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Table 2: CRPS of QRF and SPF for current year headline inflation forecasts

Quarter QRF SPF

Q1 0.56 0.61

Q2 0.25 0.33

Q3 0.18 0.29

Q4 0.08 0.21

Note: First column: quarter of the year in which the forecast is produced; Second column: CRPS of QRF; Third
column: CRPS of SPF.

Clearly, the QRF is more accurate than the SPF for short horizon forecasts. While this assessment
has some limitations, because the SPF is conducted in real-time and we use ex post revised data
for the QRF, it should also be noticed that the SPF is a judgemental forecast and it can make
use of valuable information about the future which is not embedded in the QRF information set.
Hence, it is quite remarkable that the QRF has a comparable, if not better, forecasting accuracy
than the SPF.

Overall, these results suggest that the QRF is a valid addition to the Eurosystem toolbox for infla-
tion forecasting. Given the comparable accuracy with state-of-the-art linear models, the QRF is
to be seen more as a complement rather than a substitute for the overwhelmingly linear Eurosys-
tem forecasting toolbox. On the more general issue whether inflation dynamics are characterized
by non-linearity, our results suggest that such non-linearity is probably not pervasive, but also
that a mild non-linearity cannot be excluded, especially for core inflation.

In order to gauge the ability of the different models to capture the dynamics of inflation in different
regimes (Giacomini and Rossi, 2009, 2010; Rossi and Sekhposyan, 2016) and, hopefully, to shed
further light on the type of non-linearity in euro area inflation dynamics, figure 5 presents the
CRPS of QRF and VARCOMB evaluated over rolling windows of three years. Again, we focus
here on the horizon of six months ahead for both headline inflation (left panel) and core inflation
(right panel), for brevity.

Focusing first on headline inflation, VARCOMB is better able than QRF to account for the quick
inflation rebound post Great Recession, detecting earlier the inflation trough and having been
less reactive than the QRF throughout the crisis period. This result is in line with Ferrara et al.
(2015) and Bobeica and Jarociński (2019) which show that linear models (with potentially large
shocks) are able to accurately describe the inflation dynamics around the Great Recession. At
the same time, the QRF adapts much faster than the VAR forecasts to the prolonged period of
low inflation characterizing the pre-COVID decade. The accuracy of the non-linear model in this
episode suggests that low inflation regimes may be characterized by different inflation dynamics
than high inflation regimes, as hinted in Forbes et al. (2021), although our evaluation sample is
relatively short, making the identification of high and low inflation regimes potentially challenging.
Over the most recent sample, both the QRF and VARCOMB had some difficulty to capture the
high inflation regime.

Interestingly, the right panel tells a different story for core inflation. Notably, for core inflation the
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Figure 5: CRPS, three years rolling window, headline inflation at six months horizon
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Note: Red solid line: QRF; Black dashed line: VARCOMB. The value on the vertical axis at each point refers to
the average CRPS over the current quarter and the previous eleven quarters.

QRF is superior to VARCOMB over most of the sample. The main difference between headline
and core inflation is that the latter excludes the energy and the food prices from the HICP, two
components which are obviously very affected by the dynamics of global commodity prices. Hence,
considering together the results for headline and core inflation, our evidence suggests that the
direct effects of commodity prices on headline inflation, especially via the energy components, are
characterized by linear dynamics. When such direct effects of commodity prices are predominant
for the dynamics of headline inflation, they dominate the non-linearity in the dynamics of the
core inflation sub-component, making a linear model a competitive forecasting model for headline
inflation in that regime.

3.2 Comparison of point forecasts with BMPE

The Eurosystem inflation forecasts (BMPE) have been reported as a point forecast for a large
part of the sample under analysis and, hence, we will limit ourselves to a comparison of point
forecasts. For the QRF, we consider the median of the density forecast distribution as point
forecast. Table 3 reports the root mean squared errors (RMSE) for the QFR (left column) and
the BMPE (right column), both for headline and core inflation.

The QRF point forecasts are generally comparable in accuracy to the BMPE forecasts at the short
horizons and are less accurate at the nine and twelve month horizons. This result is remarkable,
because the BMPE forecasts are the product of a very refined and sophisticated analysis by the
Eurosystem forecasters and, via judgemental add-ons, they are flexible enough to embed all the
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Table 3: RMSE of QRF and BMPE for headline and core inflation

Horizon QRF BMPE

Panel a: Headline Inflation

h=3 0.58 0.47

h=6 0.92 0.94

h=9 1.48 1.42

h=12 1.97 1.65

Panel b: Core Inflation

h=3 0.21 0.22

h=6 0.36 0.38

h=9 0.64 0.58

h=12 0.82 0.68

Note: Column 2: QRF; Column 3: BMPE.

available information on future events of an economic relevance, which may fail to be incorporated
in the variables used in the QRF.

In figure 6 we plot the headline QRF inflation forecasts together with the BMPE and observed
inflation for h=6.

Figure 6: Headline Inflation, density forecasts of QRF and BMPE, h=6
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Note: Black solid line: year-on-year growth rate of HICP (headline inflation); Red area: 16th to 84th quantiles of
the QRF density forecasts for the horizon of six months ahead, year on year growth rate of HICP; Green line with
circles: BMPE projections for the horizon of six months ahead, year on year growth rate of HICP.

Even if the similarity between the two sets of forecasts is magnified by reporting year-on-year
growth rates, the BMPE forecasts seem genuinely very collinear to the QRF forecasts. The

16



Eurosystem forecasts are produced by a toolkit that is essentially linear and, therefore, this
result suggests that the BMPE judgemental component tends to introduce a non-linearity in the
projections. Figure 7 shows the gaps of the median QRF forecast versus the median VARCOMB
and the BMPE versus VARCOMB, which is a rough measure of “distance from linearity” of the
two forecasts.

Figure 7: Gaps BMPE and QRF (median) versus linear BVAR
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Note: Solid blue line: six months ahead (median) QRF forecast of headline inflation minus corresponding VAR-
COMB forecast; Dashed red line: six months ahead BMPE forecast of headline inflation minus corresponding
VARCOMB forecast.

The two gaps are obviously correlated. Indeed, the correlation coefficient is about 0.4 for the three
and the six month horizons and about 0.3 for the nine and twelve month horizons. This result
suggests that judgement adds some element of mild non-linearity in the Eurosystem projections,
rather consistently over time.

4 Shapley Values: interpretation of the forecasts and their func-
tional forms

In this section, we study the drivers of our QRF predictions. For our analysis, we exploit recent
advances in the machine learning literature (see Strumbelj and Kononenko, 2010; Lundberg and
Lee, 2017; Buckmann and Joseph, 2022) which suggest to adopt the concept of Shapley values
(Shapley, 1952) to define the contributions of the different variables to our predictions. In short,
the Shapley value of a specific variable16 for a forecast consists in the average marginal contribution
of that variable to the forecast with respect to all the so called “coalitions” among variables, i.e.

16In the literature on machine learning, the variables used as predictors are also defined as “features”.
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all possible combinations of variables in the predictor set. The marginal contribution of a specific
variable to a coalition is the additional contribution from adding the variable to the coalition, once
all variables not in the coalition have been integrated out. In the special case of a linear regression
in which all the predictors are orthogonal with each other, the Shapley values of a variable are
given by the regression coefficient times the deviation of that variable from its mean.17

Generally, estimating Shapley values in presence of a large set of potentially correlated predictors
is a rather complicated task, both for the large set of coalitions to be accounted for and the
difficulties to correctly model the cross-correlation among variables when integrating out the
effects of “off-coalition” variables. We rely on the method developed in Lundberg et al. (2019),
which exploits the structure of regression trees underlying the QRF to speed up the computation
of Shapley values and handle the issue of correlated predictors.18

We use the Shapley values for two main goals. First, we aim to define which predictors drive
the inflation outlook. The predictors in our database are correlated among themselves, as it is
generally the case for macroeconomic and financial variables. Hence, we do not aim to provide a
fully fledged “narrative”, i.e. a causal account of why our inflation predictions evolve in a specific
direction, we only wish to study from which variables our model is extracting the signal for the
inflation outlook.

As an illustration, figure 8 shows the results of the Shapley value analysis for headline (left panel)
and core inflation (right panel), at the horizon of six months ahead, over the 2019-2022 period.
The individual variables have been classified in groups (see appendix A) and their Shapley values
have been aggregated to compute the contribution of the specific group to each prediction.19

In the period 2019-2022, the QRF extracts the signal that inflation would be raising over the
subsequent six months mostly from measures of inflation expectations and producer price indices.
The other variable groups have a negligible contribution to the forecasts. In particular, commodity
prices do not seem to play a very large role for headline and core inflation. This is explained by
the fact that some other measures (for example, inflation expectations) may have captured the
signal that the boost in commodity prices would lead to higher inflation.

The Shapley values of individual variables are also useful to dig deeper on the question of which
functional forms are captured by the QRF, suggesting whether inflation dynamics are character-
ized by non-linearity. Table 4 reports the top seven20 individual contributors to the forecasts of
headline and core inflation, at the horizon of six months ahead. The ranking is formulated on the
basis of the mean absolute value of the contributions over the out-of-sample evaluation period.

We find that short-term interest rates, measures of inflation expectations and real activity are
important predictors of inflation. Which functional forms best characterize the relationship be-

17See Aas et al. (2020) for a derivation of this result.
18In practice, we carry out the computation of Shapley values by using the Tree SHAP package of Lundberg et al.

(2019).
19The Shapley values of all the variables in the predictor set sum up to the deviation of the predicted value from

the average value of the target variable.
20Seven is roughly 10% of the variables in our set of predictors.
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Figure 8: Decomposition of the h=6 QRF median forecast
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Note: Shapley values associated with different groups of predictors, sample 2019 - 2022, horizon of six months
ahead. Left panel: Headline inflation; Right panel: Core inflation.

Table 4: Top contributors to six-months ahead forecast

Headline Inflation Core inflation
1 Euribor 3-Months Euribor 3-Months
2 Building permits Ten-Year Govt Bond Yield
3 Industry survey - selling price expectations for the 3 months ahead Consumer survey - price trends over next 12 month
4 Unemployment rate Long-term interest rate future (6 months, DE)
5 Consumer survey - price trends over next 12 month Unemployment rate
6 Ten-Year Govt Bond Yield Inflation rate future (6 months, DE)
7 Industry survey - selling price expectations, Intermediate Goods Indicator of negotiated wage rates - total excluding bonuses

Note: Ranking of top contributors in terms of absolute mean of Shapley value over the evaluation sample, six
months ahead horizon. Left column: Headline inflation; Right column: Core inflation.

tween these predictors and headline/core inflation? Figure 9 shows the Shapley values of some
selected variables for headline (red circles) and core inflation (blue circles), plotted against the
values of the variables over the historical sample. The variables are chosen among the most rel-
evant indicators for inflation in the full sample, as reported in Table 4. These scatter plots give
a rough indication of the type of the relationship that the QRF estimates between the variables
and headline and core inflation for the six months forecasting horizon.21

For three of these variables, the relationship captured by the QRF seems roughly linear. For
example, for the Euribor the relationship with inflation is essentially linear and, as expected,
positive: high short-term interest rates signal that inflation is expected to be high in the future and
needs some “leaning against the wind” from the central bank. The only non-linearity appearing
in the Euribor charts has to do with the attainment of the effective lower bound of interest rates

21Notice that, differently from the rest of the paper, here we are estimating the model for inflation six month
ahead only on the full sample and, hence, figure 9 reports the in-sample Shapley values.
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Figure 9: Top contributors in terms of Shapley Values
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Note: Vertical axis: in-sample Shapley values for the variable indicated in the title for headline inflation (red) and
core inflation (blue). Horizontal axis: value of the variable indicated in the title

by the ECB. The panel on the unemployment rate effectively suggests the existence of a Phillips
correlation with a mild negative slope. The pass-through from wages to inflation is also roughly
linear. For what concerns the measure of inflation expectations reported in the chart, i.e. “price
trends expected over the next twelve months”, the relationship with headline and, above all, core
inflation is clearly nonlinear. The measure of expectations is defined in terms of the balance of
survey respondents. A positive number indicates that there is a larger share of respondents who
expect an increase rather than a decrease in prices. Hence, the figure suggests that the increase
in the share of survey respondents who expect higher inflation beyond a certain threshold is an
indication of a marked acceleration in inflation. The fact that the non-linearity in core inflation is
estimated to be more quantitatively relevant is in line with our finding in the previous section that
the QRF is a better predictor for core rather than headline inflation, compared to VARCOMB,
our state-of-the-art linear model.

5 The euro area disinflation in 2023-2024 through the lenses of
the QRF analysis in real-time

In the last quarter of 2022, the QRF was integrated into the ECB’s modeling toolbox for preparing
the short-term inflation projections . The model generates an inflation density forecast, which
aids in assessing the risks to the official projections. An example of the model’s application can
be found in Lane (2024), chart 9.
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Since the fourth quarter of 2022, euro area headline inflation has declined, with core inflation
following suit in the second half of 2023. How did the QRF perform in capturing this disinflation
path and as a gauge of the risks surrounding the Eurosystem official projections, in real-time?

In figure 10, we report the observed year-on-year growth rates of headline HICP (left panel, blue
solid line) and our measure of core inflation (right panel, blue line) for the quarters 2022Q4 until
2024Q1. These are shown alongside the Eurosystem projections for those quarters, produced over
different horizons (ranging from two quarters ahead to the current quarter, different markers)
and the 16th to 84th quantiles of the QRF projections produced at the time of the Eurosystem
projections and in the intervening weeks (orange areas).22

Figure 10: Headline and core inflation, real-time forecasts 2022Q4-2024Q1

Headline Inflation

22Q4 23Q1 23Q2 23Q3 23Q4 24Q1
0

2

4

6

8

10

12
Actual
Median QRF
BMPE hq=2
BMPE hq=1
BMPE hq=now

Core Inflation

22Q4 23Q1 23Q2 23Q3 23Q4 24Q1
0

1

2

3

4

5

6
Actual
Median QRF
BMPE hq=2
BMPE hq=1
BMPE hq=now

Note: Blue solid lines: Headline (left panel) and Core (right panel) inflation outcomes, 2022Q4-2024Q1; Orange
areas: 16th-84th range of QRF density forecasts, computed twice per month; Circle: Eurosystem projections, 2
quarters ahead; Triangle: Eurosystem projections, 1 quarter ahead; Star: Eurosystem projections, current quarter;

Figure 10 illustrates the disinflation path for headline and core inflation. Over the six quar-
ters in the picture, the QRF has generally been quite accurate. For headline inflation, during
2023Q1 and 2023Q2, the disinflation process had just begun to materialize, and both the QRF
and the Eurosystem projections made two quarters ahead were still significantly higher than the
final release, but they adjusted relatively quickly over time. Since then, both the QRF and the
Eurosystem forecasts have been close to the final outcomes already two quarters before the first
release. Interestingly, the QRF has consistently signaled downside risks to the Eurosystem pro-
jections over the last two quarters in the sample, and these risks have eventually materialized.
Similar observations apply to core inflation although, for this variable, both the QRF and the
Eurosystem forecasts tended to underpredict in the early stages of the disinflation process, es-
pecially at the two-quarter-ahead horizon. For the last two quarters, as with headline inflation,

22The QRF forecasts are updated twice per month.
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the QRF consistently signalled downside risks to the Eurosystem projections, which subsequently
materialized.

6 Conclusion

In this paper, we show that the quantile regression forest, a non-linear model, could be a valuable
addition to the current toolbox for forecasting euro area inflation and assessing the risks sur-
rounding the central tendency of the Eurosystem projections, which predominantly rely on linear
models.

The quantile regression forest exhibits comparable accuracy to state-of-the-art linear models for
density forecasting. Additionally, it competes effectively with institutional (BMPE) and survey
(SPF) forecasts, despite the reliance of the latter on expert judgement.

The similar accuracy of linear and non-linear models over the full sample analyzed suggests the
quantile regression forest serves as a complement rather than a substitute for the Eurosystem
modeling toolbox for forecasting inflation.

On the broader question of whether euro area inflation exhibits non-linear dynamics, our analysis
concludes that while non-linearity is present, it tends to be mild. Furthermore, this non-linearity
is more pronounced for core inflation compared to headline inflation.
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A Database of the QRF, SPF and BMPE

The target variables in our exercise are the euro area Harmonized Index of Consumer Prices
(HICP) and the Harmonized Index of Consumer Prices excluding Energy and Food (HICPex).
The former is what we consider our “headline” measure, while the latter is our “core” measure in
this paper. Both measures and their dynamics are described at length in the main body of the
paper. Table 5 reports the name (column 4) of the variables we use in our QRF and VARCOMB
as predictors, the group of variables to which they belong (column 2) for the computation of the
grouped Shapley values and the transformation we apply to make the variable stationary (column
3).

A.1 Survey of Professional Forecasters

The Survey of Professional Forecasters (SPF) for the European Union has been taking place
quarterly since the beginning of 1999. The survey asks to a panel of professional forecasters
within the EU to give an estimate on the future values for euro area gross domestic product
growth, HICP inflation, and the unemployment rate (de Vincent-Humphreys et al., 2019; Kenny
et al., 2013). We focus here on inflation forecasts, for two separate horizons, namely current year
and one-year-ahead23. The target for the two assessments are different. While the one-year-ahead
concept (which, in the main body of the paper is defined as year-on-year inflation at h=12 months
ahead) measures the change in prices from the quarter preceding the assessment to four quarters
later, the current year assessment pertains, in each quarter in which the survey is released, to
the “average” inflation over the current year (average means, roughly, the average of the four
year-on-year inflation rates in the four quarter of the current year). Respondents are asked to
give both a point forecast and to assign probabilities for each variable’s future outcome falling
within pre-determined ranges. The individual responses are then aggregated, and a histogram of
average probabilities for the economic outlook results. We do not focus on individual responses,
following the results in Genre et al. (2013), where the simple average is proven to be the best
combination method. Other aggregation methods include optimal pooling like in Conflitti et al.
(2015), and a more recent work by Diebold et al. (2020), where the authors propose to build
regularised mixtures of individual densities.

The first SPF vintage for headline inflation corresponds to February 2002, while the first one for
core inflation is February 2017. The forecasts for those vintages are supposed to be produced
aroundmid- of the previous month. We assume that forecasters had data up to the previous
December when matching the information provided to the QRF. Then, we continue to update the
estimation sample by adding one quarter (effectively, three months) at a time, and we repeat all
the steps of the forecasting exercise until exhaustion of the sample.

23For each round, the target quarter refers to the current or one year after the latest official release available at
the time of the questionnaire.
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Table 5: Database - predictors

Group Transf. Variable description
1 G1 0 EU Commission, DG-ECFIN, Retail trade survey - expected business situation for 3 months ahead - Per-

centage balances
2 G1 0 EU Commission, DG-ECFIN, Consumer survey - financial situation over next 12 months - Percentages
3 G1 0 EU Commission, DG-ECFIN, Business climate indicator - Points of standard deviation
4 G1 0 EU Commission, DG-ECFIN, Consumer survey - general economic situation over next 12 months - Per-

centages
5 G1 0 EU Commission, DG-ECFIN, Consumer survey - major purchases over next 12 months - Percentages
6 G1 0 EU Commission, DG-ECFIN, Consumer survey - savings over next 12 months - Percentages
7 G1 0 EU Commission, DG-ECFIN, Consumer survey - unemployment expectations over next 12 months - Per-

centages
8 G1 0 EU Commission, DG-ECFIN, Consumer survey - consumer confidence indicator - Percentages
9 G1 0 EU Commission, DG-ECFIN, Economic sentiment indicator - Percentage balances
10 G1 0 EU Commission, DG-ECFIN, Industry survey - employment expectations for 3 months ahead - Percentage

balances
11 G1 0 EU Commission, DG-ECFIN, Industry survey - production expectations for the 3 months ahead - Percent-

age balances
12 G6 0 EU Commission, DG-ECFIN, Industry survey - selling price expectations for the 3 months ahead - Per-

centage balances
13 G6 0 EU Commission, DG-ECFIN, Industry survey - selling price expectations for the months ahead, Intemediate

Goods - Percentage balances
14 G6 0 EU Commission, DG-ECFIN, Industry survey - selling price expectations for the months ahead, Consumer

Goods - Percentage balances
15 G6 0 EU Commission, DG-ECFIN, Consumer survey - price trends over next 12 months - Percentages
16 G7 0 ZEW, Short-term interest rate future (6 months) - Percentage balances
17 G1 0 Germany, ZEW, Economic situation future (6 months) - Percentage balances
18 G6 0 Germany, ZEW, Inflation rate future (6 months) - Percentage balances
19 G7 0 Germany, ZEW, Long-term interest rate future (6 months) - Percentage balances
20 G2 1 Equity/index - Baltic DRY Index (BDI) - Historical close, average of observations through period
21 G2 2 Bloomberg European Dated Brent Forties Oseberg Ekofisk (BFOE) Crude Oil Spot Price - Historical close

- US dollar
22 G2 2 WORLD-MKT PRICES, RAW MATERIALS, EXCL.ENERGY(MU17), EUR-BASIS - HWWA . Euro area

- HAMBURG WORLD ECONOMIC ARCHIVE
23 G2 2 WORLD-MKT PRICES, ENERGY RAW MATERIALS(MU17), EUR-BASIS - HWWA. Euro area - HAM-

BURG WORLD ECONOMIC ARCHIVE
24 G2 2 World market prices of raw materials, Index total, euro
25 G2 2 World market prices of raw materials, Index Total excluding energy, euro
26 G2 2 World market prices of raw materials, Energy, euro
27 G2 2 World market prices of raw materials, Crude oil, euro
28 G2 2 World market prices of raw materials, Industrial raw materials, euro
29 G2 2 World market prices of raw materials, Food and tropical beverages, euro
30 G2 2 ECB Commodity Price index Euro denominated, import weighted, Non-food
31 G2 2 ECB Commodity Price index Euro denominated, import weighted, Agricultural raw materials
32 G2 0 EXCH.RATE: US DOLLARS/1 EUR,SPOT AT 2:15 PM (CET) D,W,M,Q,A-AVG
33 G2 0 ECB Nominal effective exch. rate of the Euro against, EER-12 group of trading partners:

AU,CA,DK,HK,JP,NO,SG,KR,SE,CH,GB,US,EA excluding the Euro
34 G3 2 Producer Price Index, domestic sales, Consumer goods industry
35 G3 2 Producer Price Index, domestic sales, MIG Durable Consumer Goods Industry
36 G3 2 Producer Price Index, domestic sales, MIG Non-durable Consumer Goods Industry
37 G3 2 Producer Price Index, domestic sales, MIG Intermediate Goods Industry
38 G3 2 Producer Price Index, domestic sales, MIG Capital Goods Industry
39 G3 2 Producer Price Index, domestic sales, MIG Energy
40 G3 2 Producer Price Index, domestic sales, MANUFACTURING
41 G3 2 Producer Price Index, domestic sales, Total Industry (excluding construction)
42 G4 0 Indicator of negotiated wage rates, Total - Annual rate of change
43 G4 0 Indicator of negotiated wage rates - total excluding bonuses, Total - Annual rate of change
44 G1 2 Industrial Production Index, Total Industry (excluding construction)
45 G1 1 Building Permits / dwellings, Residential buildings except residences for communities
46 G1 0 European Labour Force Survey; Unemployment rate; Total; Age 15 to 74
47 G1 1 EA19 Leading Indicators OECD ¿ Leading indicators ¿ CLI ¿ Amplitude adjusted / Level. rate or national

currency
48 G1 0 United States; European Labour Force Survey; Unemployment rate; Total; Age 15 to 74
49 G5 0 Euribor 3-month - Last trade price or value
50 G5 0 Benchmark bond - Euro area 10-year Government Benchmark bond yield - Yield
51 G5 2 European Monetary Union Market Index. Equity Index.
52 G5 0 IBES MSCI EMU Index Earnings. Weighted average long term growth EPS (Earnings per share) forecast

expressed as a percentage
53 G5 2 Euro area - Equity/index - European Monetary Union Consumer Goods Index (EUR)
54 G5 2 Equity/index - European Monetary Union Consumer Services Index (EUR) - Historical close
55 G5 2 Monetary aggregate M1
56 G5 2 Monetary aggregate M3
57 G5 2 Monetary aggregate M2
58 G5 2 Loans, Total maturity, All currencies combined - Euro area (changing composition) counterpart
59 G6 2 US - CONSUMER PRICES, ALL ITEMS (ALL URBAN CONSUMERS)
60 G6 2 US - CONSUMER PRICES, CORE INFLATION (URBAN CONSUMERS)

Note: G1: real activity, G2 : commodity prices, G3: PPI, G4: wages, G5: financial, G6: inflation expectations,
G7: interest rate expectations. Transformations for stationarity: 0 = no transformation, 1 = natural logarithm, 2
= first difference of natural logarithm.
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A.2 Inflation projections from the BMPE

Eurosystem and ECB staff produce macroeconomic projections (BMPE) that cover the outlook
for the euro area and the wider global economy. These contribute to the ECB Governing Council’s
assessment of economic developments and risks to price stability.

They are published four times a year (in March, June, September and December).

The first BMPE vintage corresponds to March 2002. We assume that forecasters had data up to
January 2002 when matching the information provided to the QRF. Then, we continue to update
the estimation sample by adding one quarter (effectively, three months) at a time, and we repeat
all the steps of the forecasting exercise until exhaustion of the sample.

A.3 Fitting the skew-t distribution to our density forecasts

The skew-t distribution is a flexible, parametric density that allows for fat tails as well as asym-
metries, controlled by the parameters defining the distribution.

We define the skew-t (ST) for a variable Y as:

Y ∼ ST (ξ, ω, α, ν)

where ξ is a location parameter, ω is the scale, α is the slant parameter that determines the
skewness of the distribution, and ν is the degrees of freedom.

In order to fit a skew-t to our density forecasts, we match the empirical quantiles of our fore-
casts. For the QRF, quantiles are directly available. For the SPF, we derive them from the SPF
histograms.24

Specifically, we consider, for each release of the SPF, the histogram based on the reported prob-
abilities, for the horizons of interest, i.e. for the forecasts of the current year HICP and HICPex
inflation and of the year-on-year growth rates of HICP and HICPex one year ahead. We obtain
the quantiles of the empirical cdf from the bin edges of the SPF histogram, and we match the
closest possible quantiles to the 5th/16th/84th/95th quantiles we used for the QRF.

Once we have the quantiles, we follow Montes Galdon et al. (2023) and fit the pdf of a skew-t
distribution.25 Note however that we need to keep the degrees of freedom of the distribution, ν,
as a discrete value. Therefore, we proceed as follows. We construct first a grid for the degrees of

24Notice that for VARCOMB we have already the draws from the posterior, which can be used to compute all
our accuracy statistics. However, to produce the results in our tables, we also fit a skew-t to match the quantiles
of the VARCOMB forecast. We do that for comparability purposes, but the results are basically unchanged if we
use the original posterior draws.

25Notice that there are alternative approaches as in Engelberg et al. (2009), which assumes a normal or a beta
distribution for the SPF histograms and Billio et al. (2013), which produces a continuous SPF distribution, as well
as draws from this distribution, using a kernel smoother.
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freedom. For each value of the grid, we find the location, scale and slant parameters with the best
match of the quantiles provided from the pdf. At this stage, we have a set of parameters matching
the quantiles we have chosen, given a certain value of ν. In this set, we select the parameters with
the minimum squared 2-norm distance from the empirical quantiles.

The skew-t distribution we obtain is then used to draw the density forecasts which enter of out-
of-sample evaluation.

B Comparison of RMSE betweek median QRF and Random
Walk forecasts

Table 6: RMSE of QRF and RW for headline and core inflation

Horizon QRF RW

Panel a: Headline Inflation

h=3 0.58 0.72

h=6 0.92 1.11

h=9 1.48 1.51

h=12 1.97 1.87

Panel b: Core Inflation

h=3 0.21 0.31

h=6 0.36 0.45

h=9 0.64 0.61

h=12 0.82 0.75

Note: Column 2: QRF; Column 3: RW.
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González-Rivera, G. and Y. Sun (2015): “Generalized autocontours: Evaluation of multi-
variate density models,” International Journal of Forecasting, 31, 799–814.

Goulet Coulombe, P., M. Leroux, D. Stevanovic, and S. Surprenant (2022): “How is
machine learning useful for macroeconomic forecasting?” Journal of Applied Econometrics, 37,
920–964.

Hamill, T. (2000): “Interpretation Of Rank Histograms For Verifying Ensemble Forecasts,”
Monthly Weather Review, 129.

Hong, Y., H. Li, and F. Zhao (2007): “Can the random walk model be beaten in out-of-sample
density forecasts? Evidence from intraday foreign exchange rates,” Journal of Econometrics,
141, 736–776.

Inoue, A. (2001): “Testing For Distributional Change In Time Series,” Econometric Theory, 17,
156–187.

Inoue, A. and L. Kilian (2008): “How Useful Is Bagging in Forecasting Economic Time Se-
ries? A Case Study of U.S. Consumer Price Inflation,” Journal of the American Statistical
Association, 103, 511–522.

Jin, S., L. Su, and A. Ullah (2014): “Robustify Financial Time Series Forecasting with
Bagging,” Econometric Reviews, 33, 575–605.

Kenny, G., T. Kostka, and F. Masera (2013): “Can macroeconomists forecast risk? Event-
based evidence from the euro area SPF,” ECB Working Paper.

Kiley, M. T. (2022): “Unemployment Risk,” Journal of Money, Credit and Banking, 54, 1407–
1424.
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