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Introduction

• The CDS-bond basis captures pricing difference of:
• CDS spreads (credit derivatives markets), and
• Bond yield spreads (fixed income markets)

• Law of one price implies =⇒ zero basis (Duffie, 1999; Hull and White, 2000)
. . . however

• empirical bases are persistently non-zero: ‘limit-to-arbitrage’?

• Cross-sectional evidence: the basis is driven by factors such as bond market
liquidity, funding costs/liquidity, counterparty risk and perceived credit risk
(Augustin and Schnitzler, 2020; Bai and Collin-Dufresne, 2018).

• Limitations:

• cross-sectional evidence only, typically for one major liquid maturity
• ad-hoc assumptions of flat basis term structure in practice (despite capital

requirement, FVA, CVA relevance)
• no evidence on shape of basis term-structure, nor on the economic drivers for

different maturity segments
• Reason: lack of liquid corporate bond data...
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Example of CDS and Z-spread term structures
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Figure: Senior IG CDS and Z-spread term structure for JPM

• Z-spreads are often larger than CDS spreads (neg. basis).

• Shortage of short-term and long-term bond Z-spreads is visible.
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Example of empirical CDS-bond bases
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Figure: Non-parametric constant maturity basis estimates for JPM

• Basis time-series include many missing values.

• Some maturities are completely missing.
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Missing values and implications

Tenor 1Y 3Y 5Y 7Y 9Y 10Y 15Y 20Y 25Y

NaN (%) 79.954 37.792 40.169 45.190 55.539 89.000 100 95.362 90.303

Table: % missing values in JPM’s bases (2870 days)

• Missing value problem of high severity in firm-level bases.
• Most liquid maturity (5Y) is >40% missing.

• Problem: explaining time-series dynamics of bases is hard.

• Perhaps why most studies only explore cross-sectional variations of (5Y) bases?
=⇒ Remains unknown if limit-to-arbitrage factors explain individual term structure

dynamics.
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This paper

• Treat lack of corporate bond data as a imputation problem.

• Solved by learning from CDS market to impute bond spread and vice-versa
via joint interpolation of multiple credit curves with dynamic models.

• From our approach, we obtain a comprehensive historical record of the
CDS-bond basis term structures . . .

• enabling us to explore the relationship between the firm-level basis and
its economic drivers along the whole term structure, and . . .

• to (i) quantify SVaR/HVaR on credit risky bonds and (ii) compute Credit
Value and Funding Value Adjustments (xVA) on derivatives (BCBS,
2019; Green, 2015; Houweling et al., 2005).
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Definitions and notation

• The constant maturity CDS-bond basis is

bt(τ) = yCDS
t (τ)− yZ

t (τ), (1)

where bt(τ) is the basis of tenor τ and:
• CDS spread: yCDS

t and
• Z-spread: yZ

t ,

at time t = 1, . . . ,T (day, week, month, etc.).

• Collection of mt CDS spread time-series variables:

yCDS
t (τCDS

t ) =
(
yCDS
1,t (τCDS

1,t ), . . . , yCDS
mt ,t (τ

CDS
mt ,t )

)′
,

where yCDS
i,t (τCDS

i,t ) is the spread of ith CDS instrument with time-to-maturity

τCDS
i,t (IMM-driven), and

yZ
t (τ

Z
t ) =

(
yZ
1,t(τ

Z
1,t), . . . , y

Z
nt ,t(τ

Z
nt ,t)

)′
,

defines the collection of nt Z-spread variables (jth ISIN; bond-driven
maturities).
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A generic state-space representation of multiple curves

• Let yt(τt) =
(
yCDS
t (τCDS

t )′, yZ
t (τ

Z
t )

′)′ ∈ Rpt denote collection of all
pt = mt + nt spread observations at time t.

• Then, yt(τt) is assumed to be driven by the following linear-Gaussian
state-space model:

yt(τt) = µt(τt) + εt(τt), εt(τt)
iid∼ N (0,Σε,t(τt)) ,

µt(τt) = Ft(τt)ft ,

ft+1 = c +Φft + ηt , ηt
iid∼ N (0,Ση) ,

(2)

where

⋆ µt(τt): maturity dependent mean of yt(τt),
⋆ εt(τt): measurement noise with variance matrix Σε,t(τt),
⋆ Ft(τt) ∈ Rp×k : design-matrix that enforces a factor structure on the mean,
⋆ ft ∈ Rk : vector of latent time-varying factors (states), which follow a VAR(1)

process.

• Estimation proceeds via maximum likelihood in combination with the
Kalman filter (Durbin and Koopman, 2012).
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An easy benchmark specification for Ft(τt)

• The Basic model specification for simultaneously driving CDS and bond
spreads is through an Ft(τt) with:

• one common factor fc,t and one effect-coded curve-specific factor fb,t , i.e.,

⋆ 

µCDS
1,t (τ1,t)

...
µCDS
m,t (τm,t)
µZ
1,t(τ1,t)

...
µZ
n,t(τn,t)


︸ ︷︷ ︸

µt (p×1)

=



1 1
...

...
1 1
1 −1
...

...
1 −1


︸ ︷︷ ︸

Ft (τt )=F (p×2)

[
fc,t
fb,t

]
︸ ︷︷ ︸
ft (2×1)

, (3)

such that
µCDS
i,t (τi,t) = fc,t + fb,t , for i = 1, . . . , n,

µZ
j,t(τj,t) = fc,t − fb,t , for j = 1, . . . ,m.

• fc,t and fb,t represent the level and idiosyncratic market (CDS vs bond)
component of the two credit spread term structures, respectively.

Khanna, Lucas & Seeger Explaining Basis Curve Dynamics EEA-ESEM 2024, Erasmus University 9 / 28



An easy benchmark specification for Ft(τt)

• The Basic model specification for simultaneously driving CDS and bond
spreads is through an Ft(τt) with:

• one common factor fc,t and one effect-coded curve-specific factor fb,t , i.e.,
⋆ 

µCDS
1,t (τ1,t)

...
µCDS
m,t (τm,t)
µZ
1,t(τ1,t)

...
µZ
n,t(τn,t)


︸ ︷︷ ︸

µt (p×1)

=



1 1
...

...
1 1
1 −1
...

...
1 −1


︸ ︷︷ ︸

Ft (τt )=F (p×2)

[
fc,t
fb,t

]
︸ ︷︷ ︸
ft (2×1)

, (3)

such that
µCDS
i,t (τi,t) = fc,t + fb,t , for i = 1, . . . , n,

µZ
j,t(τj,t) = fc,t − fb,t , for j = 1, . . . ,m.

• fc,t and fb,t represent the level and idiosyncratic market (CDS vs bond)
component of the two credit spread term structures, respectively.

Khanna, Lucas & Seeger Explaining Basis Curve Dynamics EEA-ESEM 2024, Erasmus University 9 / 28



An easy benchmark specification for Ft(τt)

• The Basic model specification for simultaneously driving CDS and bond
spreads is through an Ft(τt) with:

• one common factor fc,t and one effect-coded curve-specific factor fb,t , i.e.,
⋆ 

µCDS
1,t (τ1,t)

...
µCDS
m,t (τm,t)
µZ
1,t(τ1,t)

...
µZ
n,t(τn,t)


︸ ︷︷ ︸

µt (p×1)

=



1 1
...

...
1 1
1 −1
...

...
1 −1


︸ ︷︷ ︸

Ft (τt )=F (p×2)

[
fc,t
fb,t

]
︸ ︷︷ ︸
ft (2×1)

, (3)

such that
µCDS
i,t (τi,t) = fc,t + fb,t , for i = 1, . . . , n,

µZ
j,t(τj,t) = fc,t − fb,t , for j = 1, . . . ,m.

• fc,t and fb,t represent the level and idiosyncratic market (CDS vs bond)
component of the two credit spread term structures, respectively.

Khanna, Lucas & Seeger Explaining Basis Curve Dynamics EEA-ESEM 2024, Erasmus University 9 / 28



The basis as a stochastic driver of pricing differentials

• With an effect-coded fb,t =⇒ basis itself becomes a stochastic driver of the
credit spread differences between the CDS and bond market.

• Hence, model-implied mean of CDS-bond basis µb
t (τ) via Basic specification

is:
µb
t (τ) = µCDS

t (τ)− µZ
t (τ)

= fc,t + fb,t − (fc,t − fb,t) , ∀ τ,

= 2fb,t , ∀ τ,

(4)

for t = 1, . . . ,T .

• This is both an interesting and convenient modeling choice, since:

• fb,t can be interpreted as (half times) long-run mean of the basis, and
• can be estimated when at least one CDS or Z-spread value is observed at

time t.
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Joint interpolation of multiple curves: Nearest
Neighbor-based Ft(τt)

Ft(τt) =

∣∣∣ 1∣∣∣ −1 −1 −1

FBase

∣∣∣ 1∣∣∣ 1∣∣∣ −1 −1 −1∣∣∣ 1





f3Y,t f7Y,t f10Y,t

=: FNN
t (τt)

Figure: Nearest Neighbor (NN) design for Ft(τt)

• Effect-coding among knots is applied to avoid perfect multicollinearity.
⋆ ft,5Y neigbor is effect-coded.

Khanna, Lucas & Seeger Explaining Basis Curve Dynamics EEA-ESEM 2024, Erasmus University 11 / 28



The Nearest Neighbor interpolant: hNN(τ)

The Nearest Neighbor design matrix in Figure 3 as an interpolant reads

hNN(τt) = fc,t + sgn (yt) fb,t +
∑
i

fτi ,t1[τi=τ∗],t ,

s.t. τi > τi+1 ∀ i , and fτj ,t := −
∑
i ̸=j

fτi ,t ,

s.t. τ∗ := arg min
τ∈[τi ,τi+1,... ]

{|τi − τt |, |τi+1 − τt |, . . .} ,

(5)

where

• sgn (yt) =

{
1 if yt = yCDS

t

−1 if yt = yZ
t

,

• 1[·],t : indicator function with condition [·],
• |τi − τt |, |τi+1 − τt |, . . . : absolute tenor-maturity distances (Manhattan
distance).
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Interpolation methods included in this study

Similarly, we define the Piecewise Bucketing (PB), Piecewise Linear (PL) and
Nelson-Siegel (NS) common curve interpolants as:

hPB(τt) = fc,t + sgn (yt) fb,t +
∑
i

f[τi ,τi+1),t1[τt∈[τi ,τi+1)],

hPL(τt) = fc,t + sgn (yt) fb,t +
τi+1 − τt
τi+1 − τi

fτi ,t +
τt − τi
τi+1 − τi

fτi+1,t ,

hNS(τt) = fc,t + sgn (yt) fb,t +
1− e−λτt

λτt
f1t +

(
1− e−λτt

λτt
− e−λτt

)
f2,t ,

(6)

where

• With comparable restrictions as in (5) (where applicable).

⋆ Higher order splines and polynomials are omitted due poor extrapolation
and/or overfitting issues.
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Modeling short-term basis dynamics

• Previous design matrices can be augmented with additional knots to also
model short-term basis dynamics.

• For example, by extending dynamic NS model of Diebold and Li (2006) with
an effect-coded slope factor:

hNS-ID(τt) = fc,t + sgn (yt) fb,t +
1− e−λcτt

λcτt
f c1,t +

(
1− e−λcτt

λcτt
− e−λcτt

)
f c2,t

+ sgn (yt)
1− e−λidio.τt

λidio.τt
f idio.3,t .

(7)

=⇒ The basis curve is now a stochastic driver (short and long-term) pricing
differences:

µb
t (τ) = 2fb,t + 2

1− e−λidio.τt

λidio.τt
f idio.3,t .

⋆ A comparable model in terms through idiosyncratic piecewise linear knots is
also specified (PL-ID).

Khanna, Lucas & Seeger Explaining Basis Curve Dynamics EEA-ESEM 2024, Erasmus University 14 / 28



Modeling short-term basis dynamics

• Previous design matrices can be augmented with additional knots to also
model short-term basis dynamics.

• For example, by extending dynamic NS model of Diebold and Li (2006) with
an effect-coded slope factor:

hNS-ID(τt) = fc,t + sgn (yt) fb,t +
1− e−λcτt

λcτt
f c1,t +

(
1− e−λcτt

λcτt
− e−λcτt

)
f c2,t

+ sgn (yt)
1− e−λidio.τt

λidio.τt
f idio.3,t .

(7)

=⇒ The basis curve is now a stochastic driver (short and long-term) pricing
differences:

µb
t (τ) = 2fb,t + 2

1− e−λidio.τt

λidio.τt
f idio.3,t .

⋆ A comparable model in terms through idiosyncratic piecewise linear knots is
also specified (PL-ID).

Khanna, Lucas & Seeger Explaining Basis Curve Dynamics EEA-ESEM 2024, Erasmus University 14 / 28



Modeling short-term basis dynamics

• Previous design matrices can be augmented with additional knots to also
model short-term basis dynamics.

• For example, by extending dynamic NS model of Diebold and Li (2006) with
an effect-coded slope factor:

hNS-ID(τt) = fc,t + sgn (yt) fb,t +
1− e−λcτt

λcτt
f c1,t +

(
1− e−λcτt

λcτt
− e−λcτt

)
f c2,t

+ sgn (yt)
1− e−λidio.τt

λidio.τt
f idio.3,t .

(7)

=⇒ The basis curve is now a stochastic driver (short and long-term) pricing
differences:

µb
t (τ) = 2fb,t + 2

1− e−λidio.τt

λidio.τt
f idio.3,t .

⋆ A comparable model in terms through idiosyncratic piecewise linear knots is
also specified (PL-ID).

Khanna, Lucas & Seeger Explaining Basis Curve Dynamics EEA-ESEM 2024, Erasmus University 14 / 28



Modeling short-term basis dynamics

• Previous design matrices can be augmented with additional knots to also
model short-term basis dynamics.

• For example, by extending dynamic NS model of Diebold and Li (2006) with
an effect-coded slope factor:

hNS-ID(τt) = fc,t + sgn (yt) fb,t +
1− e−λcτt

λcτt
f c1,t +

(
1− e−λcτt

λcτt
− e−λcτt

)
f c2,t

+ sgn (yt)
1− e−λidio.τt

λidio.τt
f idio.3,t .

(7)

=⇒ The basis curve is now a stochastic driver (short and long-term) pricing
differences:

µb
t (τ) = 2fb,t + 2

1− e−λidio.τt

λidio.τt
f idio.3,t .

⋆ A comparable model in terms through idiosyncratic piecewise linear knots is
also specified (PL-ID).

Khanna, Lucas & Seeger Explaining Basis Curve Dynamics EEA-ESEM 2024, Erasmus University 14 / 28



Possible specifications for Σε,t(τt)

• Σε,t(τt) quantifies variance of the measurement noise (residuals) εt(τt).

• Most commonly used specification is a diagonal variance matrix.

• We also specify a piecewise linear spline among variance knots
(
σ2
τi , σ

2
τi+1

, . . .
)

to span volatility term structures.

=⇒ Yields a local-volatility type of variance curve(s) (VC).
• Separate CDS and Z-spread volatility curves can be incorporated.

• Main benefits:

1 Fixes number of unknown variance parameters, i.e., variance matrix becomes
invariant to number of time-series.

2 Newly issued and matured instruments can enter and leave the system,
respectively, without requiring a re-estimation of the model.
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In-sample and out-of-sample model fit

In-sample MAE OOS MAE
#Factors #Pars AIC CDS Z CDS Z

Base 2 46 427977 38.975 30.488 26.653 39.825
NN 10 70 290861 2.544 10.691 0.729 15.721
PB 9 67 300127 2.956 10.573 1.527 16.082
PL 10 70 283737 2.576 9.647 0.791 15.942
NS 4 53 307966 5.107 8.074 2.687 13.407
PL-ID 14 82 246938 2.478 4.322 0.711 6.823
NS-ID 5 57 294532 4.483 6.188 1.580 8.519
PL-ID-VC 14 52 251162 2.457 4.239 0.693 6.525
NS-ID-VC 5 27 301686 4.247 5.897 1.706 7.162

Table: MAE (bps) on CDS-bond basis term structure level for JPM

• Including short-term basis effects significantly improves in-and out-of-sample
performance =⇒ a basis term structure exists!

• PL-ID(-VC) seems more flexible on upper end of curves, whereas short-to
medium-term performance is comparable with NS-ID(-VC), albeit with 9 factors
less (next table) ...
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In-sample and out-of-sample model fit (2)

Model 1Y 3Y 5Y 7Y 9Y 20Y Cross-Sect. Avg.

Panel A: In-sample MAE

Base 37.760 44.298 50.352 45.597 33.056 98.833 43.365
NN 14.306 8.971 5.966 5.661 5.872 33.769 6.063
PB 13.413 9.792 8.572 8.459 9.853 33.459 8.411
PL 15.555 9.400 6.135 4.980 4.674 33.310 5.937
NS 16.752 10.889 5.267 4.307⋆ 4.777 29.402 6.129
PL-ID 7.455⋆ 4.624⋆ 4.366 4.419⋆ 4.512 8.210 3.959
NS-ID 10.126 7.573 4.606 4.289⋆ 4.425 14.521 5.264
PL-ID-VC 7.556⋆ 4.552⋆ 4.120⋆ 4.253⋆ 4.110⋆ 5.816⋆ 3.749⋆
NS-ID-VC 9.115 5.710 3.969⋆ 4.584⋆ 5.430 10.988 4.222

Panel B: Out-of-sample MAE

Base 53.623 56.029 67.541 104.529 65.673
NN 11.183 9.194 4.720 41.655 7.698
PB 12.886 8.987 7.259 41.843 8.638
PL 10.722 8.414 5.872 42.868 8.089
NS 17.719 13.839 3.630 36.582 8.664
PL-ID 4.497⋆ 6.530⋆ 2.730⋆ 8.875 3.522⋆
NS-ID 5.129⋆ 8.616 3.032⋆ 19.287 4.930
PL-ID-VC 4.684⋆ 7.129 2.742⋆ 4.706⋆ 3.727⋆
NS-ID-VC 4.419⋆ 8.984 4.273 9.268 4.534

Table: MAE (bps) on CDS-bond basis term structure level for JPM; ⋆ denotes models
in the 95% Model Confidence Set
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Illustration of PL-ID-VC model fit across time
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• The PL-ID-VC model (i) maintains accuracy over time, (ii) correctly captures
variety of observed bases shapes, and (iii) exhibits robust performance even when
credit curves are partially or completely missing.

=⇒ We use it to construct a historical record of the entire basis term-structure
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Historical averages of filtered basis time-series
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• JPM’s basis curve (on average) decreases with maturity and correlates with major
economic changes (credit crunch, manufacturing crisis and Covid-19 pandemic).
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Explaining Basis Curve Dynamics

• A negative CDS-bond basis trade requires purchase a bond and CDS with
same maturity and underlying.

• Related literature explores cross-sectional variation of bases in context of
factors that limit basis arbitrage opportunities:

Table: Limit-to-arbitrage factors influencing CDS-bond basis PnL

Factor Description [Data] Corr. w bt(τ)

Market Liquidity Arbitrageurs seek bonds with higher liquidity (lower trading
costs). [CMDI bond index]

−

Funding Costs When interest rates are high (high yields), arbitrageurs want com-
pensation for higher credit risk premia on bonds compared to
CDSs. [LIBOR curve]

−

Funding liquidity Ability to participate in repo market is hindered when short-term
financing becomes difficult. [TED spread]

−

Counterparty Risk Joint default risk of CDS issuer and underlying deflates CDS
premium. [covariance between CDS and CDX]

−

Default Premium Corporate bond market’s perception of credit risk. [Moody’s yield
indices]

+/−

Idiosyncratic Sentiment Economic uncertainty in environment of JPM, affecting PnL
prospects. [5min realized volatility]

−

• We differ: explaining firm-level basis time-series dynamics across maturities
(rather than cross-sectional differences)
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Regression analysis

• The baseline regression model:

∆Bi,t = β0,t + β1,t∆MLt + β2,t∆FCi,t + β3,t∆FLt + β4,t∆CRi,t

+ β5,t∆DPt + β6,t∆
5ISt + εi,t .

(8)

• 261-day rolling window regressions with all (6M-30Y), short (6M-3Y),
medium (5Y-10Y), or long (>10Y) tenors; all regressions in first differences
to avoid spurious results.

• This way, we can:

• study relationships between bases and factors over time and
• compare regression coefficients across maturities.

• Regressors are standardized within each rolling regression for comparability
across time and maturity and censored at 2%.
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Regression results (pooled)
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Figure: Rolling window regression coefficents for JPM’s ∆B(Full) with Newey-West
adjusted CI(90%)
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Chow tests for segment specific effects

Table: Chow test results for JPM bases computed by PL-ID-VC model

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Total

Number of null-hypothesis rejections per year (%)

α = 10% 100 100 97 48 100 98 100 100 100 65 91
α = 5% 100 100 92 36 100 93 99 100 100 61 88
α = 1% 100 100 74 9 95 77 84 100 100 55 79

• Fore, example, during the pandemic, the impact of factors across the basis
maturity spectrum was not uniform, i.e.,

• Counterparty risk briefly and default premium caused the short-term basis to
steepen more.

• Market liquidity and flight-to-quality impacts only appeared in short and
medium-term bases.

• Idiosyncratic sentiment was priced slightly higher in upper end of the basis
curve.

• Funding costs pushed the short-term bases steeper throughout the pandemic.
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Regression results (segment splits)
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• Limits-to-arbitrage effects differently between short and long segments.
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Robustness checks (PL versus NS)
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Figure: PL-ID-VC vs NS-ID-VC rolling window regression coefficients for ∆B(Full)

• Chow-test does not pass for NS-ID-(VC) bases, which we attribute to
dampening nature of NS curves.
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Robustness checks (other banks)

Figure: Rolling window regression coefficients for ∆B(Full) across firms

• Chow-test passes for PL-ID-(VC) bases of also blue chip firms.
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Conclusion

• We introduced a dynamic state-space framework for simultaneous
estimation/imputation of CDS, bond spread and basis histories.

• The framework is highly flexible and generates comprehensive credit spread
and basis histories with complementary confidence bands.

• Modeling of short-term basis dynamics significantly reduce errors across
maturity, indicating the existence of a basis term structure.

• JPM’s basis dynamics are driven by dynamics in funding costs, particularly at
the medium and long end; other ‘limit-to-arbitrage’ factors may enter during
periods of stress.

• Results are robust for other banks and other interpolation models: there is a
basis term-structure (though not necessarily segment specific
limits-to-arbitrage effects)
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and basis histories with complementary confidence bands.

• Modeling of short-term basis dynamics significantly reduce errors across
maturity, indicating the existence of a basis term structure.

• JPM’s basis dynamics are driven by dynamics in funding costs, particularly at
the medium and long end; other ‘limit-to-arbitrage’ factors may enter during
periods of stress.

• Results are robust for other banks and other interpolation models: there is a
basis term-structure (though not necessarily segment specific
limits-to-arbitrage effects)
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