Measuring and Explaining the CDS-Bond Basis Term-Structure Shape and Dynamics

Yonas Khanna^{1,2}, Andre Lucas^{2,3}, Norman Seeger^{2,3}

¹Integrated Risk Model Development, ING Bank
²School of Business and Economics, Vrije Universiteit Amsterdam
³Tinbergen Institute

EEA-ESEM 2024, Erasmus University

- The CDS-bond basis captures pricing difference of:
 - CDS spreads (credit derivatives markets), and
 - Bond yield spreads (fixed income markets)

< 口 > < 同 >

- The CDS-bond basis captures **pricing difference** of:
 - CDS spreads (credit derivatives markets), and
 - Bond yield spreads (fixed income markets)
- Law of one price implies \implies zero basis (Duffie, 1999; Hull and White, 2000) . . . however

4 D b 4 d b

- The CDS-bond basis captures **pricing difference** of:
 - CDS spreads (credit derivatives markets), and
 - Bond yield spreads (fixed income markets)
- Law of one price implies \implies zero basis (Duffie, 1999; Hull and White, 2000) . . . however
- empirical bases are persistently non-zero: 'limit-to-arbitrage'?

- The CDS-bond basis captures pricing difference of:
 - CDS spreads (credit derivatives markets), and
 - Bond yield spreads (fixed income markets)
- Law of one price implies \implies zero basis (Duffie, 1999; Hull and White, 2000) . . . however
- empirical bases are persistently non-zero: 'limit-to-arbitrage'?
- Cross-sectional evidence: the basis is driven by factors such as bond market liquidity, funding costs/liquidity, counterparty risk and perceived credit risk (Augustin and Schnitzler, 2020; Bai and Collin-Dufresne, 2018).

- The CDS-bond basis captures **pricing difference** of:
 - CDS spreads (credit derivatives markets), and
 - Bond yield spreads (fixed income markets)
- Law of one price implies \implies zero basis (Duffie, 1999; Hull and White, 2000) . . . however
- empirical bases are persistently non-zero: 'limit-to-arbitrage'?
- Cross-sectional evidence: the basis is driven by factors such as bond market liquidity, funding costs/liquidity, counterparty risk and perceived credit risk (Augustin and Schnitzler, 2020; Bai and Collin-Dufresne, 2018).
- Limitations:
 - cross-sectional evidence only, typically for one major liquid maturity
 - ad-hoc assumptions of flat basis term structure in practice (despite capital requirement, FVA, CVA relevance)
 - no evidence on shape of basis term-structure, nor on the economic drivers for different maturity segments
 - Reason: lack of liquid corporate bond data...

Example of CDS and Z-spread term structures

- Z-spreads are often larger than CDS spreads (neg. basis).
- Shortage of short-term and long-term bond Z-spreads is visible.

Example of empirical CDS-bond bases

- Basis time-series include many missing values.
- Some maturities are completely missing.

Tenor	1Y	3Y	5Y	7Y	9Y	10Y	15Y	20Y	25Y
NaN (%)	79.954	37.792	40.169	45.190	55.539	89.000	100	95.362	90.303

Table: % missing values in JPM's bases (2870 days)

- Missing value problem of **high** severity in firm-level bases.
 - Most liquid maturity (5Y) is >40% missing.

4 D b 4 A b

Tenor	1Y	3Y	5Y	7Y	9Y	10Y	15Y	20Y	25Y
NaN (%)	79.954	37.792	40.169	45.190	55.539	89.000	100	95.362	90.303

Table: % missing values in JPM's bases (2870 days)

- Missing value problem of **high** severity in firm-level bases.
 - Most liquid maturity (5Y) is >40% missing.
- **Problem:** explaining time-series dynamics of bases is hard.
 - Perhaps why most studies only explore cross-sectional variations of (5Y) bases?
 - ⇒ **Remains** unknown if limit-to-arbitrage factors explain individual term structure dynamics.

• Treat lack of corporate bond data as a **imputation** problem.

Image: A match a ma

- Treat lack of corporate bond data as a imputation problem.
- **Solved** by learning from CDS market to impute bond spread and vice-versa via **joint** interpolation of multiple credit curves with **dynamic** models.

4 D b 4 A b

- Treat lack of corporate bond data as a imputation problem.
- **Solved** by learning from CDS market to impute bond spread and vice-versa via **joint** interpolation of multiple credit curves with **dynamic** models.
- From our approach, we obtain a **comprehensive historical record of the CDS-bond basis term structures** ...

- Treat lack of corporate bond data as a imputation problem.
- **Solved** by learning from CDS market to impute bond spread and vice-versa via **joint** interpolation of multiple credit curves with **dynamic** models.
- From our approach, we obtain a comprehensive historical record of the CDS-bond basis term structures ...
- enabling us to explore the relationship between the firm-level basis and its economic drivers along the whole term structure, and ...

- Treat lack of corporate bond data as a imputation problem.
- **Solved** by learning from CDS market to impute bond spread and vice-versa via **joint** interpolation of multiple credit curves with **dynamic** models.
- From our approach, we obtain a comprehensive historical record of the CDS-bond basis term structures ...
- enabling us to explore the relationship between the firm-level basis and its economic drivers along the whole term structure, and ...
- to (i) quantify SVaR/HVaR on credit risky bonds and (ii) compute Credit Value and Funding Value Adjustments (xVA) on derivatives (BCBS, 2019; Green, 2015; Houweling et al., 2005).

Definitions and notation

• The constant maturity CDS-bond basis is

$$b_t(\tau) = y_t^{\text{CDS}}(\tau) - y_t^{\text{Z}}(\tau), \qquad (1)$$

where $b_t(\tau)$ is the basis of tenor τ and:

- CDS spread: y_t^{CDS} and
- Z-spread: $y_t^{\rm Z}$,

at time $t = 1, \ldots, T$ (day, week, month, etc.).

Definitions and notation

• The constant maturity CDS-bond basis is

$$b_t(\tau) = y_t^{\text{CDS}}(\tau) - y_t^{\text{Z}}(\tau), \qquad (1)$$

where $b_t(\tau)$ is the basis of tenor τ and:

- CDS spread: y_t^{CDS} and
- Z-spread: y_t^Z ,

at time t = 1, ..., T (day, week, month, etc.).

• Collection of *m_t* CDS spread time-series variables:

$$y_t^{\text{CDS}}(\tau_t^{\text{CDS}}) = \left(y_{1,t}^{\text{CDS}}(\tau_{1,t}^{\text{CDS}}), \dots, y_{m_t,t}^{\text{CDS}}(\tau_{m_t,t}^{\text{CDS}})\right)',$$

where $y_{i,t}^{\text{CDS}}(\tau_{i,t}^{CDS})$ is the spread of *i*th CDS instrument with time-to-maturity $\tau_{i,t}^{CDS}$ (IMM-driven), and

$$y_t^{\rm Z}(\tau_t^{\rm Z}) = \left(y_{1,t}^{\rm Z}(\tau_{1,t}^{\rm Z}), \dots, y_{n_t,t}^{\rm Z}(\tau_{n_t,t}^{\rm Z})\right)',$$

defines the collection of n_t Z-spread variables (*j*th ISIN; bond-driven maturities).

Khanna, Lucas & Seeger

A generic state-space representation of multiple curves

• Let $y_t(\tau_t) = (y_t^{\text{CDS}}(\tau_t^{\text{CDS}})', y_t^Z(\tau_t^Z)')' \in \mathbb{R}^{p_t}$ denote collection of all $p_t = m_t + n_t$ spread observations at time t.

A generic state-space representation of multiple curves

- Let $y_t(\tau_t) = (y_t^{\text{CDS}}(\tau_t^{CDS})', y_t^Z(\tau_t^Z)')' \in \mathbb{R}^{p_t}$ denote collection of all $p_t = m_t + n_t$ spread observations at time t.
- Then, $y_t(\tau_t)$ is assumed to be driven by the following linear-Gaussian **state-space** model:

$$y_t(\tau_t) = \mu_t(\tau_t) + \varepsilon_t(\tau_t), \qquad \varepsilon_t(\tau_t) \stackrel{\text{id}}{\sim} \operatorname{N}\left(0, \Sigma_{\varepsilon, t}(\tau_t)\right),$$

$$\mu_t(\tau_t) = F_t(\tau_t) f_t, \qquad (2)$$

$$f_{t+1} = c + \Phi f_t + \eta_t, \qquad \eta_t \stackrel{\text{iid}}{\sim} \operatorname{N}\left(0, \Sigma_{\eta}\right),$$

where

- * $\mu_t(\tau_t)$: maturity dependent mean of $y_t(\tau_t)$,
- * $\varepsilon_t(\tau_t)$: measurement noise with variance matrix $\Sigma_{\varepsilon,t}(\tau_t)$,
- * $F_t(\tau_t) \in \mathbb{R}^{p \times k}$: design-matrix that enforces a factor structure on the mean,
- * $f_t \in \mathbb{R}^k$: vector of latent time-varying factors (states), which follow a VAR(1) process.

A generic state-space representation of multiple curves

- Let $y_t(\tau_t) = (y_t^{\text{CDS}}(\tau_t^{CDS})', y_t^Z(\tau_t^Z)')' \in \mathbb{R}^{p_t}$ denote collection of all $p_t = m_t + n_t$ spread observations at time t.
- Then, $y_t(\tau_t)$ is assumed to be driven by the following linear-Gaussian **state-space** model:

$$y_t(\tau_t) = \mu_t(\tau_t) + \varepsilon_t(\tau_t), \qquad \varepsilon_t(\tau_t) \stackrel{\text{id}}{\sim} \operatorname{N}\left(0, \Sigma_{\varepsilon, t}(\tau_t)\right),$$

$$\mu_t(\tau_t) = F_t(\tau_t) f_t, \qquad (2)$$

$$f_{t+1} = c + \Phi f_t + \eta_t, \qquad \eta_t \stackrel{\text{iid}}{\sim} \operatorname{N}\left(0, \Sigma_{\eta}\right),$$

where

- * $\mu_t(\tau_t)$: maturity dependent mean of $y_t(\tau_t)$,
- $\star \ arepsilon_t(au_t)$: measurement noise with variance matrix $\Sigma_{arepsilon,t}(au_t)$,
- * $F_t(\tau_t) \in \mathbb{R}^{p \times k}$: design-matrix that enforces a factor structure on the mean,
- ★ $f_t \in \mathbb{R}^k$: vector of latent time-varying factors (states), which follow a VAR(1) process.
- Estimation proceeds via **maximum likelihood** in combination with the **Kalman filter** (Durbin and Koopman, 2012).

Khanna, Lucas & Seeger

An easy benchmark specification for $F_t(\tau_t)$

- The Basic model specification for **simultaneously** driving CDS and bond spreads is through an $F_t(\tau_t)$ with:
 - one common factor $f_{c,t}$ and one effect-coded curve-specific factor $f_{b,t}$, i.e.,

An easy benchmark specification for $F_t(\tau_t)$

- The Basic model specification for **simultaneously** driving CDS and bond spreads is through an $F_t(\tau_t)$ with:
 - one common factor $f_{c,t}$ and one effect-coded curve-specific factor $f_{b,t}$, i.e.,

such that

*

$$\begin{split} \mu_{i,t}^{\text{CDS}}(\tau_{i,t}) &= f_{c,t} + f_{b,t}, \quad \text{ for } \quad i = 1, \dots, n, \\ \mu_{j,t}^{Z}(\tau_{j,t}) &= f_{c,t} - f_{b,t}, \quad \text{ for } \quad j = 1, \dots, m. \end{split}$$

An easy benchmark specification for $F_t(\tau_t)$

- The Basic model specification for **simultaneously** driving CDS and bond spreads is through an $F_t(\tau_t)$ with:
 - one common factor $f_{c,t}$ and one effect-coded curve-specific factor $f_{b,t}$, i.e.,

such that

*

$$\begin{split} \mu_{i,t}^{\text{CDS}}(\tau_{i,t}) &= f_{c,t} + f_{b,t}, \quad \text{for} \quad i = 1, \dots, n, \\ \mu_{j,t}^{Z}(\tau_{j,t}) &= f_{c,t} - f_{b,t}, \quad \text{for} \quad j = 1, \dots, m. \end{split}$$

• *f*_{*c*,*t*} and *f*_{*b*,*t*} represent the *level* and *idiosyncratic market* (CDS vs bond) component of the two credit spread term structures, respectively.

Khanna, Lucas & Seeger

The basis as a stochastic driver of pricing differentials

With an effect-coded f_{b,t} ⇒ basis itself becomes a stochastic driver of the credit spread differences between the CDS and bond market.

The basis as a stochastic driver of pricing differentials

- With an effect-coded f_{b,t} ⇒ basis itself becomes a stochastic driver of the credit spread differences between the CDS and bond market.
- Hence, model-implied mean of CDS-bond basis $\mu^b_t(\tau)$ via <code>Basic</code> specification is:

$$\mu_t^b(\tau) = \mu_t^{\text{CDS}}(\tau) - \mu_t^Z(\tau) = f_{c,t} + f_{b,t} - (f_{c,t} - f_{b,t}), \quad \forall \tau, = 2f_{b,t}, \quad \forall \tau,$$
(4)

for t = 1, ..., T.

- With an effect-coded f_{b,t} ⇒ basis itself becomes a stochastic driver of the credit spread differences between the CDS and bond market.
- Hence, model-implied mean of CDS-bond basis $\mu^b_t(\tau)$ via <code>Basic</code> specification is:

$$\mu_{t}^{b}(\tau) = \mu_{t}^{\text{CDS}}(\tau) - \mu_{t}^{Z}(\tau) = f_{c,t} + f_{b,t} - (f_{c,t} - f_{b,t}), \quad \forall \tau, = 2f_{b,t}, \quad \forall \tau,$$
(4)

for t = 1, ..., T.

- This is both an interesting and convenient modeling choice, since:
 - $f_{b,t}$ can be interpreted as (half times) long-run mean of the basis, and
 - can be estimated when at least one CDS or Z-spread value is observed at time *t*.

Joint interpolation of multiple curves: Nearest Neighbor-based $F_t(\tau_t)$

Figure: Nearest Neighbor (NN) design for $F_t(\tau_t)$

Effect-coding among knots is applied to avoid perfect multicollinearity.
 * f_{t,5Y} neigbor is effect-coded.

Khanna, Lucas & Seeger

Explaining Basis Curve Dynamics

The Nearest Neighbor interpolant: $h^{NN}(\tau)$

The Nearest Neighbor design matrix in Figure 3 as an interpolant reads

$$h^{\mathsf{NN}}(\tau_t) = f_{c,t} + \mathsf{sgn}\left(y_t\right) f_{b,t} + \sum_i f_{\tau_i,t} \mathbb{1}_{[\tau_i = \tau^*],t},$$

s.t. $\tau_i > \tau_{i+1} \forall i$, and $f_{\tau_j,t} \coloneqq -\sum_{i \neq j} f_{\tau_i,t},$
s.t. $\tau^* \coloneqq \operatorname*{arg\ min}_{\tau \in [\tau_i, \tau_{i+1}, \dots]} \left\{ |\tau_i - \tau_t|, |\tau_{i+1} - \tau_t|, \dots \right\},$ (5)

where

• sgn
$$(y_t) = \begin{cases} 1 & \text{if } y_t = y_t^{\text{CDS}} \\ -1 & \text{if } y_t = y_t^Z \end{cases}$$

- $1_{[\cdot],t}$: indicator function with condition $[\cdot]$,
- $|\tau_i \tau_t|, |\tau_{i+1} \tau_t|, \ldots$: absolute tenor-maturity distances (Manhattan distance).

Similarly, we define the Piecewise Bucketing (PB), Piecewise Linear (PL) and Nelson-Siegel (NS) **common curve** interpolants as:

$$h^{\mathsf{PB}}(\tau_{t}) = f_{c,t} + \operatorname{sgn}(y_{t}) f_{b,t} + \sum_{i} f_{[\tau_{i},\tau_{i+1}),t} \mathbb{1}_{[\tau_{t} \in [\tau_{i},\tau_{i+1})]},$$

$$h^{\mathsf{PL}}(\tau_{t}) = f_{c,t} + \operatorname{sgn}(y_{t}) f_{b,t} + \frac{\tau_{i+1} - \tau_{t}}{\tau_{i+1} - \tau_{i}} f_{\tau_{i},t} + \frac{\tau_{t} - \tau_{i}}{\tau_{i+1} - \tau_{i}} f_{\tau_{i+1},t},$$

$$h^{\mathsf{NS}}(\tau_{t}) = f_{c,t} + \operatorname{sgn}(y_{t}) f_{b,t} + \frac{1 - e^{-\lambda\tau_{t}}}{\lambda\tau_{t}} f_{1t} + \left(\frac{1 - e^{-\lambda\tau_{t}}}{\lambda\tau_{t}} - e^{-\lambda\tau_{t}}\right) f_{2,t},$$
(6)

where

- With comparable restrictions as in (5) (where applicable).
- * Higher order splines and polynomials are omitted due poor extrapolation and/or overfitting issues.

• Previous design matrices can be augmented with additional knots to also model short-term basis dynamics.

Image: A matrix and a matrix

- Previous design matrices can be augmented with additional knots to also model short-term basis dynamics.
- For example, by extending dynamic NS model of Diebold and Li (2006) with an effect-coded slope factor:

$$h^{\text{NS-ID}}(\tau_t) = f_{c,t} + \text{sgn}(y_t) f_{b,t} + \frac{1 - e^{-\lambda^c \tau_t}}{\lambda^c \tau_t} f_{1,t}^c + \left(\frac{1 - e^{-\lambda^c \tau_t}}{\lambda^c \tau_t} - e^{-\lambda^c \tau_t}\right) f_{2,t}^c + \text{sgn}(y_t) \frac{1 - e^{-\lambda^{\text{idio.}} \tau_t}}{\lambda^{\text{idio.}} \tau_t} f_{3,t}^{\text{idio.}}.$$
(7)

• • • • • • • • • • • •

- Previous design matrices can be augmented with additional knots to also model short-term basis dynamics.
- For example, by extending dynamic NS model of Diebold and Li (2006) with an effect-coded slope factor:

$$h^{\text{NS-ID}}(\tau_t) = f_{c,t} + \text{sgn}(y_t) f_{b,t} + \frac{1 - e^{-\lambda^c \tau_t}}{\lambda^c \tau_t} f_{1,t}^c + \left(\frac{1 - e^{-\lambda^c \tau_t}}{\lambda^c \tau_t} - e^{-\lambda^c \tau_t}\right) f_{2,t}^c + \text{sgn}(y_t) \frac{1 - e^{-\lambda^{\text{idio.}} \tau_t}}{\lambda^{\text{idio.}} \tau_t} f_{3,t}^{\text{idio.}}.$$
(7)

⇒ The basis curve is now a stochastic driver (short and long-term) pricing differences:

$$\mu_t^b(\tau) = 2f_{b,t} + 2\frac{1 - e^{-\lambda^{\text{idio.}}\tau_t}}{\lambda^{\text{idio.}}\tau_t}f_{3,t}^{\text{idio.}}.$$

- Previous design matrices can be augmented with additional knots to also model short-term basis dynamics.
- For example, by extending dynamic NS model of Diebold and Li (2006) with an effect-coded slope factor:

$$h^{\text{NS-ID}}(\tau_t) = f_{c,t} + \text{sgn}(y_t) f_{b,t} + \frac{1 - e^{-\lambda^c \tau_t}}{\lambda^c \tau_t} f_{1,t}^c + \left(\frac{1 - e^{-\lambda^c \tau_t}}{\lambda^c \tau_t} - e^{-\lambda^c \tau_t}\right) f_{2,t}^c + \text{sgn}(y_t) \frac{1 - e^{-\lambda^{\text{idio.}} \tau_t}}{\lambda^{\text{idio.}} \tau_t} f_{3,t}^{\text{idio.}}.$$
(7)

⇒ The basis curve is now a stochastic driver (short and long-term) pricing differences:

$$\mu_t^b(\tau) = 2f_{b,t} + 2\frac{1 - e^{-\lambda^{\text{idio.}}\tau_t}}{\lambda^{\text{idio.}}\tau_t}f_{3,t}^{\text{idio.}}$$

 A comparable model in terms through idiosyncratic piecewise linear knots is also specified (PL-ID). • $\Sigma_{\varepsilon,t}(\tau_t)$ quantifies variance of the measurement noise (residuals) $\varepsilon_t(\tau_t)$.

Image: A matrix and a matrix

- $\Sigma_{\varepsilon,t}(\tau_t)$ quantifies variance of the measurement noise (residuals) $\varepsilon_t(\tau_t)$.
- Most commonly used specification is a diagonal variance matrix.

- $\Sigma_{\varepsilon,t}(\tau_t)$ quantifies variance of the measurement noise (residuals) $\varepsilon_t(\tau_t)$.
- Most commonly used specification is a diagonal variance matrix.
- We also specify a piecewise linear spline among variance knots $(\sigma_{\tau_i}^2, \sigma_{\tau_{i+1}}^2, \ldots)$ to span volatility term structures.
 - \implies Yields a local-volatility type of variance curve(s) (VC).
 - Separate CDS and Z-spread volatility curves can be incorporated.

- $\Sigma_{\varepsilon,t}(\tau_t)$ quantifies variance of the measurement noise (residuals) $\varepsilon_t(\tau_t)$.
- Most commonly used specification is a diagonal variance matrix.
- We also specify a piecewise linear spline among variance knots (σ²_{τi}, σ²_{τi+1},...) to span volatility term structures.
 - \implies Yields a local-volatility type of variance curve(s) (VC).
 - Separate CDS and Z-spread volatility curves can be incorporated.
- Main benefits:
 - Fixes number of unknown variance parameters, i.e., variance matrix becomes invariant to number of time-series.
 - 2 Newly issued and matured instruments can enter and leave the system, respectively, without requiring a re-estimation of the model.

				In-samp	le MAE	OOS	MAE
	#Factors	# Pars	AIC	CDS	Z	CDS	Z
Base	2	46	427977	38.975	30.488	26.653	39.825
NN	10	70	290861	2.544	10.691	0.729	15.721
PB	9	67	300127	2.956	10.573	1.527	16.082
PL	10	70	283737	2.576	9.647	0.791	15.942
NS	4	53	307966	5.107	8.074	2.687	13.407
PL-ID	14	82	246938	2.478	4.322	0.711	6.823
NS-ID	5	57	294532	4.483	6.188	1.580	8.519
PL-ID-VC	14	52	251162	2.457	4.239	0.693	6.525
NS-ID-VC	5	27	301686	4.247	5.897	1.706	7.162

Table: MAE (bps) on CDS-bond basis term structure level for JPM

- PL-ID(-VC) seems more flexible on upper end of curves, whereas short-to medium-term performance is comparable with NS-ID(-VC), albeit with 9 factors less (next table) ...

In-sample and out-of-sample model fit (2)

Model	1Y	3Y	5Y	7Y	9Y	20Y	Cross-Sect. Avg.
		Panel A	: In-sample	e MAE			
Base	37.760	44.298	50.352	45.597	33.056	98.833	43.365
NN	14.306	8.971	5.966	5.661	5.872	33.769	6.063
PB	13.413	9.792	8.572	8.459	9.853	33.459	8.411
PL	15.555	9.400	6.135	4.980	4.674	33.310	5.937
NS	16.752	10.889	5.267	4.307*	4.777	29.402	6.129
PL-ID	7.455*	4.624*	4.366	4.419*	4.512	8.210	3.959
NS-ID	10.126	7.573	4.606	4.289*	4.425	14.521	5.264
PL-ID-VC	7.556*	4.552*	4.120*	4.253*	4.110*	5.816*	3.749*
NS-ID-VC	9.115	5.710	3.969*	4.584*	5.430	10.988	4.222
		Panel B: (Out-of-sam	ple MAE			
Base	53.623	56.029	67.541			104.529	65.673
NN	11.183	9.194	4.720			41.655	7.698
PB	12.886	8.987	7.259			41.843	8.638
PL	10.722	8.414	5.872			42.868	8.089
NS	17.719	13.839	3.630			36.582	8.664
PL-ID	4.497*	6.530*	2.730*			8.875	3.522*
NS-ID	5.129*	8.616	3.032*			19.287	4.930
PL-ID-VC	4.684*	7.129	2.742*			4.706*	3.727*
NS-ID-VC	4.419*	8.984	4.273			9.268	4.534

 Table: MAE (bps) on CDS-bond basis term structure level for JPM; * denotes models

 in the 95% Model Confidence Set

Illustration of PL-ID-VC model fit across time

- The PL-ID-VC model (i) maintains accuracy over time, (ii) correctly captures variety of observed bases shapes, and (iii) exhibits robust performance even when credit curves are partially or completely missing.
- \Rightarrow We use it to construct a **historical record** of the entire basis term-structure

Historical averages of filtered basis time-series

• JPM's basis curve (on average) decreases with maturity and correlates with major economic changes (credit crunch, manufacturing crisis and Covid-19 pandemic).

Explaining Basis Curve Dynamics

- A negative CDS-bond basis trade requires purchase a bond and CDS with same maturity and underlying.
- Related literature explores cross-sectional variation of bases in context of factors that **limit** basis arbitrage opportunities:

Factor	Description [Data]	Corr. w $b_t(\tau)$
Market Liquidity	Arbitrageurs seek bonds with higher liquidity (lower trading costs). [CMDI bond index]	-
Funding Costs	When interest rates are high (high yields), arbitrageurs want com- pensation for higher credit risk premia on bonds compared to CDSs. [LIBOR curve]	_
Funding liquidity	Ability to participate in repo market is hindered when short-term financing becomes difficult. [TED spread]	-
Counterparty Risk	Joint default risk of CDS issuer and underlying deflates CDS premium. [covariance between CDS and CDX]	-
Default Premium	Corporate bond market's perception of credit risk. [Moody's yield indices]	+/-
Idiosyncratic Sentiment	Economic uncertainty in environment of JPM, affecting PnL prospects. [5min realized volatility]	_

Table: Limit-to-arbitrage factors influencing CDS-bond basis PnL

• We differ: explaining firm-level basis time-series dynamics across maturities (rather than cross-sectional differences)

$$\Delta B_{i,t} = \beta_{0,t} + \beta_{1,t} \Delta \mathsf{ML}_t + \beta_{2,t} \Delta \mathsf{FC}_{i,t} + \beta_{3,t} \Delta \mathsf{FL}_t + \beta_{4,t} \Delta \mathsf{CR}_{i,t} + \beta_{5,t} \Delta \mathsf{DP}_t + \beta_{6,t} \Delta^5 \mathsf{IS}_t + \varepsilon_{i,t}.$$
(8)

• • • • • • • • • • • •

$$\Delta B_{i,t} = \beta_{0,t} + \beta_{1,t} \Delta \mathsf{ML}_t + \beta_{2,t} \Delta \mathsf{FC}_{i,t} + \beta_{3,t} \Delta \mathsf{FL}_t + \beta_{4,t} \Delta \mathsf{CR}_{i,t} + \beta_{5,t} \Delta \mathsf{DP}_t + \beta_{6,t} \Delta^5 \mathsf{IS}_t + \varepsilon_{i,t}.$$
(8)

• 261-day rolling window regressions with all (6M-30Y), short (6M-3Y), medium (5Y-10Y), or long (>10Y) tenors; all regressions in first differences to avoid spurious results.

(日)

$$\Delta B_{i,t} = \beta_{0,t} + \beta_{1,t} \Delta \mathsf{ML}_t + \beta_{2,t} \Delta \mathsf{FC}_{i,t} + \beta_{3,t} \Delta \mathsf{FL}_t + \beta_{4,t} \Delta \mathsf{CR}_{i,t} + \beta_{5,t} \Delta \mathsf{DP}_t + \beta_{6,t} \Delta^5 \mathsf{IS}_t + \varepsilon_{i,t}.$$
(8)

- 261-day rolling window regressions with all (6M-30Y), short (6M-3Y), medium (5Y-10Y), or long (>10Y) tenors; all regressions in first differences to avoid spurious results.
- This way, we can:
 - study relationships between bases and factors over time and
 - compare regression coefficients across maturities.

$$\Delta B_{i,t} = \beta_{0,t} + \beta_{1,t} \Delta \mathsf{ML}_t + \beta_{2,t} \Delta \mathsf{FC}_{i,t} + \beta_{3,t} \Delta \mathsf{FL}_t + \beta_{4,t} \Delta \mathsf{CR}_{i,t} + \beta_{5,t} \Delta \mathsf{DP}_t + \beta_{6,t} \Delta^5 \mathsf{IS}_t + \varepsilon_{i,t}.$$
(8)

- 261-day rolling window regressions with all (6M-30Y), short (6M-3Y), medium (5Y-10Y), or long (>10Y) tenors; all regressions in first differences to avoid spurious results.
- This way, we can:
 - study relationships between bases and factors over time and
 - compare regression coefficients across maturities.
- Regressors are standardized within each rolling regression for comparability across time and maturity and censored at 2%.

Regression results (pooled)

Figure: Rolling window regression coefficients for JPM's ΔB (Full) with Newey-West adjusted CI(90%)

Table:	Chow	test	results	for	JPM	bases	computed	by	PL-	-ID-VC	model
--------	------	------	---------	-----	-----	-------	----------	----	-----	--------	-------

	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	Total	
Number of null-hypothesis rejections per year (%)												
$\alpha = 10\%$	100	100	97	48	100	98	100	100	100	65	91	
lpha= 5%	100	100	92	36	100	93	99	100	100	61	88	
lpha= 1%	100	100	74	9	95	77	84	100	100	55	79	

• Fore, example, during the pandemic, the impact of factors across the basis maturity spectrum was **not uniform**, i.e.,

- Counterparty risk briefly and default premium caused the short-term basis to steepen more.
- Market liquidity and flight-to-quality impacts only appeared in short and medium-term bases.
- Idiosyncratic sentiment was priced slightly higher in upper end of the basis curve.
- Funding costs pushed the short-term bases steeper throughout the pandemic.

イロト イヨト イラトイ

Regression results (segment splits)

Limits-to-arbitrage effects differently between short and long segments.

Robustness checks (PL versus NS)

Figure: PL-ID-VC vs NS-ID-VC rolling window regression coefficients for ΔB (Full)

 Chow-test does not pass for NS-ID-(VC) bases, which we attribute to dampening nature of NS curves.

Khanna, Lucas & Seeger

Explaining Basis Curve Dynamics

Robustness checks (other banks)

Figure: Rolling window regression coefficients for $\Delta B(Full)$ across firms

• Chow-test passes for PL-ID-(VC) bases of also blue chip firms.

• We introduced a dynamic state-space framework for simultaneous estimation/imputation of CDS, bond spread and basis histories.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- We introduced a dynamic state-space framework for simultaneous estimation/imputation of CDS, bond spread and basis histories.
- The framework is highly flexible and generates comprehensive credit spread and basis histories with complementary confidence bands.

- We introduced a dynamic state-space framework for simultaneous estimation/imputation of CDS, bond spread and basis histories.
- The framework is highly flexible and generates comprehensive credit spread and basis histories with complementary confidence bands.
- Modeling of short-term basis dynamics significantly reduce errors across maturity, indicating the existence of a basis term structure.

- We introduced a dynamic state-space framework for simultaneous estimation/imputation of CDS, bond spread and basis histories.
- The framework is highly flexible and generates comprehensive credit spread and basis histories with complementary confidence bands.
- Modeling of short-term basis dynamics significantly reduce errors across maturity, indicating the existence of a basis term structure.
- JPM's basis dynamics are driven by dynamics in funding costs, particularly at the medium and long end; other 'limit-to-arbitrage' factors may enter during periods of stress.

- We introduced a dynamic state-space framework for simultaneous estimation/imputation of CDS, bond spread and basis histories.
- The framework is highly flexible and generates comprehensive credit spread and basis histories with complementary confidence bands.
- Modeling of short-term basis dynamics significantly reduce errors across maturity, indicating the existence of a basis term structure.
- JPM's basis dynamics are driven by dynamics in funding costs, particularly at the medium and long end; other 'limit-to-arbitrage' factors may enter during periods of stress.
- Results are robust for other banks and other interpolation models: there is a basis term-structure (though not necessarily segment specific limits-to-arbitrage effects)

4 D K 4 B K 4 B K 4

- Augustin, P. and J. Schnitzler (2020). Disentangling types of liquidity and testing limits-to-arbitrage theories in the CDS-bond basis. *European Financial Management* 27(1), 120–146.
- Bai, J. and P. Collin-Dufresne (2018). The CDS-bond basis. Financial Management 48(2), 417-439.
- BCBS (2019). Minimum capital requirements for market risk. Basel Committee on Banking Supervision.
- Diebold, F. X. and C. Li (2006, February). Forecasting the term structure of government bond yields. Journal of Econometrics 130(2), 337–364.
- Duffie, D. (1999). Credit swap valuation. Financial Analysts Journal 55(1), 73-87.
- Durbin, J. and S. J. Koopman (2012). Time Series Analysis by State Space Methods. Oxford University Press.
- Green, A. (2015). XVA: Credit, Funding and Capital Valuation Adjustments. Wiley.
- Houweling, P., A. Mentink, and T. Vorst (2005). Comparing possible proxies of corporate bond liquidity. Journal of Banking & Finance 29(6), 1331–1358.
- Hull, J. C. and A. D. White (2000). Valuing credit default swaps I. The Journal of Derivatives 8(1), 29-40.

イロト イボト イヨト イヨト