Bank Loan Reliance and Inflation Inattention ¹

Zhenghua Qi (HKUST) Tiziano Ropele (Bank of Italy)

2024 Summer Meeting ESEM

 $^{^1\}mathrm{The}$ views expressed here should not be interpreted as representing the views of the Bank of Italy or any other institution with which the authors are affiliated.

Motivation

- Monetary policy targeting at firm's inflation expectations: understand inflation expectation formation of firms
- Dispersed firms' inflation expectation revealed by the survey: limited evidence on driving forces
- Financing composition is an important determinant for firms' inflation attentiveness and expectation formation
- <u>Main mechanism</u>: inflation (indicator for credit condition) affects firms' decisions on when and how to get financing

- Italian firms: heavily reliant on bank loans corporate bond to total financial debt ratio: 9.8%
- Casual evidence on how financing composition affects inflation attentiveness
 - ↑ Loan reliance ⇒ ↑ inflation forecast accuracy
 - \uparrow Loan reliance $\Rightarrow \downarrow$ response to provided public-available news
- A partial equilibrium model with rational inattention
 - Firms: endogenous financing composition + costly information
 - Economy: ↑ inflation ⇒ ↑ policy rate, higher input price for banks + (sticky price) ⇒ relatively cheaper bank loan

Mechanism:

 \uparrow Loan reliance $\Rightarrow \uparrow$ sensitivity to inflation (financing cost) $\Rightarrow \uparrow$ incentive to acquire information \Rightarrow better & broader information set

- Data (2006 2019)
 - Survey of Inflation and Growth Expectations (SIGE): inflation expectations, RCT (2013Q1)
 - Central Credit Registry (CCR): credit position reported by banks and financial institutions
 - Analytical Survey of Interest Rates (TAXIA): loan interest rates
 - Company Accounts Data Service (CADS): firm-level balance sheet
- Measures
 - 1. Bank credit reliance: Loan Reliance $_{j,t} = \frac{\sum_{i \in \mathsf{banks}} \mathsf{Term} \; \mathsf{Loan}_{i,j,t}}{\mathsf{Asset}_{j,t}}$
 - 2. Inflation (in)attention: Attention $_{j,t}^{(\pi)} \equiv \left|\pi_t^{(12m)} F_j \pi_t^{(12m)}\right|$

Binned scatter plot: loan reliance and inflation inattention

OLS and 2SLS

1. Benchmark regression

Attention
$$_{j,t}^{(\pi)} = \beta$$
 Loan Reliance $_{j,t} + \epsilon_{j,t}$

2. A Bartik instrument for loan reliance

$$\bar{\delta}_{j,t} = \sum_{i \in \mathsf{banks}} \underbrace{\frac{\mathsf{Term} \; \mathsf{Loan}_{i,j,t-1}}{\sum_{i \in \mathsf{banks}} \mathsf{Term} \; \mathsf{Loan}_{i,j,t-1}}}_{\mathit{Exposure}_{i,j,t-1}} \hat{\delta}_{i,t}$$

- $Exposure_{i,i,t-1}$: exposure of firm j to bank i
- $\hat{\delta}_{i,t}$: credit supply shock in bank i at time t (Khwaja and Mian 2008)

$$R_{i,j,t}^b - R_t^s = \delta_{i,t} + \lambda_{j,t} + \epsilon_{i,j,t}$$

Empirical evidence

OLS: reverse causality (better information leads to adjustments in financing composition), omitted variable, \cdots

	Dependent variable: Attention $_{i,t}^{(\pi)}$					
	2SLS					OLS
	(1)	(2)	(3)	(4)	(5)	(6)
Loan Reliance	-0.121**	-0.120**	-0.101**	-0.116**	-0.0998**	-0.00206
	(0.0562)	(0.0553)	(0.0467)	(0.0523)	(0.0459)	(0.00128)
log(employees)		0.293*			0.231*	
		(0.151)			(0.117)	
ROE			-0.00385***		-0.00357***	
			(0.00131)		(0.00128)	
Liquid asset ratio				-0.0182***	-0.0163***	
·				(0.00568)	(0.00548)	
Observations	16,886	16,886	15,467	15,885	15,282	16,886
Firm FE	Yes	Yes	Yes	Yes	Yes	Yes
RCT FE	Yes	Yes	Yes	Yes	Yes	Yes
1st stage F stat	13.33	13.68	16.07	14.76	16.67	
1st stage coeffi.	-0.0540	-0.0550	-0.0660	-0.0580	-0.0660	

Empirical evidence: RCT

- Randomized control trial Question
 - Treatment: information on current inflation ($\mathbb{I}_i = 1$)
 - Prior: one-year ahead inflation forecast in last quarter
 - Posterior: one-year ahead inflation forecast in this quarter
- Empirical design

$$\begin{split} \mathsf{posterior}_j &= \alpha_1 \times \mathsf{prior}_j + \alpha_2 \times \mathsf{Loan} \ \mathsf{Reliance}_j \times \mathsf{prior}_j \\ &+ \gamma_1 \times \mathbb{I}_j \times \mathsf{prior}_j + \gamma_2 \times \mathbb{I}_j \times \mathsf{Loan} \ \mathsf{Reliance}_j \times \mathsf{prior}_j + \dots + \epsilon_j. \end{split}$$

Changes in the prior-posterior relationship of the treated group:

$$rac{\hat{\gamma}_1 + \hat{\gamma}_2 \mathsf{Loan}}{\hat{lpha}_1 + \hat{lpha}_2 \mathsf{Loan}}$$
 Reliance

Empirical evidence: RCT

- $\hat{\gamma} <$ 0: treatment group places less weight on their priors and more weight on the information received in the treatment
- High loan reliance firms respond less: not news, already in the information set!

- Two-stage problem
 - 1. Minimize financing cost: a combination of interval funds & bank loans

$$\mathbf{FC_{j,t}} \equiv \min_{\Gamma^I_{j,t}, \Gamma^E_{j,t}} \Gamma^I_{j,t} + \frac{R^b_{j,t}}{R^s_t} \Gamma^E_{j,t}, \text{ where: } \frac{R^b_{j,t}}{R^s_t} = \Phi_j \mathcal{F}(\pi_t)$$

2. Maximize profits: optimal investment rate

$$\max_{\substack{l_{j,t}\\K_{j,t}}} \sum_{t}^{\infty} \beta^{t} \mathbb{E}_{t} \left\{ A \mathcal{K}_{j,t} - \mathsf{FC}_{\mathbf{j},\mathbf{t}} \left[\frac{l_{j,t}}{\mathcal{K}_{j,t-1}} + \frac{\varphi_{k}}{2} \left(\frac{l_{j,t}}{\mathcal{K}_{j,t-1}} - \delta \right)^{2} \right] \mathcal{K}_{j,t-1} \right\}$$

• Why do firms care about inflation? $\underbrace{\pi_t \Rightarrow \mathcal{F}(\pi_t)}_{\mathcal{K}_{j,t}} \Rightarrow \frac{l_{j,t}}{\mathcal{K}_{j,t}}$ Banking market

- Input: deposits (R_t^s)
- Output: bank loans (R_t^b)
- Loan market: monopolistic competitive & Calvo price stickiness
- Monetary authority: Policy rate = $R_t^s = R^s \left(\frac{\Pi_t}{\Pi}\right)^{\tau_{\pi}}$

Channel:

$$\epsilon_t \underset{\text{(1)}}{\Longrightarrow} R_t^s \underset{\text{(2)}}{\Longrightarrow} R_{i,t}^{b,*} \Longrightarrow \frac{R_{j,t}^b}{R_t^s}$$

- 1. Exogenous inflation shocks trigger increases in the policy rate by the monetary authority
- 2. Higher policy rate leads to higher operational costs to banks, affecting loan interest rate and markup

Implication - IRFs: positive inflation shock

Notes: The figures display the impulse response functions to 1 positive standard deviation shock in (0.0034) $\epsilon_{\pi,t}$, which increases the annualized inflation by 1.35%. The autoregressive coefficient of the inflation process is 0.74. The solid (dashed) blue line is under the parameter values with an average loan reliance of 24% (11%).

Implication - replicate RCT

- 1. Simulated firms with loan reliance matching the empirical distribution
- 2. RCT: one-time increase in signal precision

Conclusion

- 1. Financing composition as an important determinant for firms' inflation expectations (suggestive evidence for rational inattention theory)
 - Incentive to acquire information
 - How firms learn from new information
- 2. An analytical model featuring endogenous financing composition and attention allocation
 - Explain the inflation-financing-cost channel
 - Replicate the RCT results
 - Interesting implications: effectiveness of monetary policy

A.1: Loan reliance

A.2: Inflation (in)attention

- "In [previous month], consumer price inflation measured by the 12-month change in the Harmonized Index of Consumer Prices was [X.X]% in Italy and [Y.Y]% in the Euro area. What do you think it will be in Italy ... six-month ahead, one-year ahead, and two-year ahead."
- "What do you think consumer price inflation in Italy, measured by the 12-month change in the Harmonized Index of Consumer Prices, will be ..."

→ Back

A.4: Inflation and loan markup

$$\phi_{t,t+h} = \sum_{q=1}^{4} \phi_{t-q} + \sum_{m=0}^{4} \beta_{0,m}^{(h)} \epsilon_{t-m}^{\pi} + \sum_{n=1}^{4} \mathsf{control}_{t-n} + u_{t+h|t},$$

Notes: The oild supply new shocks are from Känzig (2021). The Φ_t is constructed from the decomposition by taking the average across banks. The shaded areas are 90% confidence intervals.

A.5: Microfoundation for $\Phi_{j,t}$

Relative cost $\Phi_{j,t}$ between bank loans (R_t^b) and internal financing (opportunity cost R_t^s)

$$\begin{aligned} & \max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \frac{\Lambda_t}{\Lambda_0} \left(\mathsf{Revenue}_{j,t} - R_{t-1}^b \gamma \mathsf{Borrowing}_{j,t-1} - (1-\gamma) \mathsf{Borrowing}_{j,t} \right) \right] \\ &= C_{-1} + \max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \frac{\Lambda_t}{\Lambda_0} \left(\mathsf{Revenue}_{j,t} - \left[(1-\gamma) + \beta \frac{\Lambda_{t+1}}{\Lambda_t} R_t^b \gamma \right] \mathsf{Borrowing}_{j,t} \right) \right] \\ &= C_{-1} + \max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \frac{\Lambda_t}{\Lambda_0} \left(\mathsf{Revenue}_{j,t} - \left[(1-\gamma) + \gamma \frac{R_t^b}{R_t^s} \right] \mathsf{Borrowing}_{j,t} \right) \right] \end{aligned}$$

▶ Rack

Following Mackowiak, Matejka, and Wiederholt (2018),

$$\min_{\kappa_j, h_j} \sum_{t=0}^{\infty} \beta^t \mathbb{E}_{-1} \left[(v_{j,t} - v_{j,t}^*)^2 \right] + \lambda_{\kappa} \kappa_j$$

subject to:

$$\begin{aligned} v_{j,t}^* &= (\omega_b + \rho_\pi) v_{j,t-1}^* - \omega_b \rho_\pi v_{j,t-2}^* + C_1 \epsilon_{\pi,t} + C_2 \epsilon_{\pi,t-1} + C_3 \epsilon_{\pi,t-2} \\ v_{j,t} &= \mathbb{E}(v_{j,t}^* | \mathcal{I}_t) \\ S_{j,t} &= h_j' z_{j,t} + \psi_t \text{ , with } z_{j,t} = (v_{j,t}^* \ v_{j,t-1}^* \ \epsilon_{\pi,t} \ \epsilon_{\pi,t-1})' \\ \mathcal{I}_{j,t} &= \mathcal{I}_{-1} \cup \{S_{j,0}, \dots, S_{j,t}\} \\ \kappa_j &= \lim_{T \to \infty} \left[\mathcal{H}(v_{j,t}^* | \mathcal{I}_{j,t-1}) - \mathcal{H}(v_{j,t}^* | \mathcal{I}_{j,t}) \right] \end{aligned}$$

- Steady-state κ (amount of information processed) varies across parameter values
 - 1. Less loan-reliant firms
 - 2. More aggressive central bank
 - 3. Higher information processing cost

