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Abstract

The CDS-bond basis quantifies the difference in risk premia between credit default swap

(CDS) and bond markets. It is hard to measure at the individual firm level given sub-

stantial missing-value problems in either or both markets, even for highly liquid blue-chip

financial firms (30%-100%). We propose a novel imputation approach to obtain full histor-

ical firm-level basis term-structures across all maturities. Our approach can accommodate

different term-structure interpolation methods, including Nearest-Neighbor, spline, and

Nelson-Siegel interpolation. Using the new methodology, we construct the full history of

the 2011-2021 JP Morgan (JPM) basis term-structure and use it to analyze its empirical

determinants. We find that factors like market liquidity, funding liquidity, counterparty

risk, and the default premium all impact the basis term-structure, though not all at the

same moment in time. All factors are statistically significant during the Covid-19 pan-

demic. The various empirical limits-to-arbitrage proxies correlate differently with different

parts of the basis term-structure, stressing the need to model the full basis term-structure

rather than assuming it to be flat. The results are robust for other blue-chip financials,

each time requiring the full basis term-structure imputation approach as proposed in this

paper.

Keywords: missing value imputation, high-dimensional panel data, multi-curve modeling,

time-varying spline interpolation, CDS-bond basis, dynamic Nelson-Siegel, Kalman filter.
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1 Introduction

For a given issuer and time-to-maturity, the CDS-bond basis captures the difference in

credit risk premia between credit default swap (CDS) and bond markets. It is often taken

as a proxy for credit market conditions by both policy makers and market participants,

as a high basis implies a tighter credit market (see, e.g., Boyarchenko et al., 2022).

Theoretically, no-arbitrage relationships should lead to a CDS-bond basis of zero (see

Duffie, 1999; Hull and White, 2000). Empirically, however, a zero basis is hardly ever

observed. More often, credit spreads in bond markets as measured by so-called zero-

volatility spreads or Z-spreads exceed credit spreads in CDS markets; see Neftci, 2008;

Green, 2015.

Several studies have tried to relate the existence of a nonzero basis to market frictions

or limits-to-arbitrage factors, including liquidity costs, funding costs, and counterparty

risk differences (see de Wit, 2006; Bai and Collin-Dufresne, 2018; Augustin and Schnitzler,

2020). Most of these studies, however, focus on the cross-sectional properties of the basis,

concentrating on a single (typically most liquid) maturity level (e.g., 5-years; see Bai and

Collin-Dufresne, 2018; Augustin and Schnitzler, 2020). Much less attention has been

paid to the shape of the basis term-structure across maturities at the firm-level, nor to

the time-series properties of the basis term-structure as a whole. This is a substantial

gap in the literature given the basis term-structure’s importance in financial markets and

regulation. In trading, understanding the time-series dynamics of the full basis term-

structure is of significance importance for institutional traders, as their trading strategies

often focus on fluctuations in the bases rather than on its absolute level (Risk, 2024). In

derivatives markets, the firm-level basis is a key proxy for funding costs in for instance

Funding Value Adjustment (FVA) calculations. For FVA, a funding spread (funding

liquidity premium) is required for funding valuation frameworks of Morini and Prampolini

(2011), Burgard and Kjaer (2012) and Sommer et al. (2013); see Green (2015) for a non-

exhaustive overview. These costs are a standard part of derivative prices to account for

counterparty default risk during the contract’s lifetime; see, e.g., Gregory (2020) and

Green (2015). Also from a regulatory perspective the basis is an important ingredient for

risk calculations, in particular when quantifying banks’ Basel III (BCBS, 2010) capital

requirements for Over-the-Counter (OTC) transaction profits and losses. Jointly, the size

of the derivatives and OTC markets is enormous, underlining the relevance of good basis

measurements. Moreover, since funding costs depend on the maturity of the underlying
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contract, it is also essential to have the basis term-structure across the whole range of

possible maturities rather than at a single maturity level only. This stands in sharp

contrast to current practices, where ad-hoc assumptions are often made, such as the

existence of a flat basis term-structure.

The lack of attention for the full shape of the basis term-structure originates in a

severe missing data problem. In particular, we are faced with a lack of corporate bond

data and/or CDS data to accurately measure the basis. This impedes a more thorough

understanding of (i) the shape of the basis term-structure at any moment in time, (ii)

the time-series behavior of the basis term-structure, and (iii) the relationship between

different segments of the basis term-structure and explanatory factors related to limits-

to-arbitrage for individual institutions. In particular, it remains unclear, for instance,

whether the same limits-to-arbitrage factors drive the basis at the short, middle, and

long end of the curve, or whether basis levels are affected similarly across the entire, say

30-year, maturity spectrum.

In this paper, we propose a way forward to these challenges by treating the shortage

of corporate bond and possibly CDS spread data as a missing value problem. For this,

we introduce a novel firm-level state-space model that imputes credit spread data in both

CDS and bond markets simultaneously using any parametric or non-parametric term-

structure interpolation mechanism as preferred by the user. To facilitate imputation, the

model includes components that reflect the (maturity-dependent) distance between the

bond and CDS market implied curves. This automatically gives rise to measurements of

the CDS-bond basis term-structure across all maturities and at the same time exploits

the historical strong comovement between CDS and bond spreads (see, for instance Lange

et al., 2017; de Wit, 2006). Our imputation approach is fully empirically driven and does

not impose any curve related no-arbitrage conditions. This forces the imputed values to

capture realized market price and basis curve movements as accurately as possible. The

final models remains in the class of linear Gaussian state-space models and is therefore

easily estimated using maximum likelihood methods and the Kalman filter (Durbin and

Koopman, 2012).

Our model produces two relevant outputs that can be studied in more depth. First,

the estimated model produces a full historical record of the basis term-structure at the

firm-level. We can use this to explore the determinants of the basis for individual firms

and maturities. Second, the model generates complete histories of CDS and Z-spread

term-structures, along with complementary confidence bands. Both of these are relevant
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inputs for market participants in risk management applications. For instance, they can

be used to capture credit risk based on historical value-at-risk calculations for defaultable

bonds (BCBS, 2019, 2010; Sarig and Warga, 1989; Houweling et al., 2005), or for fair-value

computations in derivative pricing under Credit Value Adjustments (CVAs) and FVAs

(Green, 2015; Morini and Prampolini, 2010; Pallavicini et al., 2011). The model and its

different outputs may thus be of considerable interest to both academics practitioners.

In our empirical application, we illustrate the model to construct the basis curve

dynamics for JPMorgan Chase & Co (JPM). Several other examples are provided in

the online appendix and corroborate the baseline results of the paper. The data covers

the period Jan 2011 to Dec 2021. The missing data problem is quite pronounced, with

missing values in basis time-series ranging from 38%-100% across the 30-years maturity

spectrum. This indicates that even for a highly liquid blue-chip financial like JPM, the

imputation challenge is substantial.

We find that the introduction of long-term and short-term components in the model

significantly improves the model’s in-sample and out-of-sample fit for the basis. This

suggests a different behavior of the long and short end of the basis curve, and there-

fore provides evidence of a (non-flat) basis term-structure. The main results do not

hinge on the precise interpolation technique used, and we consider several approaches

used in the literature for robustness. We find that non-parametric interpolation tech-

niques such as splines tend to overfit the data, sometimes resulting in counter-intuitive

term-structure patterns. Parametric interpolation curves on the other hand consistently

produce well-behaved shapes for the bases, even when credit curves are partially or com-

pletely missing. In particular our multi-curve extension of the dynamic Nelson-Siegel

model maintains accuracy over time and correctly captures a variety of historically ob-

served basis term-structure shapes, including flat, upward-sloping and downward-sloping

basis term-structures.

Having recovered the JPM basis term-structure history, we proceed by investigating

the basis time-series dynamics across maturities and its empirical determinants. We relate

the basis dynamics to limits-to-arbitrage factors as studied in for instance Augustin and

Schnitzler (2020) and Bai and Collin-Dufresne (2018). Using rolling-window regressions,

we demonstrate that JPM basis changes are primarily driven by changes in funding costs

and by JPM related sentiment. Particularly during the Covid-19 pandemic, all factors

were statistically significant. Interestingly, our results reveal differences in impact and

significance across the maturity spectrum of the basis term-structure. We find that (i)
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counterparty risk briefly caused the short-term basis to steepen; (ii) market and funding

liquidity relate to flight-to-quality effects in short-term and medium-term basis levels, but

not at the long end of the basis term structure; (iii) the default premium relates more to

the upper end of the basis curve; and (iv) funding costs pushed the short-term end of the

basis term-structure steeper throughout the pandemic. We stress again that these results

are only made possible by the imputation modeling approach across all maturities as pro-

posed in this paper as this provides the comprehensive basis term-structure history, which

can then be analysed in a second stage. The findings are robust to the precise choice

of interpolation technique (e.g., spline-based versus parametric) within the state-space

framework, and to the precise financial institution studied. Results in the Appendix for

Bank of America, Goldman Sachs, and Morgan Stanley, in the Appendix exhibit very

similar patterns to JPM. The relationships between their bases term-structure and the

limits-to-arbitrage factors were even somewhat more pronounced during credit crunch

period, especially in terms of funding costs and idiosyncratic sentiment; see online Ap-

pendix ??.

The remainder of the paper is organized as follows. Section 2 discusses the CDS-bond

basis arbitrage mechanism, the empirical basis data and its potential drivers. Section 3

introduces the modeling framework for filtering basis term-structures. Section 4 presents

the in-sample and out-of-sample performance for JPM and the empirical determinants of

its basis term-structure dynamics. Section 5 concludes.

2 Basis arbitrage, sparse curves, and basis determi-

nants

2.1 The CDS-bond basis arbitrage

A CDS is an Over-the-Counter (OTC) financial derivative where the protection seller

agrees to compensate the protection buyer if the reference entity defaults before contract

maturity. The holder of the CDS contract pays the seller periodic premiums known as

the CDS spread. Arbitrage-free theory indicates that the CDS spread must match the

credit spread on the deliverable bond with same maturity (see, e.g., Duffie, 1999; Hull

and White, 2000). Market frictions, however, can cause the two spreads to diverge, giving

rise to the CDS-bond basis.
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Unlike CDS spreads, bond credit spreads are not directly observable and have to

be approximated, accounting for bond features (such as callability, collateral provisions,

floating rates,1 etc.). As such, bond credit spreads can be measured in multiple ways.

The market standard (as most widely used by practitioners) is the so-called zero-volatility

spread (Z-spread) and only requires plain vanilla bonds (Green, 2015). The Z-spread

reflects the credit spread as a constant top-up that needs to be applied to the risk-free

rate curve, such that the prices of the vanilla bonds equal the present value of their cash

flows (Neftci, 2008). In our paper, we use CDS spread
(
yCDS
t

)
and Z-spread

(
yZt
)
data to

compute the CDS-bond basis:

bt(τ) = yCDS
t (τ)− yZt (τ), (1)

where bt(τ) is the basis of maturity τ at time t.

Although the basis is typically small in normal times due to no-arbitrage conditions,

there may be market circumstances and factors that restrict arbitrageurs to drive Z-

spreads and CDS spreads closer together (Augustin and Schnitzler, 2020; Bai and Collin-

Dufresne, 2018; Duffie, 1999). For instance, when the basis is positive, the bond is

expensive relative to the CDS (Augustin and Schnitzler, 2020). In such cases, arbitrageurs

can capitalize on the price difference (i.e., the basis) by short-selling the reference bond,

while simultaneously selling credit protection on it. This strategy is known as a ‘positive

basis trade’ and exposes the arbitrageur to idiosyncratic risk and significant mark-to-

market losses if the basis widens further (Augustin and Schnitzler, 2020). In addition, it

may be costly to short the reference bond. Also, the ‘cheapest-to-deliver’ option in CDS

agreements may render the positive basis trade too risky or unprofitable (Augustin and

Schnitzler, 2020) By contrast, negative basis trades are more likely to be observed, i.e.,

buying a bond and buying a CDS when the basis is negative. However, the profit and loss

(PnL) on a negative basis trade is also subject to a variety market frictions that prevent

arbitrageurs from realizing a risk-free profit, such as funding and liquidity costs, haircuts,

margin calls, counterparty risk, and collateral quality (see Bai and Collin-Dufresne, 2018).

As a result, the basis is hardly ever found to be zero in practice.

The factors mentioned above fall under the umbrella of the ‘limits-to-arbitrage’ the-

ories outlined in detail by Augustin and Schnitzler (2020) and Bai and Collin-Dufresne

1The ideal corporate bond spread aligns with the spread measured as the difference between the yield

of a floating-rate note and risk-free rate of the same maturity(Duffie, 1999). This ideal spread, however,

is rarely observed due to low issuance volume (Bai and Collin-Dufresne, 2018).
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(2018). They test the relationship between basis determinants and the cross-sectional

variation in bases during the 2008 Financial Crisis using (unbalanced) panel data of U.S.

firm bond-level bases across a large group of industries. Focusing on a 5 year maturity,

they include multiple bonds for each firm as it is challenging to create a complete his-

torical time series due to the lack of corporate bond data. It is precisely this missing

data problem that leads most studies to use small-T unbalanced panels and a single,

most liquid 5Y maturity to investigate which factors affect the basis. To the best of our

knowledge, for individual firms there are no studies on the entire firm-level basis term-

structure, nor on its dynamics and its determinants. Consequently, it remains unclear

whether factors that explain the cross-section of the basis at a single maturity also ex-

plain the firm-level basis and its dynamics across the full 30Y maturity spectrum. This

is precisely the focus of our current paper.

2.2 Missing data challenge: empirical bond and CDS data

In this section we highlight the missing data problem that arises when computing the

daily (constant maturity) CDS-bond basis at the firm level. The typical root of the

problem is the lack of corporate bond data, though also CDS data may be missing and

require some form of interpolation; see Gregory (2020), BIS (2016) BCBS (2004). As a

case study, we focus on the CDS-bond basis of JPMorgan Chase (JPM). JPM is a highly

liquid blue-chip financial, issuing a range of corporate bonds at different maturities. At

the same time, a range of CDS contracts is traded on JPM given its systemic importance.

We take daily USD denominated CDS spread quotes on JPM from MarkitTM. Follow-

ing Augustin and Schnitzler (2020), CDS contracts of Senior Unsecured debt with a Mod-

ified Restructuring Clause are selected to minimize the impact of the ‘cheapest-to-deliver’

option. The daily CDS term-structure consists of nine ‘on-the-run’, near constant matu-

rity points at 6M, 1Y, 3Y, 5Y, 7Y, 10Y, 20Y and 30Y. The exact daily time-to-maturity

of these series is subject to IMM rollover dates; see Appendix A for technical details and

for a schematic representation of the maturities through time. The daily observations

span an 11 year period from January 3, 2011 to December 31, 2021 (T = 2870).

We also take daily bond composite Z-spread data from MarkitTM, which computes the

spreads over the USD LIBOR curve2. MarkitTM uses bond prices from various sources

2As of, January 1, 2022, MarkitTM discontinued the use of IBOR rates for discounting in the ISDA

Standard CDS Model and continued with the new Risk Free Rates (RFRs).
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and aggregates these to composite level. The number of price contributions is a metric

for the measuring the bond’s liquidity, since pricing uncertainty is expected when contri-

butions increase. At each time point, we only consider a bond in our analysis if it has at

least 5 price contributions. Furthermore, only vanilla reference bond Z-spreads were se-

lected corresponding to the CDS credit risk profile, i.e., we only selected uncollateralized

reference bonds incorporating Senior Unsecured debt of investment grade quality with

(remaining) time-to-maturities within the range of 6M-30Y. This resulted in 31 bond

Z-spread series over different parts of the sample period. The full list of bond ISIN iden-

tifiers are reported in Appendix A. The appendix also visualizes the time-to-maturities

of the bonds over time.

To give some insights into the missing data challenge, even for a liquid name such

as JPM, Figure 1 shows the daily CDS spread and Z-spread data of JPM together with

the empirical basis estimates for various maturities. The daily constant maturity basis

estimates are obtained non-parametrically via linear interpolation in the following way.

First, we obtain constant maturity CDS spreads by linearly interpolating/extrapolating

the daily CDS spread curves (separately). Hence, we recognize that CDS maturities are

subject to IMM rollover dates. Second, constant maturity Z-spreads are obtained by

linearly interpolating between the two closest Z-spreads surrounding the target tenor.

The interpolation is only performed within a suitable range around the target tenor.

The boundaries of the interpolation intervals are set to the two closest MarkitTM’s CDS

tenors. For example, the 1Y Z-spread tenor is computed by interpolating samples with

maturities within the range [6M, 3Y). Thus, for the 5Y Z-spread we interpolate samples

in [3Y, 7Y), which is in line with the domain used in Augustin and Schnitzler (2020) and

(Bai and Collin-Dufresne, 2018). Z-spreads at 6M and 30Y maturities are not computed,

because they require extrapolation, which has poor performance due to a lack of data.

Table 1 provides an overview of the interpolation ranges used for computing Z-spreads

tenors. The missing data problem for the CDS part of the basis is less pronounced: the

CDS maturities are at most 6 months off from the corresponding MarkitTM’s CDS tenors,

in contrast to the bond data, which is particularly scarce at the 6M and 30Y boundries.

See Appendix A for more details.

Figure 1 clearly reflects the evolution of the U.S. economy and credit markets over

the past decade, including the highly volatile periods of 2011–2012 and the Covid-19

pandemic in 2020. Interestingly, the upper end of JPM’s CDS curve inverts during

for instance 2012, with the 20Y yield exceeding the 30Y yield. This can be either a
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Figure 1: CDS, Z-Spread and Basis data points
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Notes: Subfigure 1a displays the daily CDS spread (left) and Z-spread observations (right) in basis points (bps), colored

by their time-to-maturity, for JPM over the period 2011-2022. The black dotted line marks the split between our in-

sample period (January 3, 2011 to December 31, 2021) and out-of-sample period (January 1, 2021 to December 31, 2021).

Subfigure 1b displays the non-parametric constant maturity estimates for the CDS-bond basis for various tenors. The basis

time-series are incomplete due to missing values arising from a shortage of bond Z-spread data at various maturities. The

scarcity of bond Z-spread values is largest for (very) short-dated (≤ 3Y) and long-dated (≥ 10Y) underlying bonds.
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sign of illiquidity, or an inversion following market wide conditions at the time.3 The

phenomenon does not occur in the bond market at that time: there the Z-spread 30Y

yield remains above the 20Y yield. Only during the Covid-19 pandemic (March 2020),

the Z-spread curve also inverts shortly at the long end.

Overall, the (scattered) Z-spread data points appear to exceed the CDS spreads,

underlining the existence of a (negative) CDS-bond basis on average across the maturity

domain. This is confirmed by the CDS-bond basis time-series plotted in Figure 1b. The

negative basis appears to even widen further during stressed periods like the 2011-2012

sovereign debt crisis, the 2015–2016 manufacturing recession, and the Covid-19 pandemic

peak in March 2020.

It is also clear from Figure 1b that the basis has many missing values, making it

challenging to analyze its dynamics across maturities. The challenge stems particularly

from the lack of Z-spread data. Despite comparable numbers of observations for CDS

and Z-spreads, the Z-spreads are unevenly distributed across maturities; see Table 2, and

Figures A.1 and A.2 in the appendix. Most Z-spread maturities lie in the range of 1 to 10

years, with missing data problems occurring both at the short and long end of the term-

structure, but particularly for long maturity senior investment grade Z-spreads. Also the

number of observed Z-spreads varies significantly over time. There are fewer than 9, 6,

and 3 observed Z-spreads 46%, 23% and 7% of the time, respectively. By contrast, the 9

CDS tenors hardly have any missing values.

The lack of Z-spread data directly affects the computability of the JPM basis curve.

Even around the most liquid tenor of 5 years where we can compute the basis most often,

we still encounter missing values more than 37% the time; see Table 3. At the short

and long end of the basis curve, more 80% of the values are even missing during certain

episodes. As a result of this uneven distribution of Z-spreads across maturities, we have

a hard time to construct a complete time-series of the constant maturity CDS-bond basis

term-structure. Naturally, this also impedes a proper study of the drivers of the basis

term-structure dynamics across maturities. Given the imputation challenge already is of

such a magnitude for a liquid name like JPM, we can expect even more challenges for

less liquid names with lower bond issuance.

3For example, the U.S. CDS curve inverted during the start of the credit crunch (around August

2011) due to a downgrade in its credit rating (Financial Times, 2011; Reuters, 2011). The CDS curves

of numerous U.S. banks subsequently followed this trend, such as Bank of America, Goldman Sachs and

Morgan Stanley.
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Table 1: Non-parametric interpolation intervals for constant maturity Z-spreads

1Y 3Y 5Y 7Y 9Y 10Y 15Y 20Y 25Y

Interval [6M, 3Y) [1Y, 5Y) [3Y, 7Y) [5Y, 10Y) [5Y, 10Y) [7Y, 15Y) [10Y, 20Y) [15Y, 30Y) [15Y, 30Y)

Notes: This table reports the interpolation ranges used for computing a selected set of constant maturity Z-spreads. Z-

spreads tenors are obtained by linearly interpolating between the two closest Z-spreads surrounding the target maturity

(in bold) within an interval whose boundaries are the closest MarkitTM’s CDS tenors: 6M, 1Y, 3Y, 5Y, 7Y, 10Y, 20Y and

30Y. For example, the 1Y Z-spread is computed by interpolating samples with maturities within the range [6M, 3Y).

Table 2: Available data points

In-Sample Out-of-Sample

(T = 2609) (T = 261)

Firm CDS Z CDS Z Total

JPM (p = 40) 23,393 23,247 2,349 2,249 51,238

Notes: This table reports the total number of daily CDS spread and Z-Spread observations available over the in-sample

period (January 3, 2011 to December 31, 2021) and out-of-sample period (January 1, 2021 to December 31, 2021) for JPM.

The length of time-series (T ) over these periods is reported in brackets. The total number of credit spread series (p) is also

reported in brackets.

Table 3: CDS-bond basis descriptive statistics

Sample Statistic 1Y 3Y 5Y 7Y 9Y 10Y 15Y 20Y 25Y

In NA (%) 80 38 40 45 56 89 100 95 90

Out NA (%) 69 7 37 100 100 100 100 62 100

Full

Avg. (bps) -11.984 -17.538 -23.730 -27.614 -21.287 -24.683 -46.885 -37.556

Std. (bps) 22.757 19.062 16.396 16.756 19.987 26.630 17.810 17.106

ρ(1) 0.917 0.927 0.933 0.951 0.973 0.968 0.893 0.900

ρ(10) 0.450 0.753 0.739 0.852 0.898 0.749 0.457 0.707

Notes: This table reports descriptive statistics of the empirically estimated constant maturity CDS-bond basis time-series

displayed in Figure 1b.
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2.3 Potential economic basis drivers

In this subsection, we briefly discuss the most commonly used determinants of the CDS-

bond basis as used in the literature. Though earlier studies mostly focus on the most

liquid (5Y) maturity, the underlying arguments are also applicable when studying the

time-series behavior of the entire CDS-bond basis term-structure across all maturities.

2.3.1 Market liquidity

Executing a negative basis trade requires going long in the bond and in the CDS, thus

incurring the associated trading costs. As highlighted in Bai and Collin-Dufresne (2018),

trading costs play a role in determining the profitability of a (negative) CDS-bond basis

trade. Arbitrageurs typically seek bonds with higher liquidity, i.e., with lower trading

liquidity risk (Bai and Collin-Dufresne, 2018). If bond market liquidity is low or dries

up, the basis is therefore expected to grow more negative (Augustin and Schnitzler, 2020;

Bai and Collin-Dufresne, 2018; de Wit, 2006).

We use the Corporate Bond Market Distress Index (CMDI) developed by Boyarchenko

et al. (2022) as a proxy for bond market liquidity. This index integrates diverse bond

distress measures from both primary and secondary markets, such as trading volume,

bid-ask spreads, and the Amihud metric; see Boyarchenko et al. (2022) for a detailed

motivation. Boyarchenko et al. (2022) demonstrates that the CMDI accurately captures

different uncertainty regimes in the bond market and possesses predictive power for the

CDS-bond basis. This makes it a valuable explanatory factor for our study. The end-of-

week values of the index are taken from the Federal Reserve Bank of New York.

2.3.2 Funding risk

Basis arbitrageurs require funding when buying a bond in the repo market (Augustin and

Schnitzler, 2020; Bai and Collin-Dufresne, 2018). Higher interest rates generally raise the

cost of holding a physical asset, such as a bond. Consequently, increased funding costs

usually push the basis more negative, as arbitrageurs seek to be compensated for these

costs.

We proxy funding costs with the USD LIBOR curve, whilst acknowledging that in-

vestors obtain funding at rates that exceed the interbank offered rate (Ahmadian, 2015;

de Wit, 2006). Our choice for LIBOR as a funding curve is further motivated by the fact

that the Z-spreads in our data are also computed using this curve. The daily LIBOR
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rates are taken from Bloomberg.

Basis arbitrageurs also face funding liquidity risk, referring to difficulties in securing

short-term financing (at favorable rates) for the bond-leg of the arbitrage deal. This can

hinder their ability to participate in the repo market, restricting their capacity to secure

arbitrage profits. During periods of low funding liquidity, funding constraints can become

binding, forcing arbitrageurs to unwind their positions in basis trades. Increased funding

illiquidity is expected to push the basis more negative. This happened for instance during

the global financial crisis and (further) widened the basis at the time (see Augustin and

Schnitzler, 2020).

Following Brunnermeier and Pedersen (2009), the TED spread, defined as the dif-

ference between the 3-month USD LIBOR and 3-month U.S. Treasury bill, is used as a

proxy to capture funding risk. As argued by Augustin and Schnitzler (2020), a negative

correlation between the TED spread and the basis supports the hypothesis of binding

funding constraints and the liquidity spiral of Brunnermeier and Pedersen (2009), cap-

turing a flight-to-quality effect. This effect is expected to be more pronounced during

times of uncertainty. Daily TED spread values are downloaded from the Federal Reserve

Bank of St. Louis.

2.3.3 Counterparty risk

Negative basis trades require hedging the credit risk in the long bond position by a long

position in a CDS contract against the bond issuer. Counterparty risk, i.e., the risk

that the CDS issuer fails to fulfill its commitments in case the reference entity defaults,

decreases the CDS spread and thereby potentially also the CDS-bond basis. This risk is

typically quantified by the correlation between the default risk of the protection (CDS)

issuer and the reference entity (bond issuer). This correlation is, however, notoriously

hard to measure given that CDSs are OTC products, making it hard to impossible to

identify their sellers.

We follow Bai and Collin-Dufresne (2018) who suggest to proxy for counterparty risk

by the correlation between changes in CDS spreads of the reference entity and an artificial

CDS index. This index is a stock market capitalization weighted average of the CDS

spreads of representative CDS issuers, such as the primary dealers of the Federal Reserve

Bank of New York. The index is constructed using MarkitTM data. We only include

those dealers as constituents that remained part of the primary dealers list throughout
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our 2011-2022 sample period. We exclude JPM from the list, as it also serves as our

reference entity. Annual weights for the index are computed using each dealer’s end-of-

year market capitalization. The full list of index constituents and weights can be found

in Appendix A.

Firm-level counterparty risk is finally computed as

βCR
t (τ) =

Cov[∆CDSt(τ),∆CDSindex,t(τ)]

Var[∆CDSindex,t(τ)]
, (2)

and is estimated over an 130-day rolling window (Bai and Collin-Dufresne, 2018). We

expect βCR
t (τ) to correlate negatively with the CDS-bond basis: a higher βCR

t indicates a

higher joint default probability of the reference entity and the protection seller and thus

a higher counterparty risk.

2.3.4 Default premia and idiosyncratic sentiment

In contrast to the earlier limits-to-arbitrage related variables, previous research also re-

lates basis dynamics to non-fundamental factors, such as the default premium and the

economic environment. For instance, (Augustin and Schnitzler, 2020) argue that changes

in bond markets’ perceptions about credit risk may be reflected through a default dis-

count, leading to larger bond credit spreads and thereby negatively affecting the basis.

Similarly, Cai et al. (2020) demonstrate that a reduction in macroeconomic uncertainty

pushes the basis towards zero as a result of an improved PnL of a basis trade. We there-

fore include these variables in our empirical analysis as further controls when explaining

the CDS-bond basis term-structure. As in Augustin and Schnitzler (2020), we use the

approach of Lin et al. (2011) and capture the corporate bond market’s perception of

credit risk as the difference between Moody’s Baa and Aaa bond yield indices (as ob-

tained from Federal Reserve Bank of St. Louis’ website). Rather than using a general

market-wide measure for economic uncertainty such as the VIX (Cai et al., 2020), we

take a firm-specific measure, namely JPM’s intra-day realized volatility σRV
t , to proxy

for its firm-specific economic uncertainty. The firm-level realized volatility was computed

based on 5-min returns (based on mid prices), given daily tick stock price tick (obtained

from...?).
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3 Dynamic basis curve models

3.1 A multi-curve state-space representation for spreads

We consider observed CDS spreads yCDS
i,t (τCDS

i,t ) and bond Z-spreads yZj,t(τ
Z
j,t) at time t for

t = 1, . . . , T . The number of CDS contracts and corporate bonds available in the market,

varies over time. As a result, the number of spreads also varies as i = 1, . . . ,mt for CDS

spreads, and j = 1, . . . , nt for the Z-spreads. Each spread corresponds to a particular

maturity τCDS
i,t and τZj,t for CDS and Z-spreads, respectively.

We gather the CDS spreads and Z-spreads into a vector yt(τt) and model it using a

multi-curve state-space set-up as

yt(τt) = Ft(τt)ft + εt(τt), ft+1 = c+ Φft + ηt, (3)

yt(τt)
′ =

(
yCDS
1,t (τCDS

1,t ), . . . , yCDS
mt,t (τ

CDS
mt,t ) , y

Z
1,t(τ

Z
1,t), . . . , y

Z
nt,t(τ

Z
nt,t)

)′
,εt(τt)

ηt

 iid∼ N

0

0

 ,

Σε,t(τt) 0

0 Ση

 .

The total dimension pt = mt + nt of yt(τt) and τt varies over time as bonds and/or CDSs

enter or leave the sample. We also note that the elements of τt change over time: when

moving from t to t + 1, the maturities of the underlying CDS and bond instruments

may either decrease deterministically due to the lapse of time, or increase according

to rollover schedules. The model thus describes spreads with time-varying rather than

constant maturities.

The vector of spreads yt(τt) in (3) depends on a vector of unobserved stochastic factors

ft ∈ Rk via a design matrix Ft(τt) ∈ Rpt×k. One can think of ft as for example risk factors

like the level, slope and curvature of the term-structure in both the CDS and the bond

market. The design matrix Ft(τt) depends in a fixed, deterministic way on τt and is, in

that sense, pre-determined given that τt is known at the start of period t. We elaborate on

the possible functional form of Ft(τt) later on, but as an overly simplistic example, Ft(τt)

might be just a column of ones, yielding a model with a single common level factor ft for

both CDS and bond markets. The measurement noise εt(τt) ∈ Rpt in (3) is characterized

by a time-varying covariance matrix Σε,t(τt) ∈ Rpt×pt , whose possible functional form will

also be described later.

The latent factor ft has an intercept c ∈ Rk and autoregressive dynamics characterized

by the matrix Φ ∈ Rk×k. We assume that ft is stationary, such that we can initialize
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the state-space model in a standard stationary way by assuming f1 ∼ N(µf ,Σf ), where

µf = (Ik − Φ)−1 c is the unconditional mean of ft, and where Σf is the unconditional

covariance matrix of ft. The latter can be obtained from the relation Σf = ΦΣf Φ
′+Ση,

where Ση ∈ Rk×k is the time-invariant, diagonal covariance matrix of the state innovations

ηt ∈ Rk.

The model in Eq. (3) simultaneously describes the CDS and Z-spread curves. It

is parameter-driven in the classification of (Cox, 1981) and falls in the class of linear

Gaussian state-space models; see Durbin and Koopman (2012). Its static parameters

such as c, Φ, Ση, etc., can be estimated using standard maximum likelihood methods

and the Kalman filter (see Kalman, 1960; Durbin and Koopman, 2012). The model is

particularly suited for the data at hand. It allows for a time-varying number of observed

CDS contracts and bonds via its time-varying dimension pt. It can also easily cope with

missing values given its state-space set-up, and can accommodate the curves of two (or

more) different markets in one homogeneous framework. To complete the model, we need

to specify the design matrix Ft(τt) and the covariance matrix Σε,t(τt). This is done in the

next sections.

3.2 Decomposition and interpolation for multiple curves

We first introduce our baseline decomposition of the CDS and bond market credit spread

curves into a common and a basis-related level component. Next, we make the specifi-

cation more realistic by including more risk factors in ft and allowing for various curve

interpolation techniques as used in the literature.

There are various ways to decompose yt(τt) into the latent factors ft via the design

matrix Ft(τt). We use the following baseline specification, which we extend later on

withfurther relevant factors:

µCDS
1,t (τ1,t)

...

µCDS
m,t (τmt,t)

µZ
1,t(τ1,t)

...

µZ
n,t(τnt,t)


︸ ︷︷ ︸

µt (pt×1)

=



1 1
...

...

1 1

1 −1
...

...

1 −1


︸ ︷︷ ︸
Ft=F (pt×2)

 fc,t
1
2
fb,t


︸ ︷︷ ︸
ft (2×1)

. (4)

The expected CDS spread level now equals µCDS
i,t (τ) = fc,t +

1
2
fb,t and the expected Z-
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spread level µZ
j,t(τ) = fc,t − 1

2
fb,t, for any τ . In this simple baseline specification, the

credit spread curves in the CDS and bond markets are thus decomposed into a common

component fc,t and a basis component fb,t. Note that the basis component is easily

retrieved by considering the difference between the expected CDS and Z-spread levels,

µb
t(τ) = µCDS

t (τ)− µZ
t (τ) =

(
fc,t +

1
2
fb,t

)
−
(
fc,t − 1

2
fb,t

)
= fb,t, (5)

for any maturity τ .

The above so-called effect-coded dummy specification has been well studied in the

literature; see for instance Harvey (1990) and Durbin and Koopman (2012) in the context

of time-varying seasonality modeling. Its advantage in the current context is that both fc,t

and the basis component fb,t are now common stochastic drivers of both curves. From an

imputation point of view, this is an advantage: the entire cross-section now contributes to

the estimation of the basis as both curves across all maturities are jointly modeled. Even

if (many) observations are missing in one of the two markets in a specific cross-section,

the model can still filter the signals about common component fc,t and the basis fb,t from

the (possibly few) non-missing data points.

The specification of Ft in Eq. (4) is of course too simplistic for fitting the entire term-

structure in two markets simultaneously. To improve the specification, additional factors

are needed, either in the form of levels of the curves at different maturity points, or

alternatively in the form of factors like slope and curvature of the term-structure. Either

of these approaches calls for an interpolation mechanism to obtain the predicted curve

levels at the observed, time-varying maturities τCDS
i,t and τZj,t from a limited number of risk

factors ft. Several of these mechanisms have been proposed in the literature, including

nearest neighbor interpolation, bucketing, linear and spline interpolation, polynomial

regressions, and more; see Hagan and West (2006) for a range of techniques widely used

by practitioners. The remainder of this section outlines how to extend the specification

in Eq. (4) to include various popular curve interpolation mechanisms, and how to embed

these in the state-space model in Eq. (3) via a suitable specification of the design matrix

Ft(τt) in order to fit multiple curves simultaneously through time.
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3.2.1 Nearest-neighbor and bucketing

The Nearest Neighbor (NN) and bucketing algorithm for interpolating term-structures

are two of the simplest and most widely used approaches in practice.4 Both algorithms

specify a term-structure curve at a predefined number of K knots. Between these knots,

the curve is interpolated by taking either the value at the closest knot (NN) or the

(constant) value between two adjacent knots (bucketing). Both approaches can be seen

as a form of piecewise constant interpolation (0th-order spline).

To cast the approaches into state-space format, we first define the maturity knots τk

for k = 1, . . . , K. The curve values fτk,t at time t and at each knot τk are treated as

latent factors in Eq. (3). For the NN method, this can be expressed as an expected curve

level at maturity τ of

hNN
t (τ) =

K∑
k=1

fτk,t 1[k=k⋆(τ)], (6)

where 1[·] denotes the indicator function, and k⋆(τ) = argmink=1,...,K |τk − τ | gives the

index of the closest knot. Similarly, the bucketing approach can be written as

hPBt (τ) =
K∑
k=1

fτk,t 1[τ∈[τk,τk+1)]. (7)

The indicator functions in Eqs. (6) and (7) act as dummy variables and are known for

all CDS and bond spreads for all maturities at all times. They can therefore be directly

embedded in the design matrix Ft(τt) in Eq. (3).

Given our baseline specification already contains a separate common (fc,t) and basis

(fb,t) level component, we face an identification issue if the factors fτk,t in Eq. (6) and (7)

are left unrestriced. To resolve the problem, we impose the restriction that the fτk,t sum

to zero across the different knots. This is easily done by setting fτk̃,t = −
∑

k ̸=k̃ fτk,t for

one specific reference maturity τk̃ such as the 5Y tenor, and accounting for this in the

specification of Ft(τt). We give an illustration in Figure 2 for a cross-section of 6 spreads

with maturities ranging between 3Y to 8Y, and choosing the (most liquid) 5Y tenor as

the reference point k̃.

4See Beretta and Santaniello (2016) for a critical assessment of the Nearest Neighbor algorithm in

the context of imputation.
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3.2.2 Linear and spline interpolation

While simple, the disadvantage of the above two piecewise constant approaches is that

they typically require many factors ft to fit the dynamics of the two term-structures in yt

sufficiently well. A straightforward improvement is obtained by replacing constant (0th

order) by linear (1st order) or by higher order (2nd or 3rd) spline interpolation. Each of

these again specifies a series of levels fτk,t at fixed knot positions τk for k = 1, . . . , K. For

linear interpolation, the knots are interpolated as

hPL(τ) =
τk+1 − τ

τk+1 − τk
fτk,t +

τ − τk
τk+1 − τk

fτk+1,t, for τk ≤ τ < τk+1. (8)

As in Eqs. (6) and (7), the linear interpolation scheme can directly be cast into a design

matrix Ft(τt) that is known for all time points t. For identification, we again impose the

restriction that the knots should sum to zero, i.e., fτk̃,t = −
∑

k ̸=k̃ fτk,t for some reference

knot position τk̃ such as the 5Y tenor. See Figure 2 for an example. For higher order

splines the interpolation in Eq. (8) is somewhat more involved, but still straightforward

algorithmically; see for instance Poirier (1973).

3.2.3 Nelson-Siegel interpolation

A last type of interpolation mechanism that we include in our study is the well-known

empirical term-structure model of Diebold and Li (2006), also known as the dynamic

Nelson-Siegel model. The Nelson-Siegel model is a parsimonious yield curve model that

can produce a variety of shapes observed in financial term-structure data. It has many

extensions, including arbirage-free versions (Christensen et al., 2011); see De Pooter

(2007) for a non-exhaustive list of single curve specifications. A multi-curve extension

was introduced by Diebold et al. (2008) for extracting common and idiosyncratic curve

dynamics in an international yield curve modeling context.

The core interpolation mechanism of the Nelson-Siegel model is driven by two com-

ponents, namely by a slope and curvature factor, each with its unique loadings. The

specification is given by

hNS(τ) =
1− e−λτ

λτ
f1,t +

(
1− e−λτt

λτ
− e−λτ

)
f2,t, (9)

where λ is the so-called decay parameter. The time-varying factors f1,t and f2,t govern

the slope respectively the curvature of the spread curves. Their interpretation follows

directly from the factor loadings. For f1,t, the loading decreases monotonically from 1 to

0 as the maturity τ increases. For f2,t, by contrast, the loading starts at 0, then increases
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and eventually converges to 0 for large τ . As a result, the level factors fc,t and fb,t in the

Nelson-Siegel model specify the long-term expect level of the CDS/Z-spread and CDS-

bond basis curve, respectively. As a result, the Nelson-Siegel approach does not require

a similar identification restriction on f1,t and f2,t as the previous interpolation methods.

The specification in Eq. (9) can easily be incorporated in Ft(τt). This is illustrated in

Figure 2.

The parametric interpolation with the Nelson-Siegel model has two advantages over

the earlier non-parametric interpolation methods based on splines. First, the number of

required risk factors in ft is typically much smaller than for the spline methods. Second,

the spline methods with many knots have a tendency to overfit the data, particularly

at times when one of the markets only has few data points. This may result in coun-

terintuitive patterns of the credit spread curves across maturities. We have found the

Nelson-Siegel model to be much less susceptible to such effects. Of course, the assumption

of a specific parametric form comes at the cost of model mis-specification risk. Given the

flexible form of the Nelson-Siegel model and the substantial track-record of the model as

an adequate empirical description of term-structure shapes, we think the model is a good

choice in the current context.
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Figure 2: Maturity-dependent designs for Ft(τt)

(a) Nearest Neighbor (NN)
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Notes: An illustration of maturity-dependent loading matrices for various interpolation methods. Each subfigure displays a matrix Ft(τt) consisting of two sub-matrices, with the first one being

a time-invariant a fixed component, FBase, that specifies the common level and basis level effect of (4). The second matrix in each plot is maturity-dependent whose loadings are implied from

either the Nearest Neighbor, piecewise buckets, piecewise linear and Nelson-Siegel. The loadings in all designs are constructed for the exact same credit-and bond spread time-series (6 in total),

with a 30/360 day count convention. All factors are treated as common effects for CDS and Z-spreads. Where possible, effect-coding is always applied on factors modeling the 5Y tenor.
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3.3 Model extensions

3.3.1 Idiosyncratic curve effects

So far, the models from Section 3.2 only account for common joint tenor effects via the

additional factors on top of fc,t and fb,t. Such common tenor effects for both curves can

be restrictive in practice. A straightforward solution is to model the basis term-structure

bt(τ) by additional curve-specific factors in the design matrices Ft(τt). For example, the

common piecewise linear or first-order spline can be extended with a separate idiosyn-

cratic (ID) effect-coded first-order spline for the basis term-structure:

hPL-ID(τ) =


τk+1−τ

τk+1−τk
f c
τk,t

+ τ−τk
τk+1−τk

f c
τk+1,t

+ τk+1−τ

τk+1−τk
f b
τk,t

+ τ−τk
τk+1−τk

f b
τk+1,t

for yCDS
t ,

τk+1−τ

τk+1−τk
f c
τk,t

+ τ−τk
τk+1−τk

f c
τk+1,t

− τk+1−τ

τk+1−τk
f b
τk,t

− τ−τk
τk+1−τk

f b
τk+1,t

for yZt ,

(10)

for τk < τ < τk+1. Here, the f
c
τk,t

s span a spline that is common between the two credit

spread curves, while the f b
τk,k

s span an effect-coded idiosyncratic spline for the basis

curve. Again, the extension is easily incorporated into the design matrix Ft(τt). Similar

extensions of course hold for all the other interpolation techniques from Section 3.2.

We can even choose for different numbers of factors f c
τk,t

versus f b
τk,t

. For instance,

in the Nelson-Siegel specification we can opt for a common level and slope component,

augmented with only a basis level component, both characterized by different parameters

λc and λb. This may be helpful if otherwise the model is at risk of overfitting the data,

particularly during episodes where many data points are missing in one of the two

markets.

3.3.2 Including volatility term-structures

The functional form of the observation variance matrix Σε,t(τt) in (3) is thus far left

unspecified. In its simplest form, Σε,t(τt) can be a time-invariant diagonal matrix holding

the constant conditional variances of each of the spread observations. The elements of yt,

however, relate to observations with a time-varying maturity. It is therefore unlikely that

they will be empirically subject to the same level of noise as time progresses. Moreover,

if a new element is added to the observation vector yt, it is unclear what variance should

be chosen for it.
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In line with the motivation and results in Longstaff and Schwartz (1992), Bianchi

et al. (2009), Viceira (2012), Fonseca and Gottschalk (2013), and Koopman et al. (2010),

we therefore also consider a model specification where the CDS spread and Z-spread

volatilities are directly a function of maturity,

Σε,t(τt) = diag
(
σ2,CDS
t (τt)

′, σ2,Z
t (τt)

′
)

= diag
(
σ2,CDS
1,t (τ1,t), . . . , σ

2,CDS
m,t (τm,t) , σ2,Z

1,t (τ1,t), . . . , σ
2,Z
n,t (τn,t)

)
,

where we adopt a so-called local-volatility model of Dupire et al. (1994) for fitting vari-

ance term-structures. A local-volatility term-structure is a non-parametric model for

spanning a curve along a set of pre-specified variance knots, just like for the spread

curve interpolation methods of Section 3.2. We use a piecewise linear interpolation,

though other interpolation techniques can of course also be used:

σ2
t (τ) =

τk+1 − τ

τk+1 − τk
σ2
τk
+

τ − τk
τk+1 − τk

σ2
τk+1

, for τk < τ < τk+1, (11)

for a number of volatility levels σ2
τk

over a grid of knots τk, k = 1, . . . , K. As the matu-

rities of the observations in yt change over time, the covariance matrix Σt(τt) becomes

time-varying even if the values of σ2
τk

at the knots remain constant over time. Also, a

new element of yt with a new, specific value of τ can easily be accommodated by the

model using the specification of Ft(τt) as in Section 3.2 and the volatility term-structure

as in Eq. (11).

Empirically, we typically only need a few variance knots σ2
τk

to adequately model

the local-volatility term-structure. This only results in a few extra parameters to be

estimated. Therefore, the use of variance curves is a parsimonious solution to limit the

number of unknown parameters, especially in a high-dimensional set-up like ours.

3.4 Filtering and maximum likelihood estimation

The formulation of the time-varying basis curve model via Eq. (3) falls in the class

of linear Gaussian state-space models. This makes it straightforward to estimate the

model’s static parameters, despite the model’s flexibility and complexity. The static

parameter vector ψ contains the free elements of c, Φ, Ση and Σε,t(τt), and also the

elements of Ft(τt), if any, that need to be estimated, such as the λ parameter of the
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Nelson-Siegel specification. This is done as follows. Given ψ, the Kalman filter can be

applied to recursively estimate the latent state vector ft by evaluating its conditional

mean and variance ft|t−1 = Et|t−1 [ft] and Pt|t−1 = Vart|t−1 [ft] at each point in time.

The Kalman filter then uses these predictions and the prediction error decomposition

to produce the log-likelihood value. This log-likelihood can subsequently be maximized

numerically to produce the maximum likelihood estimator ψ̂ML and associated standard

errors; see Durbin and Koopman (2012) for a detailed discussion.

We obtain the predicted CDS-bond basis by evaluating the Kalman filter at the

optimal ψ̂ML as

Et|t−1 [bt(τ)] = Et|t−1

[
yCDS
t (τ)− yZt (τ)

]
=

(
I −I

)
Ft(τt)ft|t−1.

Similarly, the Kalman filter produces a conditional variance estimate for the basis,

namely

Vart|t−1 [bt(τ)] =
(

I −I
)
Ft(τt)Pt|t−1Ft(τt)

′

 I

−I

 + Σε,t(τt).

The predicted value of the basis and its one-period-ahead variance can be used to com-

pute the out-of-sample risk of the basis in terms of for instance Value-at-Risk (VaR) or

Expected Loss (EL).

The Kalman filter can also be used to obtain filtered and smoothed estimates of

the basis and its variance based on the information {y1, . . . , yt} and {y1, . . . , yT}, re-
spectively. These can be useful for an expost analysis of the basis given all available

data.

Whichever of these estimates of the basis is used (predicted, filtered, smoothed), the

advantage of the Kalman filter and the current state-space set-up is that they can easily

deal with missing data. At every time point, the filter uses all the available data and

the structure embedded in Ft(τt) to obtain the best possible estimate of the basis. We

exploit this in the next section to obtain estimates of the entire basis term-structure

at the individual firm level, which we can then subsequently analyze to determine its

economic drivers.
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4 Empirical results

In this section, we apply the new imputation methodology for the basis to recover the

firm-level basis term structure history for JP Morgan Chase & Co (JPM) and analyze

its empirical economic determinants. We do so in two steps. First, in Section 4.2, we

estimate the state-space model from Eq. (3) and assess the performance of several of the

interpolation mechanisms for fitting CDS and Z-spread data to uncover JPM’s CDS-

bond basis term-structure. We then proceed in Section 4.3 by relating the constructed

basis term structure to its potential economic determinants.

4.1 Empirical modeling choices

We consider an in-sample period of Jan 3, 2011 to Dec 31, 2020. To check whether

the robustness of the results also holds up out-of-sample, we also evaluate the fit of the

estimated model over the out-of-sample period Jan 1, 2021 to Dec 31, 2021.

We consider a total of 9 curve interpolation models. The simplest Base configuration

of Ft has two common level components fc,t and fb,t. The remaining models augment

these two baseline factors with additional factors characterizing either the knots or

parametric curve loadings for the interpolation mechanisms discussed in Section 3.

For the nearest neighbor (NN), bucketing (PB), and piecewise linear (PL) models, we

include 8 free knots: f6M, f1Y, f3Y, f7Y, f10Y, f15Y, f20Y and f30Y. These models use

a common spline for the CDS spread and Z-spread data. We assign the most liquid

maturity knot (f5Y) to be effect-coded.5 The PL-ID model includes the same common

curve components as the PL model, but extends it with tenor-wise effect-coded knots for

the basis at 1Y, 4Y, 8Y and 20Y. In this way, it allows for a non-flat basis term-structure.

The choice of knots for the basis is in-between the common spline knots to reduce the

risk of multicollinearity and model instability when data is scarce. We only allow for a

limited set of four basis tenor factors given the scarcity of the Z-spread data.

As a prime example of a parametric model, we use the Nelson-Siegel (NS) specifica-

tion with only common factors, or the Nelson-Siegel specification augmented with basis

specific components (NS-ID); see Section 3.2.3. The parametric NS-ID model avoids

5As the bucketing model (PB) uses intervals rather than knots, one knot position is redundant and

can be discarded. We use f[5Y, 7Y) interval as the effect-coded one for PB.

24



many of the missing data problem that the earlier interpolation methods have when

data are scarce, as it imposes a tighter parameteric shape onto the CDS and Z-spread

data.

Finally, for the two models with idiosyncratic basis curve dynamics, we also con-

sider the variance curve specification of Section 3.3.2. We refer to these two models as

PL-ID-VC and NS-ID-VC. The variance knots are positioned at 6M, 1Y, 5Y, 10Y and

30Y and form a piecewise-linear spline.

4.2 Basis estimation results

In this subsection, we first compare the different models in terms of their aggregate

in-sample and out-of-sample performance before selecting the candidate models that are

used to explain the economic drivers of the basis term structure in Section 2.3. Table

4 presents the total log-likelihood (LL) values, Akaike information criteria (AIC), and

mean absolute errors (MAEs) of the different models, where the MAEs are split out over

the CDS spreads and the Z-spread data. The results show that there is a significant

improvement in log-likelihood when credit spreads are interpolated with both common

and basis-specific effects: the log-likelihood increases by more than 18,000 points from

PL to PL-ID, and by more than 6,500 points from NS to NS-ID. The improvement in fit is

mirrored in a similar reduction in the MAE level. Overall, all models fit the CDS data

better than the Z-spread data in terms of MSE.

The linear spline model with idiosyncratic curve components (PL-ID) performs best

in terms of both in-sample and out-of-sample statistics. Moreover, we find that imposing

the variance curve structure (PL-ID-VC) decreases the in-sample log-likelihood value and

even increases the AIC, despite a reduction of 30 parameters. Out-of-sample, however,

the PL-ID-VC model behaves slightly better than the PL-ID model in terms of MSE for

both CDS and Z-spread observations. A similar pattern can be seen for the Nelson-Siegel

models, NS-ID versus NS-ID-VC, but now only for the Z-spread component of the model.

In Table B.2, we split out the fit of the different models across the maturity spectrum.

Each cell holds the one-step-ahead MAE for a specific model and maturity. Below each

MAE, we report the model confidence set (MCS) p-values per maturity across models.

The models that are part of the 95% model confidence set for a specific maturity are
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Table 4: Aggregate model fit statistics

Sample Statistic Base NN PB PL NS PL-ID NS-ID PL-ID-VC NS-ID-VC

#Factors 2 10 9 10 4 14 5 14 5

#Params 46 70 67 70 53 82 57 52 27

Est. Time 4.404 14.695 10.723 18.94 8.161 38.311 6.809 32.049 3.696

LL -213,942 -145,360 -149,996 -141,798 -153,930 -123,387 -147,209 -125,529 -150,816

AIC 427,977 290,861 300,127 283,737 307,966 246,938 294,532 251,162 301,686

In MAE CDS 38.975 2.544 2.956 2.576 5.107 2.478 4.483 2.457 4.247

MAE Z 30.488 10.691 10.573 9.647 8.074 4.322 6.188 4.239 5.897

Out MAE CDS 26.653 0.729 1.527 0.791 2.687 0.711 1.580 0.693 1.706

MAE Z 39.825 15.721 16.082 15.942 13.407 6.823 8.519 6.525 7.162

Notes: This table reports model aggregate model (performance) statistics, including the number of factors and parameters

per model. Estimation was done in Python and Numba on a laptop with 32 GB RAM and a 2.90 GHz AMD Ryzen 5 PRO

6650U processor. The estimation time is reported in minutes. The table presents the log-likelihood contributions (LL),

the Akaike information criterion (AIC), and mean absolute error (MAE) of one-step ahead predictions for CDS spread

and Z-spread data (in basis points). The MAEs are reported for both the in-sample (January 3, 2011 to December 31,

2020) and out-of-sample period (January 1, 2021 to December 31, 2021).

marked with a star.

We observe significant variability in MAE across maturities for models with and with-

out idiosyncratic curve dynamics. Models without such dynamics show MAEs ranging

between 5 and 33 basis points), whereas models with such dynamics have a reduced

variability range between approximately 4 to 10 basis points. Particularly the short-

end and long-end parts of the basis curve appear challenging for the models without

idiosyncratic components. For instance, models with short-run basis dynamics have

roughly half of the MAE for short maturities, 25% lower MAE for medium maturities,

and about 2-3 times lower MAEs for long maturities. Particularly the 20 year segment

of the curve shows a major improvement when adding idiosyncratic components. The

results are consistent for the in-sample and out-of-sample period; see also Figure B.1 in

Appendix B.3.

Given the improved fit of the model with idiosyncratic components for most segments

of the curve, the models in the 95% model confidence set for each maturity all have such

components, with a single exception for the NS model at the 7Y maturity. Models with

idiosyncratic short-run basis dynamics thus outperform models with only a long-run basis

component. This points to the existence of a non-flat CDS-bond basis term-structure.

The PL-ID-VC model is part of the in-sample model confidence set for every maturity,

and for all but one maturity out-of-sample. The PL-ID-VC is joined by the PL-ID model
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Table 5: In-sample and out-of-sample model fit on CDS-bond basis term-structure level
for JPM

Model 1Y 3Y 5Y 7Y 9Y 20Y 25Y Cross-Sect. Avg.

Panel A: In-sample MAE

Base 37.76 44.298 50.352 45.597 33.056 98.833 64.504 43.503

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

NN 14.306 8.971 5.966 5.661 5.872 33.769 18.807 8.406

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

PB 13.413 9.792 8.572 8.459 9.853 33.459 13.09 10.446

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.002] [0.000]

PL 15.555 9.4 6.135 4.98 4.674 33.31 18.008 8.233

[0.000] [0.000] [0.000] [0.01] [0.042] [0.000] [0.000] [0.000]

NS 16.752 10.889 5.267 4.307⋆ 4.777 29.402 16.704 8.342

[0.000] [0.000] [0.000] [0.872] [0.03] [0.000] [0.000] [0.000]

PL-ID 7.455⋆ 4.624⋆ 4.366 4.419⋆ 4.512 8.21 8.889⋆ 5.104

[1.000] [0.459] [0.046] [0.188] [0.042] [0.002] [0.084] [0.000]

NS-ID 10.126 7.573 4.606 4.289⋆ 4.425⋆ 14.521 14.513 6.559

[0.001] [0.000] [0.003] [0.872] [0.103] [0.002] [0.000] [0.000]

PL-ID-VC 7.556⋆ 4.552⋆ 4.12⋆ 4.253⋆ 4.11⋆ 5.816⋆ 7.594⋆ 4.832⋆

[0.803] [1.000] [0.264] [1.000] [1.000] [1.000] [1.000] [1.000]

NS-ID-VC 9.115⋆ 5.71 3.969⋆ 4.584⋆ 5.43 10.988 12.127 5.859

[0.088] [0.005] [1.000] [0.147] [0.01] [0.002] [0.002] [0.000]

Panel B: Out-of-sample MAE

Base 53.623 56.029 67.541 104.529 65.673

[0.000] [0.000] [0.000] [0.000] [0.000]

NN 11.183 9.194 4.72 41.655 12.366

[0.000] [0.000] [0.003] [0.000] [0.000]

PB 12.886 8.987 7.259 41.843 13.225

[0.000] [0.000] [0.002] [0.000] [0.000]

PL 10.722 8.414 5.872 42.868 12.455

[0.000] [0.000] [0.000] [0.000] [0.000]

NS 17.719 13.839 3.63 36.582 14.504

[0.000] [0.000] [0.003] [0.000] [0.000]

PL-ID 4.497⋆ 6.53⋆ 2.73⋆ 8.875 5.433⋆

[0.816] [1.000] [1.000] [0.000] [0.07]

NS-ID 5.129⋆ 8.616 3.032⋆ 19.287 7.994

[0.215] [0.000] [0.299] [0.000] [0.000]

PL-ID-VC 4.684⋆ 7.129 2.742⋆ 4.706⋆ 5.152⋆

[0.652] [0.000] [0.97] [1.000] [1.000]

NS-ID-VC 4.419⋆ 8.984 4.273 9.268 7.015

[1.000] [0.000] [0.039] [0.000] [0.000]

Notes: this table contains the MAE (in bps) for the one-step ahead in-sample and out-of-sample CDS-bond basis pre-

dictions for JPM across 7 fixed constant maturities, using the estimated models from Table 4 and the basis observations

from Figure 1b. For the last column, we target the cross-sectional average of the basis to compute the MAE. Empty cells

correspond to periods where we do not have basis observations due to missing data; see also Table 3 for an overview.

Model confidence set p-values are reported in squared brackets beneath the MAEs. MAEs that are part of the 95% model

confidence set are marked by ⋆.
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Figure 3: Fitted CDS, Z-spread, and basis term-structures for the PL-ID-VC model
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Notes: this figure displays fitted CDS, Z-spread and CDS-bond basis observations on 9 selected dates by the PL-ID-VC

model. See caption of Figure B.1 for more details.

for maturities up to 5 years, again both in-sample and out-of-sample, but not for the

longer maturities. At the middle segment, also the NS-ID(-VC) incidentally enters the

model confidence set. The inclusion of variance curves appears to slightly improve the

models’ fit in-sample, but not necessarily out-of-sample. These finding are also supported

by the performance metrics and model confidence sets on the raw data CDS and Z-spread

in Appendix B.2.

Summarizing, the PL-ID(-VC) model is the most promising model for constructing

the basis curve histories at the firm level based on the limited CDS and Z-spread data

available. This, therefore, will be our main model in the remainder of the analysis. As

a possible second choice, the NS-ID(-VC) model can be considered. We consider this

model in one of the robustness analyses later on.

Figure 3 shows the constructed JPM basis term-structure curves for a selection of nine

different dates. The PL-ID-VC model indeed appears to provide an accurate description

of the basis across a range of different historical basis term-structure shapes, including

flat, upward-sloping or downward-sloping basis term-structures: the fitted curves are

close to the observed data points. The model also performs consistently when CDS

(blue dots) or Z-spread data (brown dots) are partially or completely missing.

28



Figure 4: Filtered constant maturity CDS-bond basis term-structure of JPM by PL-ID-VC
model
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Notes: Figure 4a shows the constant maturity CDS-bond basis time-series (in bps) for JPM based on the PL-ID-VC model.

The vertical line denotes the end of the in-sample period. Figure 4b shows the time-series average of the term-structure

with its pointwise empiricical quantile bands for the historical series.

The full time-series of the JPM PL-ID-VC model-implied basis at different maturities

as well as the overall time-series average of the curve are presented in Figure 4. The

basis curves display quite some persistence over time with, on average, a negative basis

level and downward sloping pattern across maturities. The basis term-structure is often

non-monotonic and hardly seems to stick to zero for a prolonged period of time. Its

dynamics appear to reflect some of the major economic developments. For instance,

major troughs in the basis appear after market-wide shocks, such as the credit crunch

(2011-2012), the manufacturing crisis (2015-2016), and the Covid-19 pandemic (2020-

2021). We study the relation between the basis term-structure and possible economic

and limits-to-arbitrage factors in more detail in the next section.

To provide some final support for the constructed basis term-structures given the

scarcity of firm-level Z-spread data, we try to create an external benchmark using index

data. As American iBoxx Z-spread investment grade indices for the financial sector do

not exist, we use their European counterparts instead. We construct our benchmark

index-based basis term-structure curve using simple piecewise-linear interpolation of the
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Figure 5: Index basis vs. PL-ID-VC model basis
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were used to compute the index-based basis term-structures using piecewise-linear interpolation. Data are taken from

MarkitTM. The (pink) dotted time-series correspond to the filtered basis estimates of JPM using the PL-ID-VC model. A

vertical line denotes the end of the in-sample period.

observed CDS iTraxx and iBoxx Z-spread indices for the financial sector as obtained from

Markit. The results are shown in Figure 5. The figure reveals that despite the differences

in our reference entity JPM compared to the European financial index constituents, the

JPM firm-level term-structure time-series shows striking similarities with its index-based

counterpart, both in terms of the levels at different maturities and in terms of the secular

time-series dynamics. This provides further back-up that the model-based imputation at

the firm-level is successful and provides empirically congruent patterns of the historical

basis term-structure. We therefore proceed with analyzing the economic determinants

of this term-structure in the next section.

4.3 Explaining basis term-structure dynamics

4.3.1 Setting up the regression framework

After having constructed the entire JPM’s CDS-bond basis term-structure over the full

sample period in Section 4.2, we now proceed by relating the basis term structure to

its potential economic and limits-to-arbitrage determinants; see Section 2.3. As our
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dependent variable, we use the filtered basis estimates µ̂b
t|t(τ) using the PL-ID-VC model

from Subsection 2.3. Compared to their predicted counterparts µ̂b
t|t−1(τ), the filtered

estimates use all data available up to time t.6

Figure 6a presents the time-series patterns of our explanatory variables. As both the

basis time-series and the economic drivers are highly persistent at the daily frequency,

we run all our regressions in differences to avoid any spurious results; see Figure 6b. The

baseline model reads

∆Bi,t = β0,t + β1,t∆MLt + β2,t∆FCi,t + β3,t∆FLt + β4,t∆CRi,t

+ β5,t∆DPt + β6,t∆
5ISt + εi,t,

(12)

where ∆Bi,t is the first difference of the CDS-bond basis at the ith maturity. Simi-

larly, ∆MLt, ∆FCi,t, ∆FLt, ∆CRi,t, and ∆DPt, represent the first differences in the

explanatory variables: market liquidity,7 funding costs, funding liquidity, counterparty

risk, default premium. Only for idiosyncratic risk, a 5-day difference was taken: ∆5ISt.

We found that first differences of intra-day realized volatility are too noisy and do not

correlate well with bases, but a smoother variant of the volatility, like the 5-day differ-

ence, does correlate well. To simplify some of the exposition, we also define the vector

Bt ∈ R9 (without the subscript i), holding the stacked 9 basis tenors plotted in Fig-

ure 4a. Notice that the proxies for funding costs and counterparty risk are also maturity

specific, but the remaining variables are fixed across the basis term structure.

We first present the pooled estimation results for the regression coefficients in Eq. (12),

denoted as βj(Full), obtained by pooling the observations for all segments of the basis

term-structure Bt. Next, we split the different segments of the term-structure into short

(6M, 1Y and 3Y; βj(Short)), medium (5Y, 7Y and 10Y; βj(Medium)) and long (15Y,

20Y and 30Y; βj(Long)) basis tenors, and only use the observations corresponding to

those observations to estimate segment-specific regression coefficients. In this way, we

can test whether the limits-to-arbitrage factors affect different segments of the basis

term-structure differently.

6We explicitly refrain from using the smoothed estimates µ̂b
t|T (τ) to avoid using future data in the

estimation of the basis.
7This variable is publicly available as an end-of-week variable. After taking first differences, ∆MLt

was filled backward to obtain a time-series at daily frequency. Daily changes in the remaining variables

were filled forward in case of missing values.
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We also allow the β coefficients in Eq. (12) to vary over time, indicated by the index

t. This follows the arguments in Augustin and Schnitzler (2020) and Bai and Collin-

Dufresne (2018), who emphasize that the relation between the basis and its drivers may

not be constant over different periods. To accommodate this, we adopt a 261-day rolling

window regression set-up. Tho ensure comparability of the coefficients both across time

and across the different regressors, we standardized all explanatory variables in each

rolling regression. The βs can then be interpreted as sensitivities to a one (time-varying)

standard-deviation shock to the regressor.

Figure 6 shows the levels and first differences of the six basis determinants used

in Eq. (12). During the Covid-19 lockdown period in March 2020, large jumps can

be seen in variables such as market liquidity, the default premium, funding liquidity,

and idiosyncratic sentiment. Note that similar large shocks were observed in the basis

itself; see Figure 4a. This poses a non-negligible robustness risk to the rolling least-

squares regressions. To avoid that our results are too much driven by such an incidental

period, we winsorize the first differences of all independent and dependent variables

at the 2% and 98% level.8 Figure 6a also shows that the proxies for funding costs

and counterparty risk can take negative values. These relate to curve inversions. For

funding costs for instance, short-term LIBOR rates were higher than long-term rates

between 2019 and 2020. Similarly, short-term JPM counterparty risk betas exceeded

their long-term counterparts during several sub-periods.

4.3.2 Pooled results

Figure 7 summarizes the results for the pooled panel regressions across all maturities.

Each subfigure shows the rolling window estimates for one of the regression coefficients

in Eq. 12 along with its 90% pointwise confidence band. Note that as the rolling window

has around 261 or one trading year of daily observations, the plots start in 2012.

The first thing we notice is that there is quite some time-variation in the impact of

the different determinants on the overall basis level and that all determinants appear

significant during some sub-period of the full 2011-2021 sample. Only funding costs

8This is a rather conservative choice compared to the 0.5th and 99.5th percentile clipping of the

bases in Augustin and Schnitzler (2020) and Bai and Collin-Dufresne (2018).
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Figure 6: Basis drivers for JPM
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(b) Drivers in differences

5

0

5

10

15

20

%

Market Liquidity
CMDI

30

20

10

0

10

20

bp
s

Funding Costs

LIBOR(30Y)
LIBOR(10Y)
LIBOR(5Y)

LIBOR(1Y)
LIBOR(6M)

10

0

10

20

bp
s

Funding Liquidity
TED Spread

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

0.2

0.0

0.2

bp
s

Counterparty Risk
CR(6M)
CR(1Y)
CR(5Y)

CR(10Y)
CR(30Y)

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20

0

20

40

bp
s

Default Premium
Moody's Baa Aaa

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

6

4

2

0

2

4

6

%

Idiosyncratic Sentiment
RV

Notes: this figure displays the proxies for risk factors (in levels and differences) for explaining dynamics of bases. A first

order difference was taken for all variables, except for idiosyncratic sentiment, whose 5-day differences are plotted. All

variables are measured in basis points, except the proxy for market liquidity, which is measured in percentages. The factors

market liquidity, funding costs, funding liquidity and default premium are market-wide drivers, whereas counterparty risk

and idiosyncratic sentiment are JPM specific. The dotted black vertical line marks the time point March 1, 2020, of the

Covid-19 lockdowns.

33



Figure 7: Term-structure-level Rolling window regression coefficients

0.6

0.4

0.2

0.0

0.2

0.4

bp
s

Market Liquidity
1(Full)

2.0

1.5

1.0

0.5

0.0
Funding Costs

2(Full)

0.5

0.0

0.5

1.0
Funding Liquidity
3(Full)

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

0.75

0.50

0.25

0.00

0.25

0.50

0.75

bp
s

Counterparty Risk
4(Full)

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

0.5

0.0

0.5

1.0

Default Premium
5(Full)

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

1.0

0.5

0.0

0.5

Idiosyncratic Sentiment
6(Full)

Notes: this figure displays the 261-day rolling-window regression coefficients (in bps) based on Eq. (12),

∆Bi,t(Full) = β0,t + β1,t∆MLt + β2,t∆FCi,t + β3,t∆FLt + β4,t∆CRi,t + β5,t∆DPt + β6,t∆5ISt + εi,t,

for JPM bases computed by the PL-ID-VC model. The results are computed by pooling all maturities into a single

regression with six explanatory variables: market liquidity (ML), funding costs (FC), funding liquidity (FL), counterparty

risk (CR), default premium (DP) and idiosyncratic risk (IS), denoted as B(Full). Dependent and independent variables are

winsorized at their 2nd and 98th percentiles. The shaded areas surrounding the estimates correspond to 90% confidence

intervals based on the Newey-West adjusted covariance matrix. The dotted black vertical line marks March 1, 2020, the

time around the Covid-19 lockdowns.

seems to be a determinant with a persistent negative sign over the entire sample. This

makes intuitive sense: higher funding costs make it more expensive to enter negative basis

trades due to the need to finance the long position in the bond, thus widening a(n already

on average) negative basis. All the other variables show a much more mixed pattern

with periods of positive and negative impact. For instance, counterparty risk and the

default premium seem to be particularly strong and positive during the aftermath of the

2011-2012 credit crunch. For most of the remaining sample period, their impact hovers

around zero, with some incidental modest departures. Funding liquidity, like funding

costs, has a negative impact at the start of the sample, as has idiosyncratic sentiment.

The former is intuitive and in line with the results for funding costs. Also the latter is

in line with earlier results by for instance Cai et al. (2020): reduced uncertainty makes

basis trades more profitable and drive the basis towards zero.

The Covid-19 crisis marks several interesting patterns regarding the impact of the
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different economic determinants on the basis. First, we note that in the light of this

crisis, the impact of the different limits-to-arbitrage factors changes rapidly over time.

For some factors like funding costs, funding liquidity, default premium and idiosyncratic

sentiment the shift away from zero already takes place before the heat of the crisis

(indicated by the vertical line in the figure). For other factors, the shift only starts

during the crisis (market liquidity) or hardly any shift is visible at all (counterparty

risk). Only funding costs seem to have the expected negative impact on the basis. Other

variables have less expected signs. For instance, funding liquidity becomes significant

with an unexpected positive in the on-set and during the heat of the Covid-19 crisis.

Similarly, market liquidity, the default premium, and idiosyncratic sentiment all start

having unexpected negative signs around and during the covid crisis. The results can

probably be attributed to a combination of factors. First, the cheap funding made

available by central banks at times when markets became illiquid might have reversed

the relation temporarily between the determinants and the basis. Second, incidental

government rescue and support packages for the economy at large during covid times

might also have dislocated the relation between the economic drivers and the basis. And

finally, the impact between the economic drivers and the basis might be different across

maturities, such that the current pooled estimates might be biased. For instance, we see

in Figure 4a that the basis moves towards (and into) positive territory at the short end

of the maturity spectrum when we get close to (into) the covid crisis. After the 2020

lockdowns, the 6M basis becomes clearly positive, possibly reversing any relations with

the economic drivers, whereas the basis remains substantially negative at the long end.

To resolve the possible heterogeneity of the relationship between the economic drivers

and the basis over time and across maturities, we therefore split out the regressions over

the maturity spectrum in the next section.

Table 6 summarizes the results numerically, and also provides some indications of

model fit. We consider the full sample, the first four months of the covid-crisis following

the lockdowns, and the subsequent six months. The left hand of the table provides the

average of the rolling window regression estimates of Figure 7. Averaged over the entire

period, we see that that only funding costs (FC) is again significantly negative. The other

coefficients are insignificant, given their variation over time as visualized in Figure 7.

At the start of the covid period, in addition market liquidity, funding liquidity and
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Table 6: Average rolling window regression results of pooled bases in Figure 7

Panel A: Regression coefficients (bps) Panel B: Adj.R2 contribution/regressor (%)

Period: Jan 2011 - Mar 2020 - Jul 2020 - Period: Jan 2011 - Mar 2020 - Jul 2020 -

Dec 2021 Jun 2020 Dec 2020 Dec 2021 Jun 2020 Dec 2020

Intercept (+/−) 0.051 0.172∗∗ 0.458∗∗∗ All 3.647 10.503 9.314

(0.059) (0.078) (0.086)

ML (−) -0.074 -0.291∗∗ -0.421∗∗∗ ML 0.080 0.414 0.749

(0.071) (0.113) (0.134)

FC (−) -0.605∗∗∗ -1.072∗∗∗ -1.183∗∗∗ FC 2.187 5.697 6.806

(0.111) (0.134) (0.139)

FL (−) 0.102 0.812∗∗∗ 0.476∗∗∗ FL 0.473 3.283 0.996

(0.089) (0.092) (0.117)

CR (−) 0.000 -0.039 0.139 CR 0.185 -0.023 0.061

(0.099) (0.107) (0.098)

DP (−) 0.068 -0.082 -0.131 DP 0.249 0.113 0.046

(0.101) (0.146) (0.157)

IS (+/−) -0.110 -0.527∗∗∗ -0.503∗∗∗ IS 0.427 1.479 1.210

(0.089) (0.106) (0.118)

Notes: this table reports the average regression results of the 261-day rolling window regression B(Full) (see Figure 7)

based on (12) for JPM bases computed by the PL-ID-VC model. The averages are reported for different sample periods

and basis maturity spectra. Panel A reports the average regression coefficients for each variable, with their Newey-West

standard errors in brackets. The significance of the coefficients at the 10%, 5% and 1% is indicated by ‘*’, ‘**’, ‘***’,

respectively. Similarly, Panel B reports the average of the adjusted R2 (%) of the regressions including all explanatory

variables, but also their individual contributions (increase/decrease) in explanatory power via the leave-one-variable-out

strategy. See caption of Figure 7 for more details.

idiosyncratic risk become significant, of which only market liquidity and idiosyncratic

risk remain significant during the remainder of the covid period. The overall adjusted-R2

of the regressions is quite low at almost 4%, going up to 10-11% in the covid period.

Looking at the leave-one-out decreases in adjusted-R2 as reported in the last column,

more than half of this is captured by funding liquidity, in line with the earlier results.

In Figure C.1 in Appendix C.1 we present further rolling window adjusted-R2 values,

showing that the adjusted-R2 can go up to 16% for some periods and regressors, and

that jointly the limits to arbitrage can account for up to 20% of the 261-day time-series

variation of the pooled bases, again with funding costs accounting for most of this.
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4.3.3 Maturity-segmented results

We now present the regression results different across the three maturity segments of

JPM’s basis term-structure. Figure 8 summarizes the results graphically. Broadly speak-

ing, the results are in line with the pooled results in terms of secular dynamics and sign

consistency. However, also some striking differences can be seen. For instance, the con-

sistent negative sign of funding costs (FC) in the pooled regression has quite a distinct

pattern across the three different maturity segments. At the short end of the curve, fund-

ing costs seem less of an issue and the magnitude of the coefficients is small, suggesting

funding costs are not a particular driver of the basis in that part of the term-structure.

At medium and long maturities, however, we the significant negative sign coming back

in, as well as the significant large negative swings at the start of the sample (credit

crunch and aftermath) and during covid times. This is plausible: funding costs are

likely to play more of a role in setting up long-maturity negative basis arbitrage trades

than short-maturity ones given the long position in the bond has to be held (and thus

funded) for a longer period of time.

Similar differences across the maturity spectrum are visible for other variables. For

instance, the impact of counterparty risk and of the default premium are much more

pronounced at the long compared to the short end of the basis curve. Again, this makes

intuitive sense. For counterparty risk, for instance, we expect a positive sign as a long

position in the CDS has to be taken. The positive impact, however, seems only relevant

during the first part of the sample, and particularly at the long end of the basis curve,

as there the CDS position and thus the counterparty risk relates to a longer period. By

contrast, for funding liquidity, we see that most of the effects take place at the short and

long end of the basis curve, whereas the medium maturities hardly show a relation with

this determinant. Interestingly, the signs and dynamics of most of the determinants line

up across maturities in times of stress such as during the covid crisis, though their size

and magnitude may differ over the different segments of the basis curve.

In Table 7 we test whether the coefficients are the same across maturities using a

standard (generalized) Chow test (Dufour, 1982; Chow, 1960). We do so for each year

in the sample, as well as for the entire sample. For each of the rolling samples in a

one-year period, we compute the Chow-test. Panel A of the table reports the average of
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Figure 8: Maturity-level rolling window regression coefficients

Notes: this figure displays the 261-day rolling-window regression coefficients (in bps) based on Eq. (12),

∆Bi,t = β0,t + β1,t∆MLt + β2,t∆FCi,t + β3,t∆FLt + β4,t∆CRi,t + β5,t∆DPt + β6,t∆5ISt + εi,t,

for JPM bases computed by the PL-ID-VC model. B(Full) pools all maturities into the regression, whereas B(Short),

B(Medium) and B(Long) only include the maturities [6M, 1Y, 3Y], [5M, 7Y, 10Y], and [15M, 20Y, 30Y], respectively.

The (standardized) explanatory variables (market liquidity, funding costs, funding liquidity, counterparty risk, default

premium and idiosyncratic risk) are identical for all three regressions. The regression coefficients are color coded by

variable name and the shaded areas surrounding the estimates correspond to 90% confidence intervals based on the

Newey-West adjusted covariance matrix. The dotted black vertical line marks the time point March 1, 2020.

the test values, while panel B reports the number of times the test exceeds its standard

critical value. The high rejection numbers in panel B clearly indicate that the impact of

the limits-to-arbitrage factors differs across the basis maturity spectrum. Though there

is an obvious multiple testing problem, the results also hold ground when the test is

performed on 11 non-overlapping yearly periods, separately. The Chow test statistic for

this set-up and the previous one are plotted in Figure 9. It underlines that different

economic determinants may not only be relevant during different time periods, as ar-

gued in Augustin and Schnitzler (2020) and Bai and Collin-Dufresne (2018), but that

the impact of different limits-to-arbitrage arguments may also differ across maturities.

Again, it points to conclusion that the basis term-structure cannot be assumed to be

flat, nor its dynamics identical across maturities.

In Table 8, we summarize the results again numerically by averaging the rolling

window coefficients over time, and reporting the adjusted-R2 values for the full sample
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Table 7: Chow test results for JPM bases computed by PL-ID-VC model

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Avg

Panel A: Number of days and average test statistic per year

T 260 261 261 261 261 260 261 261 262 260 2608

CT 8.265 5.352 2.584 1.490 3.566 2.665 3.043 3.395 7.513 3.297 4.117∗∗∗

Panel B: Number of null-hypothesis rejections per year (%)

α = 10% 100 100 97.318 48.275 100 98.076 100 100 100 65.000 90.870

α = 5% 100 100 91.954 35.632 100 93.461 99.233 100 100 60.769 88.108

α = 1% 100 100 73.563 8.812 94.636 77.307 84.291 100 100 54.615 79.324

Notes: this table summarizes the Chow test results for the null-hypothesis H0 = βj,t(Full) = βj,t(Short) =

βj,t(Medium) = βj,t(Long), for, j = 0, . . . , 6. The Chow test statistic (CT) considers the estimates in Figures 7 8 and

for each rolling regression for JPM using the bases of the PL-ID-VC model. The test statistic is computed for each day,

separately. The daily test statistic is CT ∼ F (d1 = 14, d2 ∈ [2193, 2328]), with critical values (approximately) 1.508,

1.696 and 2.089, at the α = 10% (*), α = 5% (**), α = 1% (***) significance level, respectively. The yearly average of

the test statistic and the number of days per year are reported in Panel A. The number of null-hypothesis rejections (%),

at the aforementioned significance levels, is reported in Panel B. The daily test statistics are plotted in Figure 9.

Figure 9: Chow test statistics for JPM bases computed by PL-ID-VC model

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
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Notes: this figure displays the Chow test statistics for the null-hypothesis H0 = βj,t(Full) = βj,t(Short) = βj,t(Medium) =

βj,t(Long), for, j = 0, . . . , 6. The test statistics is obtained based on a daily 261-day rolling-window (blue) and 11 yearly

non-overlapping period (pink) regressions of the basis model in Eq. (12). The critical values at the α = 10% (*), α = 5%

(**), α = 1% (***) significance level are plotted in plotted (black). See caption of 7 for more details.

and the start and continuance of the covid period. We confirm our earlier findings. Over

the entire sample, only funding costs appear significant, but only at the medium and

long end of the basis curve. At the short end, no significant effect is found. The other
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Table 8: Average rolling window regression results

Period: Jan 2011 - Dec 2021 Mar 2020 - Jun 2020 Jul 2020 - Dec 2020

Maturity domain: Short Medium Long Short Medium Long Short Medium Long

Panel A: Regression coefficients (bps)

Intercept (+/−) 0.042 0.062 0.048 0.107 0.198∗ 0.21 0.392∗∗∗ 0.492∗∗∗ 0.491∗∗∗

(0.092) (0.093) (0.133) (0.118) (0.118) (0.159) (0.137) (0.126) (0.172)

ML (−) -0.088 -0.053 -0.079 -0.242 -0.276∗ -0.324 -0.353∗ -0.419∗∗ -0.415

(0.102) (0.101) (0.158) (0.17) (0.162) (0.222) (0.195) (0.187) (0.266)

FC (−) 0.037 -0.698∗∗∗ -1.136∗∗∗ -0.024 -1.329∗∗∗ -1.849∗∗∗ -0.005 -1.449∗∗∗ -1.991∗∗∗

(0.135) (0.144) (0.229) (0.172) (0.184) (0.226) (0.183) (0.161) (0.214)

FL (−) -0.012 0.087 0.176 0.485∗∗∗ 0.853∗∗∗ 0.944∗∗∗ -0.004 0.491∗∗∗ 0.645∗∗∗

(0.116) (0.117) (0.203) (0.131) (0.131) (0.199) (0.144) (0.164) (0.245)

CR (−) -0.041 0.004 0.019 -0.348∗∗ 0.067 0.098 -0.157 0.291∗∗ 0.278∗

(0.132) (0.133) (0.22) (0.138) (0.159) (0.197) (0.14) (0.147) (0.164)

DP (−) -0.094 0.057 0.21 -0.489∗∗∗ 0.15 0.143 -0.428∗∗ 0.040 0.005

(0.131) (0.133) (0.22) (0.175) (0.174) (0.291) (0.178) (0.202) (0.338)

IS (+/−) -0.144 -0.117 -0.061 -0.450∗∗∗ -0.457∗∗∗ -0.625∗∗∗ -0.326∗ -0.459∗∗∗ -0.655∗∗∗

(0.115) (0.123) (0.199) (0.162) (0.159) (0.206) (0.172) (0.167) (0.225)

Panel B: Adjusted R2 contribution per regressor (%)

All 1.837 6.166 6.716 5.407 17.644 16.42 3.527 17.834 15.091

ML 0.055 0.039 0.015 0.364 0.424 0.268 0.704 0.961 0.377

FC 0.205 4.471 4.488 -0.033 10.872 11.289 -0.035 13.801 12.131

FL 0.604 0.496 0.459 1.732 4.401 2.872 -0.033 1.38 1.099

CR 0.134 0.223 0.43 0.762 -0.051 -0.059 0.154 0.463 0.136

DP 0.293 0.301 0.54 1.674 0.243 0.261 1.173 -0.088 -0.103

IS 0.478 0.424 0.51 1.431 1.384 1.317 0.653 1.328 1.222

Notes: this table reports the average regression results of the 261-day rolling window regressions for different basis

segments (short, medium and long) of the bases for JPM computed by PL-ID-VC model, see Figure 8. The averages are

reported for different sample periods and basis maturity spectra. Panel A reports the average regression coefficients for

each variable, with their Newey-West standard errors in brackets. The significance of the coefficients at the 10%, 5%

and 1% is indicated by ‘*’, ‘**’, ‘***’, respectively. Similarly, Panel B reports the average of the adjusted R2 (%) of the

regressions including all explanatory variables, but also their individual contributions (increase/decrease) in explanatory

power via the leave-one-variable-out strategy. See caption of Figure 8 for more details.

determinants appear insignificant over the full sample due to the time-variation in the

sign of their impact on the basis.

At the start of and during the covid crisis, more determinants enter the model sig-

nificantly with their expected signs. However, the determinants do not enter uniformly

across all maturities, but affect different segments of the curve differently as explained

before. For instance, at the start of the crisis the idiosyncratic sentiment becomes a

significant driver for the short, medium and long-run basis, in line with the arguments

of Cai et al. (2020) that reduced uncertainty drives the (negative) basis closer to zero.

In fact, the effect appears to be monotonically increasing for this determinant across
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maturities. For the remainder of the crisis, however, the effect remains significantly

negative, but shrinks in impact for short-term bases. On the other hand, short-term

counterparty risk was only found significant with the expected sign at the beginning

of the crisis. Hence, similar to the findings in Augustin and Schnitzler (2020) and Bai

and Collin-Dufresne (2018), our results suggest that the influence of limit-to-arbitrage

factors (and explanatory power) outside volatile periods significantly decreases, but may

also start to correlate in opposite directions. Finally, we see that the funding liquidity

beta for short-term bases drops quickly from being positive before Covid and becomes

negative during the heat of the crisis. This is in line with the flight-to-equality effects of

Brunnermeier and Pedersen (2009), where funding liquidity matters most during market

turmoil.

The model fit in terms of adjusted-R2 also differs across the maturity spectrum.

It appears more difficult to describe the dynamics of the short end of the basis curve

with the given set of determinants. The adjusted-R2 values are typically less than half

those of the medium and long maturity regressions. The latter are also typically higher

than when pooling all the maturities into one single regression. Again, we confirm that

funding costs are the most important determinant of the basis, but that jointly the other

regressors can still cause a substantial further increase in the explanatory power of the

model.

4.4 Robustness checks

4.4.1 Alternative interpolation models

To examine the robustness of our findings from the prior subsections, we repeat the

regression analysis using the CDS-bond basis curve time-series of the NS-ID-VC model.

This parametric model imposes a more stringent structure on the curves, preventing

overfitting of spreads, albeit with the trade-off of increased pricing errors (see the results

in Table B.2). The Figures C.2 and C.3 in Appendix C.1 indicate that the NS-ID-VC

model also maintains accuracy and captures the variety in observed bases shapes well.

Our conclusion that the basis term-structure is not flat thus holds up for the NS-ID-VC

model, given the importance of the idiosyncractic short-term components for the curve

in the model.
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The robustness of the results is further confirmed in Figure 10a. Panel (a) compares

the pooled rolling regression coefficients of the two models based on Eq. (12). The

patterns and magnitude of the pooled coefficients of the NS-ID-VCmodel closely resemble

those of the PL-ID-VC model. Although, in the beginning of the sample a large difference

in magnitude is observed between the two funding costs beta. It turns out, that the level

differences in this period are due higher short-term funding costs betas for the NS-ID-VC.

Panel (b) of Figure 10 presents the rolling regression results for both models, but

now for the short end of the basis term-structure only. Full results for all segments

can be found in Appendix C.1. Panel (b) shows that the secular movements of the

coefficients for both models have many similarities. This is comforting and supports the

robustness of the results. The panel also shows, however, that for the short-end part

of the curve there are some marked differences between the two interpolation models.

For example, the time-series pattern of the funding costs betas align, but the level of

this beta for the NS-ID-VC model is dislocated up to Jun-2014. Further investigation

reveals that this difference is caused by incidental spikes in 2013 in the 6M LIBOR,

that still dominate after censoring this data. These spikes, however, do not affect the

short-term funding cost beta of PL-ID-VC, which is likely due to its imputed bases

being closer to the empericial data points, and hence being also noisier. In contrast,

the betas for remaining determinants show much more consistency for the NS-ID-VC

model and hardly change when comparing the pooled ones in panel (a) with short ones

in panel (b). We attribute this to the tighter parametric form of the Nelson-Siegel

specification, which allows less flexibility at the short end of the curve. Also at the

medium and long end of the curve there are some differences between the models, albeit

of a much smaller magnitude. In particular, the differences between medium and long

end coefficients are less pronounced for the NS-ID-VC model. Again this is likely caused

by its parametric specification: whereas the PL-ID-VC model linearly extrapolates at

the upper end of the curve for any missing observations, thus causing larger differences

between the coefficients for the medium and long end, the extrapolation of the NS-ID-VC

model is dampened due its concave shape for long maturities.

The smaller differences between the coefficients across the maturity spectrum for the

NS-ID-VC model also has effects on the Chow test results from Table 9. In particular, the

coefficients of the economic drivers are no longer significantly different across the different
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Figure 10: PL-ID-VC vs NS-ID-VC rolling window regression coefficients for JPM

(a) Pooled

(b) Short segment

Notes: this figure displays the 261-day rolling-window regression coefficients (in bps) based on Eq. (12), for JPM bases

computed by the PL-ID-VC model (blue) and NL-ID-VC model (pink). Subfigure 10a compares the regression coefficient

obtained for B(Full) and Subfigure 10b compares B(Short). Shaded areas correspond to 90% confidence intervals based

on Newey-West standard errors, see caption of Figure 7 and 8.

segments of the basis curve between 2013-2019 and 2021. For example, during 2020, the

coefficients across different maturities were only significantly different 24% of the time at

the 90% confidence level, whereas for the PL-ID-VCmodel this was always the case during
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Covid-19. This comes as no surprise in light of the earlier comments: the parametric

form of the Nelson-Siegel model apparently may be too restrictive across maturities,

resulting in a similar impact of the economic drivers for each maturity. Given the better

fit to the data both in-sample and out-of-sample of the PL-ID-VC model, we put more

emphasis on the results based on the latter. Also note that even for the NS-ID-VC this

still leaves the conclusion on the existence of a non-flat basis term-structure intact, as the

latter hinges on the need of the idiosyncratic short-end components in the state-space

model (3). It is only the differential impact of the economic drivers across this non-flat

basis term-structure that would fall away under the more restrictive parametric form of

the NS-ID-VC model.

4.4.2 Results for other prime financial institutions

We further asses the robustness of our results by studying the dynamics of the CDS-bond

basis term-structure for other blue-chip financials. For this, we consider the CDS and

Z-spread data of Bank of America (BAC), Goldman Sachs (GS) and Morgan Stanley

(MS). Just like JPM, these are prominent U.S. financial institutions. The empirical basis

term-structures have to be constructed from data with similar missing data patterns

as JPM. Just as we did for JPM, we use the PL-ID-VC state-space model to impute

missing values and construct the historical basis term structures. We then analyze these

and investigate their relation to the economic drivers using the same rolling regression

framework as before.

Figure 11 shows the rolling window coefficients for each of the banks based on the full

in-sample period. We see both striking similarities as well as some marked differences.

First, the funding cost coefficient has a very similar pattern for all four banks. Its

impact on the basis is negative across the entire time period, with particular troughs

for all banks in the aftermath of the credit crunch (2011-2012) and in the covid years

2020-2021. Also market liquidity is quite similar for MS, JPM, and BAC. Only GS shows

a different pattern during the Covid-19 crisis, with market liquidity having hardly any

effect for GS, whereas it has an expected negative impact for the other institutions. In the

2011-2012 credit crunch, also the funding liquidity, default premium and idiosyncratic

sentiment exhibit a consistent pattern across all institutions. This is rather surprising
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Figure 11: Rolling window regression coefficients for pooled bases across firms

Notes: this figure displays the 261-day rolling-window regression coefficients (in bps) based on Eq. (12),

∆Bi,t(Full) = β0,t + β1,t∆MLt + β2,t∆FCi,t + β3,t∆FLt + β4,t∆CRi,t + β5,t∆DPt + β6,t∆5ISt + εi,t,

for BAC, GS, JPM and MS bases computed by the PL-ID-VC model. The B(Full) pools all maturities into a single

dependent variable and is regressed on (standardized) 6 explanatory variables: market liquidity, funding costs, funding

liquidity, counterparty risk, default premium and idiosyncratic risk. Only counterparty risk and idiosyncratic sentiment

are firm-specific. The two economic variables: market liquidity and funding liquidity are market-wide factors and are

exactly the same in all four regressions, whereas funding costs are maturity-dependant. The proxy for counterparty risk

also differs per maturity. Each dependent and independent variable was winsorized at their 2nd and 98th percentiles.

The regression coefficients are color coded by firm. The cross-sectional average of the rolling coefficient is plotted a black

dotted time-series. The dotted black vertical line marks the time point March 1, 2020.

result for the latter determinant as it is a firm-specific covariate, implying that their

realized volatility seems to co-move. However, the disparity across banks of the impact

of counterparty risk is the largest, which also a firm-specific determinant. For this

covariate, no consistent pattern emerges, neither over time nor in the cross-section of

banks. This is also made clear by the cross-sectional average (in black), which remains

close to zero throughout the sample.

The Chow tests reported in Table 9 confirm our earlier results for JPM. Also for BAC,

GS, and MS, there is ample evidence that the impact of the limits-to-arbitrage factors

differs over the different segments of the basis term-structure. This is also confirmed

by Figure 12, which shows the rolling window estimates per segment. Like before for

JPM, funding costs appear to have a stronger impact at the medium and long end of
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Table 9: Chow test results for BAC, GS and MS bases computed by PL-ID-VC model

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Avg.

Panel A: Average Chow test statistic per year by firm

BAC 10.184 5.339 2.299 1.888 6.424 3.554 1.987 5.779 5.545 2.625 4.562

GS 10.950 5.804 2.879 2.686 4.994 2.793 3.152 4.210 4.459 2.079 4.401

MS 5.243 3.133 2.590 3.264 6.142 1.957 2.802 3.452 6.931 4.053 3.957

Panel B: Number of null-hypothesis rejections per year (%) by firm

BAC

α = 10% 100 100 71.647 49.808 100 100 51.340 100. 100 64.230 83.641

α = 5% 100 100 66.283 47.126 100 100 47.892 100 100 48.461 80.908

α = 1% 100 100 57.854 39.846 100 98.076 39.463 100 100 34.615 76.905

GS

α = 10% 100 100 100 88.122 88.505 53.461 81.992 100 100 55.769 86.804

α = 5% 100 100 98.467 80.076 88.505 52.307 80.842 100 100 50. 85.040

α = 1% 100 100 85.057 74.329 87.356 48.461 67.049 100 100 37.692 80.015

MS

α = 10% 100 53.256 94.252 100 100 66.153 99.233 100 100 85.384 89.835

α = 5% 100 49.808 78.927 100 100 46.923 89.655 100 100 83.461 84.886

α = 1% 100 48.275 63.218 100 100 26.538 80.842 100 100 71.538 79.056

Notes: this stable summarizes the Chow test results for the null-hypothesis H0 = βj,t(Full) = βj,t(Short) =

βj,t(Medium) = βj,t(Long), for, j = 0, . . . , 6. The Chow test statistic (CT) is considering the estimates for each rolling

regression for BAC, GS and MS using the bases of the PL-ID-VC model. The test statistic is computed for each day,

separately. The daily test statistic is CT ∼ F (d1 = 14, d2 ∈ [2193, 2328]), with critical values (approximately) 1.508,

1.696 and 2.089, at the α = 10%, α = 5%, α = 1% significance level, respectively.

the curve compared to the short end. The effects at the short end for BAC and MS,

but particularly GS are stronger during 2011-2012 than for JPM, but still smaller than

for the longer maturity segments. This again supports our conclusion that the economic

drivers may have a different impact for different segments of the basis term-structure.

Also for the other determinants we find visual differences between the different ma-

turity segments. Particularly the coefficients for the long maturities seem much more

volatile, both over time and in the cross-section of banks. This holds for funding liquid-

ity, counterparty risk, the default premium as well as for idiosyncratic sentiment. We

should be careful to read too much into the differences between the banks as some of

the rolling window coefficients are also characterized by large standard errors. In the

end, mainly funding costs has a consistent pattern across time, banks, and maturities.

The main conclusion that remains is that the empirical basis dynamics are difficult to

reconcile with the typical flat basis term-structure assumption: the dynamics are too
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different between the short and long end, and the determinants of the basis at these

different segments may differ or differ in magnitude, depending on the interpolation

method used.

4.4.3 Basis sign dependence

As a final robustness check, we analyze the relationship between basis determinants and

the sign of the bases. Different segments of the CDS-bond basis term-structure may

move in the opposite direction, giving rise to different basis signs across maturity, as

evident by the troughs in Figure 4a for JPM. Different basis signs at different maturities,

simultaneously, are also observed in the filtered bases of the other three prime companies.

Positive basis signs are mainly observed for the short end of the curves, whereas the

remaining parts of the curve remain negative. This potentially reverses the relationship

between the bases and their economic drivers. The limit-to-arbitrage studies in Augustin

and Schnitzler (2020) and Bai and Collin-Dufresne (2018) control for such effects in the

regressions by including an additional basis sign-dependant control variate. We adopt a

similar strategy to analyze the influence of the basis signs on the regression coefficients

in Eq. (12). The baseline regression model with basis sign-adjustments now reads

∆Bi,t = β0,t + sign(Bi,t−1)
[
β1,t∆MLt + β2,t∆FCi,t + β3,t∆FLt + β4,t∆CRi,t

+ β5,t∆DPt + β6,t∆ISt

]
+ εi,t,

(13)

where sign(Bi,t−1) takes the value 1 if Bi,t−1 < 0 and -1 otherwise. The sign of each

limit-to-arbitrage factor a time t is now controlled by the sign of the previous sign of the

previous basis at the respective maturity. A negative sign will control for the potential

reversal of the relationship between bases and their drivers when the basis becomes

positive.

We now present the regression results for the different maturity segments of the four

blue-chip company basis term-structure. The rolling regression parameters are identical

as before in terms of window size, standardization and winsorization. Figure 13 (with

sign control) summarizes the new results, similarly to previous Figure 12 (without sign

control), across all segments and firms. The time-series dynamics of the betas of the two

different regression are very similar, because the basis term-structures of the four firms

are predominantly negative throughout 2011-2022. But some significant difference arise
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Figure 12: Maturity-level rolling window regression coefficients for each firm

Notes: this figure displays the 261-day rolling-window regression coefficients (in bps) based on Eq. (12),

∆Bi,t = β0,t + β1,t∆MLt + β2,t∆FCi,t + β3,t∆FLt + β4,t∆CRi,t + β5,t∆DPt + β6,t∆ISt + εi,t,

for BAC, GS, JPM and MS bases computed by the PL-ID-VC model. The dependent variables B(Short), B(Medium) and

B(Long) pool include the maturities [6M, 1Y, 3Y], [5M, 7Y, 10Y], and [15M, 20Y, 30Y], respectively. The dependent

variable is regressed on (standardized) 6 explanatory variables: market liquidity, funding costs, funding liquidity, counter-

party risk, default premium and idiosyncratic risk. The regression coefficients are color coded by firm. The cross-sectional

average of the rolling coefficient is plotted a black dotted time-series. The dotted black vertical line marks the time point

March 1, 2020. See caption of Figure 11 for more details.
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after controlling for the basis’ signs. For example, the sign of the rolling coefficients

for funding costs, default premium and idiosyncratic sentiment during 2011-2012 credit

crisis and now take the expected negative sign for almost all firms. As a consequence,

the cross-sectional estimate (black) now also signals the expected negative sign. Again,

note that short basis tenors took a positive sign during this period. This result indeed

confirms that economic basis drivers correlate differently when the basis is positive versus

when it is negative. In addition, these results clearly suggest that when the influence

of factors that limit arbitrage opportunities increases (e.g., during market turmoil), the

basis curve further widens, regardless its sign.
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Figure 13: Sign-dependant rolling window regression coefficients for each firm

Notes: this figure displays the 261-day rolling-window regression coefficients (in bps) based on the regression model with

basis sign-adjustments Eq. (13),

∆Bi,t = β0,t + sign(Bi,t−1) [β1,t∆MLt + β2,t∆FCi,t + β3,t∆FLt + β4,t∆CRi,t + β5,t∆DPt + β6,t∆ISt] + εi,t,

where sign(Bi,t−1) takes the value 1 if Bi,t−1 < 0 and -1 otherwise, for BAC, GS, JPM and MS bases computed by the

PL-ID-VC model. The dependent variables B(Short), B(Medium) and B(Long) pool include the maturities [6M, 1Y, 3Y],

[5M, 7Y, 10Y], and [15M, 20Y, 30Y], respectively. The dependent variable is regressed on (standardized) 6 explanatory

variables: market liquidity, funding costs, funding liquidity, counterparty risk, default premium and idiosyncratic risk.

Only counterparty risk and idiosyncratic sentiment are firm-specific. The remaining variables are market-wide factors

and are exactly the same in all four regressions. Each dependent and independent variable was winsorized at their 2nd

and 98th percentiles. The regression coefficients are color coded by firm. The time-wise average of the rolling coefficient

is plotted a black dotted time-series. The dotted black vertical line marks the time point March 1, 2020.
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Moreover, the medium term rolling coefficients for each firm in Figure 13 (with sign

control) hardly differ from the previous regressions in Figure 12 (without sign control).

However, this does not seem for the long segment coefficients. In particular, the ones for

BAC and MS flip for almost all drivers throughout 2011-2012. This is an unexpected

result as the bases are predominantly negative at the upper end of the curve, even the

during the credit crisis, see e.g., Figure 4a for JPM. We attribute this unexpected result

to the uncertainty in the extrapolation/imputation by the Pl-ID-VC model. During

2011-2012 there were little to no liquid bond Z-spread observed with more than 10Y

maturity. For the remaining history the beta patterns with sign adjustment align with

the ones without sign adjustment.

5 Conclusion

In this paper, we addressed the challenge of the lack of corporate bond and CDS data

when constructing the CDS-bond basis full term-structure histories at the firm level

across maturities. To solve this challenge, we formulated a state-space model for the

joint term structures in CDS and bond markets. The state-space approach allowed us

to easily deal with many missing values in either market, and to filter the full basis

term-structure from the remaining available data. The model set-up easily allowed for

a range of curve interpolation techniques that could be selected by the analyst. By

including both common risk factors for the CDS and Z-spreads, as well as basis-specific

factors, we could describe firm-level basis curve dynamics without imposing the typical

assumption of a flat basis term structure.

Empirical evidence revealed that a model with short-term basis dynamics signifi-

cantly increases the model fit across maturities, both in-sample and out-of-sample. This

points to the existence of a non-flat basis term-structure. Results are robust across differ-

ent curve interpolation methods, with some methods like spline interpolation providing

a better fit at the expense of less intuitive curve reversals at the short end, and oth-

ers like the multi-curve extension of the dynamic Nelson-Siegel model providing robust

and interpretable CDS-bond-basis term-structure histories at the expense of a somewhat

reduced model fit.

We then used the estimated basis term-structure histories to perform rolling-window
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regressions to determine the basis determinants. We found that changes in the bases of

major US financial institutions are primarily driven by changes in funding costs and by

their firm-specific sentiment factors. While other factors occasionally impact the basis

term-structure over the 2011-2021 sample period, it is particularly during the Covid-

19 pandemic that all factors enter the model significantly during different times of the

crisis. The statistical evidence reveals that the typical limits-to-arbitrage variables from

the literature may not be significant at the same moment in time, nor that they uniformly

have the same influence on the basis across the entire maturity spectrum, particularly

in times of turmoil. In particular, different variables have a statistically significant

impact on different parts of the basis term-structure. Again, these results based on

our state-space modeling approach point to the existence of a non-flat, non-constant

CDS-bond-basis term-structure.
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Appendices

A Data

A.1 CDS and Z-Spread

Table A.1: JPM Bond ISIN codes

US46625HHF01 US46625HHN35 US46625HGY09 US46625HHX17 US46625HHW34 US46625HHZ64

US46625HHV50 US46625HHU77 US46625HHP82 US46625HHR49 US46625HJB78 US46625HJC51

US48126BAA17 US46625HJD35 US46623EJP51 US46625HJE18 US46625HJH49 US46625HJG65

US46625HJT86 US46625HJU59 US46623EJY68 US46625HJX98 US46625HMN79 US46625HKC33

US46625HNX43 US46625HQW33 US46625HQJ22 US46625HRL68 US46625HRS12 US46625HRT94

US46625HRV41

Notes: This table reports 31 bond ISIN codes of the underlying Z-spreads of JPM used in this paper.

Figure A.1: Time-varying maturities of credit spread underliers
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Notes: This figure display the deterministically time-varying maturities of underlying CDS and bond Z-spread instruments

of JPM. The left panel displays the actual maturities of on-the-run CDS contracts with approximate MarkitTM tenors

of ‘6M’, ‘5Y’ and ‘30Y’. The exact maturity computed based on the old and current IMM rollover dates used by ISDA,

as described in this amendment: https://www.isda.org/a/vGiDE/amend-single-name-on-the-run-frequency-faq-revised-

as-of-12-10.pdf. The right panel plots the running maturities of the 31 underlying bonds of JPM’s Z-spreads based on a

30/360 day count convention.
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Figure A.2: Z-spread frequency counts

(a) Frequency by maturity bins
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(b) Histogram of #obs. per day
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Notes: Subfigure A.2a of this figure displays frequency counts by maturity intervals of daily Z-spread observations for

each bank. Subfigure A.2b displays the histogram of the number Z-spread data points observed per day.

A.2 Primary dealers list

Table A.2: Primary dealers and market capitalization

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

BNP Paribas 12.58 47.18 69.97 97.41 74.64 71.09 79.65 92.60 56.33 73.78 66.17 84.88

Barclays Bk plc 33.80 33.47 51.91 72.25 62.52 54.49 46.55 46.55 32.72 40.79 34.69 42.28

Bk Nova Scotia 59.54 54.24 68.41 75.41 69.49 48.51 66.97 77.43 61.30 68.28 65.37 85.38

Bk of America Corp 134.53 56.35 125.13 164.91 188.14 174.69 223.32 307.91 238.25 311.20 262.20 359.38

Citigroup Inc 137.44 76.92 119.82 157.85 163.62 152.83 169.35 196.74 123.30 168.89 128.37 119.82

Daiwa Secs Gp Inc 8.96 5.18 9.33 16.99 13.50 10.56 10.48 10.34 7.97 7.71 6.92 8.35

Deutsche Bk AG 47.79 34.28 40.49 48.80 41.89 33.95 25.14 39.15 16.46 16.00 22.72 26.13

Goldman Sachs Gp Inc 85.34 44.51 59.33 79.12 83.39 75.60 95.21 96.09 61.43 79.86 90.73 127.61

HSBC Hldgs plc 180.54 136.15 193.14 205.67 182.04 156.37 160.31 206.08 164.46 160.17 105.16 122.93

Mizuho Bk Ltd 40.51 32.02 43.96 52.57 41.42 50.25 45.75 45.96 39.13 39.19 32.00 32.22

Morgan Stanley 41.14 29.16 37.74 60.99 75.69 61.07 79.12 94.86 67.39 81.48 123.98 173.93

Nomura Hldgs Inc 22.75 10.97 21.66 28.64 21.05 20.32 21.06 20.20 12.61 15.99 16.15 13.14

UBS AG 62.45 44.32 58.98 71.84 62.72 74.07 58.09 68.14 45.84 45.62 51.21 61.06

Wells Fargo & Co 163.07 145.33 180.00 238.67 283.43 276.80 276.77 298.75 211.10 222.43 124.77 186.44

Notes: This table reports the primary dealers of the Federal Reserve Bank of New York (names are listed as presented

MarkitTM’s CDS dataset and their end-of-year market capitalization (in billion USD). The CDS spreads of these firms

is used to compute a daily CDS index based on a weighted average of CDS, with weights equal to their yearly market

capitalization. The market capitalization data is sourced from https://companiesmarketcap.com/.
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A.3 Correlations of basis determinants

Table A.3: Yearly correlations (%)

Pair 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Avg.

ML FC -8.064 5.000 -3.608 2.041 1.543 -0.823 -4.395 -5.092 -2.445 -2.264 -7.856 -2.360

ML FL -0.538 3.720 5.194 4.353 6.890 -2.197 -4.465 6.221 15.889 25.794 1.206 5.642

ML CR 11.962 -4.631 -0.443 -5.497 17.693 4.911 -0.356 -2.082 -2.893 1.182 5.865 2.337

ML DP 0.165 0.066 7.653 -1.406 -1.078 -1.601 -4.217 7.670 10.666 30.137 -4.223 3.985

ML IS -1.394 -0.477 4.104 5.380 -2.749 12.015 5.111 7.426 -1.507 17.511 6.145 4.688

FC FL -13.790 -5.287 5.946 0.194 -5.057 -5.132 1.819 -17.287 -26.734 -34.550 -7.512 -9.763

FC CR -0.063 8.760 -10.032 -1.901 -1.986 13.058 4.167 -1.136 1.386 0.631 -8.095 0.435

FC DP -6.866 -0.399 -0.438 0.970 -4.245 11.316 0.601 4.923 16.762 1.390 -4.435 1.780

FC IS 2.860 5.419 10.421 12.500 -4.240 7.087 -5.819 -6.830 2.599 14.438 -0.294 3.467

FL CR -5.656 16.515 -1.591 -0.219 5.417 4.497 -6.500 -11.992 -5.247 0.445 -1.611 -0.540

FL DP -7.263 0.602 -3.032 -4.973 3.418 -1.621 -2.352 4.060 -2.449 1.397 4.004 -0.746

FL IS -1.739 -12.857 4.625 -10.900 -6.078 1.090 -3.294 -8.244 3.509 8.592 -7.889 -3.017

CR DP -6.267 -9.990 1.168 4.057 1.956 1.473 -2.120 1.057 -4.472 1.210 -1.214 -1.195

CR IS 6.589 3.522 -2.360 5.738 -3.184 -3.803 -3.173 6.073 12.166 7.573 6.827 3.270

DP IS -2.780 16.135 7.885 -6.491 3.423 10.284 -10.605 2.819 3.418 0.118 9.955 3.106

Notes: this table reports the correlations among the daily differenced explanatory variables in (12). The correlations are

expressed in percentages and are reported for each year, separately, throughout our sample period.

B Dynamic basis model estimates

B.1 Single day illustration for all interpolation models

Figure B.1 shows the fitted basis term-structures on t = Nov 3, 2016, for all models under

consideration. Overall, models without curve-specific components exhibit is similar fitted

curves and yield a comparable basis (around -50 bps), except for the Base model, which

shows a slightly positive basis. This suggest a failure in capturing the basis when term-

structures are not interpolated. Empirical basis estimates reveal a slightly downward-

sloping term-structure, which is more accurately captured by models incorporating short-

term basis dynamics. The PL-ID(-VC) model clearly sits closer to actual data points.
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Figure B.1: CDS Spread and Z-Spread fit on t = 2016-11-03
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Notes: this figure plots the observed and fitted CDS spread, Z-spread and empirical (non-parametric) basis observations

(in bps) for the estimated models in Table 4 on t = 2016-11-03. The fitted curves are based on nowcasted state values.

The the shaded areas (orange or blue) surrounding the fit represent 99% confidence intervals, whereas the raster (pink)

corresponds to the model implied basis term-structure.
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B.2 Model fit and confidence sets for JPM’s CDS and Z-spread data

Table B.1: In-sample and out-of-sample model fit on CDS term-structure level for JPM

Model 6M 1Y 3Y 5Y 7Y 10Y 20Y 25Y 30Y Avg.

Panel A: In-sample MAE

Base 94.859 87.291 67.771 44.267 25.64 10.299 3.359 6.372 9.872 38.995

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.002] [0.000] [0.000] [0.000]

NN 2.095 1.819 1.834 2.032⋆ 2.361⋆ 2.584⋆ 3.195⋆ 3.428⋆ 3.576⋆ 2.549

[0.000] [0.000] [0.000] [1.000] [0.662] [1.000] [1.000] [1.000] [1.000] [0.000]

PB 2.987 2.191 1.87 2.137 2.45 2.633 3.27 5.014 4.101 2.958

[0.000] [0.000] [0.000] [0.001] [0.022] [0.000] [0.002] [0.000] [0.000] [0.000]

PL 2.086 2.031 1.866 2.041⋆ 2.359⋆ 2.59 3.21 3.437⋆ 3.588⋆ 2.58

[0.000] [0.000] [0.000] [0.172] [1.000] [0.018] [0.003] [0.157] [0.119] [0.000]

NS 1.955 9.825 10.335 4.755 2.639 3.81 3.615 4.041 4.956 5.117

[0.02] [0.000] [0.000] [0.000] [0.022] [0.000] [0.002] [0.001] [0.000] [0.000]

PL-ID 1.593 1.415⋆ 1.659⋆ 2.045⋆ 2.364⋆ 2.615 3.238 3.522 3.887 2.482⋆

[0.02] [1.000] [1.000] [0.142] [0.662] [0.000] [0.003] [0.001] [0.000] [0.091]

NS-ID 1.807 6.107 8.392 5.623 2.448⋆ 4.012 3.4 3.737 4.793 4.495

[0.000] [0.000] [0.000] [0.000] [0.147] [0.000] [0.002] [0.001] [0.000] [0.000]

PL-ID-VC 1.557⋆ 1.419⋆ 1.666⋆ 2.052⋆ 2.398⋆ 2.597 3.214 3.457⋆ 3.782 2.461⋆

[1.000] [0.759] [0.052] [0.109] [0.484] [0.018] [0.003] [0.151] [0.000] [1.000]

NS-ID-VC 2.618 5.394 5.321 3.883 3.668 4.824 3.493 3.829 5.181 4.258

[0.000] [0.000] [0.000] [0.000] [0.004] [0.000] [0.002] [0.000] [0.000] [0.000]

Panel B: Out-of-sample MAE

Base 57.061 54.204 45.259 33.422 21.317 9.246 0.827⋆ 6.112 12.427 26.653

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.971] [0.000] [0.000] [0.000]

NN 0.554 0.751 0.584 0.546⋆ 0.597⋆ 0.707⋆ 0.839⋆ 1.017 0.967⋆ 0.729⋆

[0.000] [0.000] [0.000] [1.000] [0.657] [0.27] [0.461] [0.001] [1.000] [0.053]

PB 1.668 1.507 0.816 0.675 0.692⋆ 0.839 0.988 4.549 2.009 1.527

[0.000] [0.000] [0.000] [0.029] [0.076] [0.029] [0.028] [0.000] [0.000] [0.000]

PL 0.63 0.897 0.998 0.551⋆ 0.591⋆ 0.698⋆ 0.825⋆ 0.963⋆ 0.967⋆ 0.791

[0.000] [0.000] [0.000] [0.92] [1.000] [1.000] [1.000] [0.051] [0.985] [0.000]

NS 0.635 7.79 8.605 1.691 0.612⋆ 0.815 1.081 1.018 1.941 2.687

[0.000] [0.000] [0.000] [0.000] [0.228] [0.000] [0.000] [0.012] [0.000] [0.000]

PL-ID 0.466 0.407⋆ 0.452⋆ 0.554⋆ 0.613⋆ 0.703⋆ 0.829⋆ 1.034 1.344 0.711⋆

[0.000] [0.056] [0.727] [0.729] [0.328] [0.59] [0.971] [0.001] [0.000] [0.264]

NS-ID 0.816 3.989 3.536 0.862 0.633⋆ 0.836 1.109 0.912⋆ 1.529 1.58

[0.000] [0.000] [0.000] [0.001] [0.179] [0.000] [0.000] [0.474] [0.000] [0.000]

PL-ID-VC 0.409⋆ 0.398⋆ 0.45⋆ 0.55⋆ 0.615⋆ 0.723⋆ 0.834⋆ 0.968⋆ 1.288 0.693⋆

[1.000] [1.000] [1.000] [0.92] [0.228] [0.101] [0.937] [0.067] [0.000] [1.000]

NS-ID-VC 1.724 3.738 3.51 0.834 0.814 0.854 1.254 0.893⋆ 1.733 1.706

[0.000] [0.000] [0.000] [0.000] [0.007] [0.000] [0.000] [1.000] [0.000] [0.000]

Notes: this table contains the MAE (in bps) for the one-step ahead in-sample and out-of-sample CDS predictions for

JPM across 9, near constant IIM-driven maturities, using the estimated models from Table 4 and the basis observations

from Figure 1b. For the last column, we target the cross-sectional average of the basis to compute the MAE. Empty cells

correspond to periods where we do not have basis observations due to missing data; see also Table 3 for an overview.

Model confidence set p-values are reported in squared brackets beneath the MAEs. MAEs that are part of the 95% model

confidence set are marked by ⋆.
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Table B.2: In-sample and out-of-sample model fit on Z-spread term-structure level for
JPM

Model (6M, 1Y] (1Y, 3Y] (3Y, 5Y] (5Y, 7Y] (7Y, 10Y] (10Y, 20Y] (20Y, 30Y] Avg.

Panel A: In-sample MAE

Base 51.558 42.553 23.494 19.639 18.702 40.996 62.313 32.883

[0.000] [0.000] [0.000] [0.000] [0.000] [0.003] [0.000] [0.000]

NN 15.147 13.174 8.695 7.649 7.934 14.578 20.903 11.848

[0.000] [0.000] [0.000] [0.000] [0.000] [0.015] [0.000] [0.000]

PB 14.921 13.481 10.955 8.932 6.18 20.737 16.532 11.87

[0.003] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

PL 16.742 12.578 8.425 6.496 5.39 14.649 20.581 11.031

[0.000] [0.000] [0.000] [0.001] [0.000] [0.019] [0.000] [0.000]

NS 16.364 10.921 7.252 5.192⋆ 4.635 12.393⋆ 17.295 9.65

[0.000] [0.000] [0.000] [0.104] [0.012] [0.063] [0.000] [0.000]

PL-ID 8.751⋆ 6.748 5.584⋆ 4.759⋆ 4.75 7.511⋆ 7.162⋆ 6.22⋆

[1.000] [0.006] [0.902] [0.672] [0.000] [1.000] [1.000] [1.000]

NS-ID 10.837 6.964 6.217 5.052⋆ 4.466⋆ 8.996⋆ 12.494 7.439

[0.019] [0.000] [0.002] [0.271] [1.000] [0.228] [0.000] [0.000]

PL-ID-VC 9.786 6.267⋆ 5.576⋆ 4.73⋆ 4.779 7.937⋆ 7.384⋆ 6.246⋆

[0.019] [1.000] [1.000] [1.000] [0.000] [0.405] [0.133] [0.595]

NS-ID-VC 10.707 6.374⋆ 5.944 5.154⋆ 4.608 8.617⋆ 10.94 7.143

[0.019] [0.546] [0.018] [0.147] [0.012] [0.063] [0.000] [0.000]

Panel B: Out-of-sample MAE

Base 5.561⋆ 6.93⋆ 29.476 34.725 111.35 107.08 45.677

[0.192] [1.000] [0.000] [0.000] [0.000] [0.000] [0.000]

NN 11.415 11.933 7.588 4.641 44.049 37.172 17.825

[0.000] [0.000] [0.006] [0.004] [0.000] [0.000] [0.000]

PB 10.457 10.966 10.76 3.925⋆ 47.525 33.519 18.016

[0.000] [0.000] [0.000] [0.205] [0.000] [0.000] [0.000]

PL 10.383 11.069 8.809 4.708 44.554 37.922 17.958

[0.000] [0.000] [0.000] [0.004] [0.000] [0.000] [0.000]

NS 12.405 9.265 6.964 3.193⋆ 38.49 31.807 15.224

[0.000] [0.001] [0.044] [1.000] [0.000] [0.000] [0.000]

PL-ID 5.22⋆ 7.753⋆ 6.861 3.504⋆ 11.871 4.819⋆ 6.761

[0.254] [0.122] [0.006] [0.205] [0.000] [1.000] [0.003]

NS-ID 4.716⋆ 7.404⋆ 6.76⋆ 3.873 21.579 13.096 9.179

[1.000] [0.5] [0.078] [0.005] [0.000] [0.000] [0.000]

PL-ID-VC 5.648⋆ 7.678⋆ 6.237⋆ 4.304 7.973⋆ 5.741 6.356⋆

[0.113] [0.173] [1.000] [0.004] [1.000] [0.03] [1.000]

NS-ID-VC 4.955⋆ 7.633⋆ 6.481⋆ 6.653 12.063 5.661⋆ 7.245

[0.41] [0.352] [0.123] [0.000] [0.000] [0.236] [0.001]

Notes: this table contains the MAE (in bps) for the one-step ahead in-sample and out-of-sample CDS predictions for JPM

across 7 bond maturity intervals, using the estimated models from Table 4 and the basis observations from Figure 1b.

For the last column, we target the cross-sectional average of the basis to compute the MAE. Empty cells correspond to

periods where we do not have basis observations due to missing data; see also Table 3 for an overview. Model confidence

set p-values are reported in squared brackets beneath the MAEs. MAEs that are part of the 95% model confidence set

are marked by ⋆.
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B.3 Additional results for the NS-ID-VC model

Figure B.2: Filtered time-varying factors of the NS-ID-VC model for JPM
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Notes: the top panel of this figure present the time-varying filtered factors of the NS-ID-VC model for JPM with 95%

confidence level. The bottom panel presents the ML estimated volatility term-structures for CDS spreads and Z-spreads

with 95% confidence levels.
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Table B.3: Parameter estimates of the NS-ID-VC model for JPM

Panel A: State variables

fc fb fc
1 fc

2 f idio.
3

c 0.000 -0.189∗∗∗ -0.012 -0.676∗∗∗ 0.123∗∗

(0.412) (0.061) (0.299) (0.206) (0.058)

diag (T ) 0.999∗∗∗ 0.990∗∗∗ 0.999∗∗∗ 0.995∗∗∗ 0.991∗∗∗

(0.002) (0.001) (0.001) (0.001) (0.001)

diag (Q) 8.270∗∗∗ 2.678∗∗∗ 5.542∗∗∗ 16.614∗∗∗ 3.018∗∗∗

(0.154) (0.096) (0.313) (1.594) (0.205)

Panel B: Variance knots

τ = 6M 1Y 5Y 10Y 30Y

σ2
CDS (τ) 13.943∗∗∗ 40.898∗∗∗ 15.969∗∗∗ 16.146∗∗∗ 23.517∗∗∗

(0.454) (1.318) (0.814) (0.620) (0.894)

σ2
Z (τ) 395.112∗∗∗ 54.114∗∗∗ 28.423∗∗∗ 26.297∗∗∗ 209.882∗∗∗

(19.938) (0.768) (0.418) (0.555) (5.127)

Panel C: Decay parameters

λc 0.590∗∗∗

(0.003)

λidio. 0.225∗∗∗

(0.004)

Notes: this table reports the parameter estimates of the NS-ID-VC model for JPM. Model estimation was performed on

credit spread data measured in basis points. Standard errors are presented in parentheses and the significance level of the

coefficients at the 10%, 5% and 1% is indicated by ‘*’, ‘**’, ‘***’, respectively.
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C Additional basis explanatory results

C.1 Explanatory power on PL-ID-VC bases for JPM

Figure C.1: Time-varying explanatory power per basis determinant
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Notes: this figure plots the 261-day rolling-window adjusted R2 estimates of diff-in-diff regression based on (12) for JPM

with bases of PL-ID-VC model. Each column refers to a specific spectrum of basis maturities included in the dependant

variable B. B(Full) stacks (includes) all maturities as dependant variable, whereas B(Short), B(Medium) and B(Long)

only include the maturities [6M, 1Y, 3Y], [5M, 7Y, 10Y], and [15M, 20Y, 30Y], respectively. The explanatory variables

(market liquidity, funding costs, funding liquidity, counterparty risk, default premium and idiosyncratic risk) are identical

for all four regressions. The first row depicts the adjusted R2 based on all regressors, whereas following rows present the

individual contribution (increase/decrease) in adjusted R2 via the leave-one-variable-out strategy.
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C.2 Robustness results for JPM based on NS-ID-VC model

Figure C.2: Fitted CDS-bond basis curve cross-sections of NS-ID-VC model
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Notes: this figure displays fitted CDS, Z-spread and CDS-bond basis observations on 9 selected dates by the NS-ID-VC

model for JPM. See caption of Figure B.1 for more details.

Figure C.3: Filtered constant maturity CDS-bond basis term-structure of JPM by
NS-ID-VC model
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Notes: Figure displays the C.3a constant maturity CDS-bond basis time-series (in bps) for JPM by the NS-ID-VC model.

Figure C.3b displays curve distribution of the basis generated by the nowcasted time-series in Figure 4a.
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