Individual and Common Information: Model-free Evidence from Probability Forecasts

Yizhou Kuang ¹ Nathan Mislang ² Kristoffer Nimark ² August 27, 2024

¹University of Manchester ²Cornell University Information can improve decisions taken under uncertainty

From the theoretical literature we know that:

- The marginal value of information is state-dependent
- Common information is more likely to affect aggregate outcomes
- Private vs public information dichotomy important in strategic settings

Little empirical work studying relative importance of individual vs common information outside highly structural models

What we do:

- 1. Propose a method to extract individual and common components from repeated cross-section of probability forecasts under weak assumptions
- 2. Ask and answer new questions about the empirical properties of individual and common information

Key assumption: Forecasters use Bayes' rule to update their beliefs

Related literature

Empirical papers using SPF survey data

- Accuracy of SPF: Zarnowitz (1979), Zarnowitz and Braun (1993), Diebold, Tay, and Wallis (1997), Clements (2006, 2018), Engelberg, Manski and Williams (2009) and Kenny, Kostka and Masera (2014).
- Forecast combination: Bonham and Cohen (2001) and Genre, Kenny, Meyler and Timmermann (2013).
- Testing theories of expectations formation: Zarnowitz (1985), Keane and Runkle (1990), Bonham and Dacy (1991), Laster, Bennett and Geoum (1999) and Coibion and Gorodnichenko (2012,2015).

Structural macro models with public and private signals

 Nimark (2008), Lorenzoni (2009,2010), Melosi (2014), Nimark (2014), Chahrour, Nimark and Pitschner (2021).

Endogenous information acquisition

 Sims (1998, 2003), Mackowiack and Wiederholt (2009, 2015), Woodford (2009), Chiang (2022), Flynn and Sastry (2022)

- 1. The Survey of Professional Forecasters (SPF) probability forecasts
- 2. Extracting common and individual components from a cross-section of belief revisions
- 3. Characterize the estimated signals under alternative information structures
- 4. Empirical evidence on the informativeness of individual and common components

Quarterly survey of practitioners about macroeconomic variables

- Participants are from industry, Wall Street, commercial banks and academic research centers
- Survey elicits both point and probability forecasts
- Probability forecasts
 - GDP growth (1968:Q4 \rightarrow), GDP deflator (1968:Q4 \rightarrow), PCE (2007:Q1 \rightarrow), CPI (2007:Q1 \rightarrow) and unemployment (2009:Q2 \rightarrow)
 - Fixed-event forecasts about calendar year outcomes
 - Outcome bins pre-specified by administrators of survey
- Forecasters are anonymous to users of the survey but trackable through id numbers

Fixed-event forecasts allow us to observe how cross-section of beliefs about a given calendar year is revised over time

Heat map for average density forecasts

7/29

Example: Observed belief revisions of forecaster #570

Common signal

• What is the single signal that, if observed by all forecasters, can explain the most of the belief revisions of all the forecasters?

Individual signal

• What is the signal that is necessary to explain a forecaster's residual belief revision not accounted for by the common signal?

Signals and the cross-section of belief revisions

- Generic macroeconomic outcome (N states) $X = \{x_1, x_2, ..., x_N\}$
- Forecasters indexed by j = 1, 2, ..., J
- Signals $s \in S$
- Prior beliefs of forecaster j is $p(\mathbf{x} \mid \Omega_{t-1}^{j}), \mathbf{x} \equiv (x_1, x_2, ..., x_N)$
- Posterior beliefs of forecaster j is $p(\mathbf{x} \mid \Omega_t^j) = p(\mathbf{x} \mid \Omega_{t-1}^j, s_t, s_t^j)$

Bayes rule, belief updates and realized signals

Bayes' rule give the posterior probability of x_n as

$$p(x_n \mid \Omega_{t-1}^{j}, s_t) = \frac{p(s_t \mid x_n)p(x_n \mid \Omega_{t-1}^{j})}{p(s_t \mid \Omega_{t-1}^{j})}.$$

Since $p(s_t)$ is a normalizing constant independent of x we get

$$p(s_t \mid x_n) \propto \frac{p(x_n \mid \Omega_{t-1}^j, s_t)}{p(x_n \mid \Omega_{t-1}^j)}.$$

Note:

- From now on, a signal means $p(s \mid \mathbf{x}) \equiv (p(s \mid x_1), \dots, p(s \mid x_N))' \in [0, 1]^N$
- Signal labels do not matter for how agents update their beliefs
- An observed belief revision is informative about the properties of the realized signal, not the complete signal structure p(S | X)

The estimated perceived **common signal** \hat{s}_t about the event x is defined as

$$p(\widehat{s}_t | \mathbf{x}) = \arg \min_{p(s_t | \mathbf{x}) \in [0, 1]^N} \sum_{j=1}^J KL(\Omega_t; \Omega_{t-1}, s_t)$$

where $KL(\Omega_t, \Omega_{t-1}, s_t)$ is the Kullback-Leibler divergence

$$\mathsf{KL}(\Omega_t^j;\Omega_{t-1}^j,s_t) = \sum_{n=1}^N p(x_n \mid \Omega_t^j) \log \left(\frac{p(x_n \mid \Omega_t^j)}{p(x_n \mid \Omega_{t-1}^j,s_t)}\right).$$

- $p(x \mid \Omega_t^j) = \text{observed posterior}$
- $p(x \mid \Omega_{t-1}^{j}, s_{t}) =$ beliefs induced by s_{t}

Define the **individual signal** s_t^j as the signal that when combined with the common signal and the observed prior result in the observed posterior.

From Bayes' rule

$$p(x_n \mid \Omega_{t-1}^{j}, s_t, s_t^{j}) = \frac{p(s_t^{j} \mid x_n)p(x_n \mid \Omega_{t-1}^{j}, s_t)}{p(s_t^{j} \mid \Omega_{t-1}^{j}, s_t)}$$

so that

$$p(s_t^j \mid x_n) \propto rac{p(x_n \mid \Omega_{t-1}^j, s_t, s_t^j)}{p(x_n \mid \Omega_{t-1}^j, s_t)}.$$

where $p(x \mid \Omega_t^j) \equiv p(x_n \mid \Omega_{t-1}^j, s_t, s_t^j)$ is the period t posterior.

3 measures of signal informativeness

1. The update measure captures magnitude of belief revision

$$\mathcal{KL}(\Omega^{j};\Omega^{j},s) = \sum_{n=1}^{N} p(x_{n} \mid \Omega^{j}) \log \left(\frac{p(x_{n} \mid \Omega^{j})}{p(x_{n} \mid \Omega^{j},s)} \right)$$

2. The **negative entropy measure** captures magnitude of belief revision from a maximum entropy prior

$$H(s) = \sum_{n=1}^{N} p(x_n \mid \Omega^u, s) \log p(x_n \mid \Omega^u, s)$$

where Ω^{u} is the uniform prior.

3. The precision measure captures precision of signal

$$P(s) = var(x_n \mid \Omega^u, s)^{-1}$$

All measures are defined so that a higher value implies a more informative signal

Proposition. The estimated common signal \hat{s}_t induces average beliefs equal to the average observed posterior distribution

$$\frac{1}{J}\sum_{j=1}^{J}p\left(x_{n}\mid\Omega_{t-1},\widehat{s}_{t}\right)=\frac{1}{J}\sum_{j=1}^{J}p\left(x_{n}\mid\Omega_{t}\right):n=1,2,...,N.$$

Corollary. The estimated individual signals induces belief updates that average to zero across agents

$$\frac{1}{J}\sum_{j=1}^{J}\left[p\left(x_{n}\mid\widehat{s}_{t}^{j},\widehat{s}_{t},\Omega_{t-1}^{j}\right)-p\left(x_{n}\mid\widehat{s}_{t},\Omega_{t-1}^{j}\right)\right]=0:n=1,2,...,N.$$

Priors
$$x \mid \Omega_{t-1}^{j} \sim N\left(\underline{\mu}^{j}, \underline{\sigma}^{2}\right)$$
 where $\underline{\mu}^{j} \sim N\left(\underline{\mu}, \sigma_{\mu}^{2}\right)$.
Common signal $s_{t} = x + \eta : \eta \sim N\left(0, \sigma_{\eta}^{2}\right)$
Individual signal $s_{t}^{j} = x + \varepsilon^{j} : \varepsilon^{j} \sim N\left(0, \sigma_{\varepsilon}^{2}\right)$
Posterior of agent j

$$E\left(x \mid \Omega_{t-1}^{j}, s_{t}, s_{t}^{j}\right) = g_{\mu}\underline{\mu}^{j} + g_{s}s_{t} + g_{j}s_{t}^{j}$$
$$var\left(x \mid \Omega_{t-1}^{j}, s_{t}, s_{t}^{j}\right) = \left(\underline{\sigma}_{j}^{-2} + \sigma_{\eta}^{-2} + \sigma_{\varepsilon}^{-2}\right)^{-1}$$

where

$$g_{\mu} = \frac{\underline{\sigma}^{-2}}{\underline{\sigma}^{-2} + \sigma_{\eta}^{-2} + \sigma_{\varepsilon}^{-2}}, g_{s} = \frac{\sigma_{\eta}^{-2}}{\underline{\sigma}^{-2} + \sigma_{\eta}^{-2} + \sigma_{\varepsilon}^{-2}}, g_{j} = \frac{\sigma_{\varepsilon}^{-2}}{\underline{\sigma}^{-2} + \sigma_{\eta}^{-2} + \sigma_{\varepsilon}^{-2}}.$$

Proposition. Up to the discrete approximation, the estimated common signal \hat{s} has conditional distribution

$$\widehat{s} \mid x \sim N\left(x, \widehat{\sigma}_{\eta}^{-2}\right)$$

with estimated realized signal value given by

$$\widehat{s} = (1 - \widehat{g})^{-1} \left[(g_{\mu} - \widehat{g}) \, \underline{\mu} + g_s s + g_j x
ight]$$

where $\widehat{g}=rac{\sigma^{-2}}{\widehat{\sigma}_\eta^{-2}+\sigma^{-2}}$ and $\widehat{\sigma}_\eta^{-2}$ solves the equation

$$g_{\mu}^{2}\sigma_{\mu}^{2} + g_{j}^{2}\sigma_{\varepsilon}^{2} + \left(\underline{\sigma}^{-2} + \sigma_{\eta}^{-2} + \sigma_{\varepsilon}^{-2}\right)^{-1} = \hat{g}^{2}\sigma_{\mu}^{2} + \left(\underline{\sigma}^{-2} + \hat{\sigma}_{\eta}^{-2}\right)^{-1}$$

Corollary. The estimated common signal \hat{s} coincides with true signal s for all realizations if and only if $\sigma_{\varepsilon}^2 \to \infty$.

Corollary. If the true common signal is uninformative $(\sigma_{\eta}^2 \to \infty)$, then the estimated common signal is of the form $\hat{s} = \alpha(x - \beta \underline{\mu})$ with $\alpha \ge 1$ and $\beta \le 1$ with estimated precision $\hat{\sigma}_{\eta}^{-2} < \sigma_{\varepsilon}^{-2}$.

Corollary. The estimated common signal precision $\hat{\sigma}_{\eta}^{-2}$ is increasing in both $\sigma_{\varepsilon}^{-2}$ and σ_{η}^{-2} .

Corollary. The estimated private signals \hat{s}^{j} have precision

$$\hat{\sigma}_{\varepsilon}^{-2} = \sigma_{\varepsilon}^{-2} - \left(\hat{\sigma}_{\eta}^{-2} - \sigma_{\eta}^{-2}\right)$$

and sample mean given by

$$\int \hat{s}^j dj = g_{\mu}\underline{\mu} + g_s s + g_j x.$$

- 1. Informativeness and major macroeconomic events
- 2. Informativeness of individual vs common signals
- 3. Cyclical properties of signal informativeness

Focus on results from same-calender-year forecast data on CPI inflation, unemployment and GDP growth.

Time varying informativeness of signals about CPI inflation

Time varying informativeness of signals about unemployment

Cross-section of informativeness of signals

CPI inflation									
	π_t^{cpi}	π_{t-1}^{cpi}	$\Delta \pi_t^{cpi}$	$\Delta \pi_t^{cpi}$	$\Delta \pi^{cpi}_{t-1}$				
Individual signals									
KL	-0.08	-0.13	0.08	0.48	0.45				
Н	-0.20	-0.22	-0.03	0.36	0.35				
Р	-0.17	-0.22	0.05	0.36	0.35				
Common signals									
KL	0.12	0.15	-0.03	0.23	0.44				
Н	0.25	0.21	0.14	0.45	0.53				
Р	0.02	0.04	-0.12	-0.06	0.29				

Table 1: Correlation of information measures and CPI inflation outcomes.red numbers are correlations that are significantly different from zero at the0.05 level.

Unemployment								
	ut	u_{t-1}	Δu_t	$ \Delta u_t $	$ \Delta u_{t-1} $			
Individual signals								
KL	0.27	0.38	-0.18	-0.06	-0.19			
Н	0.16	0.31	-0.24	0.07	-0.10			
Р	0.32	0.28	0.06	-0.11	-0.11			
Common signals								
KL	0.22	0.48	-0.41	0.38	0.14			
Н	0.20	0.40	-0.31	0.24	0.04			
Р	0.21	0.43	-0.35	0.31	0.12			

Table 2: Correlation of information measures and unemployment outcomes. red numbers are correlations that are significantly different from zero at the 0.05 level. **Information counter-cyclical:** Incentives to acquire information strongest during downturns

- Chiang (WP 2022), Song and Stern (2022) and Flynn and Sastry (WP 2022)

or

Information pro-cyclical: Economic activity generates information

 Chalkley and Lee (RED 1998), Veldkamp (JET 2005), Van Nieuwerburgh and Veldkamp (JEEA 2006), Ordoñez (JPE 2013), Fajgelbaum, Shaal and Taschereau-Dumouchel (QJE 2017) Decompose cross-section of belief revisions into common and idiosyncratic sources

- Method imposes only relatively weak assumptions
- Individual signals on average more informative than common signals
 - Large heterogeneity across forecasters
- Informativeness of both individual and common signals about macro outcomes increase when recession probability is high
 - Information acquisition appears to be counter-cyclical
- Characterized properties of extracted signals in alternative settings
 - Allows for model dependent interpretations
 - Method provides upper bound for importance of common signal