A Nonhomothetic Price Index and Cost-of-Living Inequality

Oesterreichische Nationalbank Stockholm University Danmarks Nationalbank

Philipp Hochmuth **Markus Pettersson** Christoffer Jessen Weissert

26 August 2024

* The views in this presentation are those of the authors and do not represent the views of the Oesterreichische Nationalbank or Danmarks Nationalbank.

Do changes in the cost of living depend on income? Yes! But how much?

Change in
\n**cost of living** =
$$
\begin{pmatrix} \text{price change} \\ \text{of good 1} \end{pmatrix}^{\delta_1} \times \dots \times \begin{pmatrix} \text{price change} \\ \text{of good } N \end{pmatrix}^{\delta_N}
$$

Weights $\delta_1, \ldots, \delta_N$ typically

- \blacktriangleright Functions of budget shares
- Derived from utility maximisation

Standard case: homothetic preferences

- \blacktriangleright Budget shares independent of income
- \triangleright $\delta_1, \ldots, \delta_N$ same for everyone
- ► Change in cost of living same for everyone

But: Engel's Law!

US budget shares for food at home, 2021

Source: US Bureau of Labor Statistics. 2/18

Consistent and **easy-to-compute** nonhomothetic cost-of-living index possible?

If so, what does it say about **inflation inequality**?

This paper: a nonhomothetic price index and cost-of-living inequality

1. Theoretically

- \blacktriangleright Nonhomothetic cost-of-living index
- \blacktriangleright Nests all superlative price indices
- Maintains consistent aggregate inflation measure
- Geometric-mean representation for decompositions

2. Methodologically

- \blacktriangleright Feasible estimation strategy: only two parameters
- \blacktriangleright Assumption: necessities and luxuries quasi-separable
- **3. Empirically**
	- Application to matched US CEX-CPI data
	- Study inflation inequality between 1995 and 2020

This paper: a nonhomothetic price index and cost-of-living inequality

1. Theoretically

- \blacktriangleright Nonhomothetic cost-of-living index
- \blacktriangleright Nests all superlative price indices
- Maintains consistent aggregate inflation measure
- Geometric-mean representation for decompositions

2. Methodologically

- Feasible estimation strategy: only two parameters
- Assumption: necessities and luxuries quasi-separable
- **3. Empirically**
	- Application to matched US CEX-CPI data
	- Study inflation inequality between 1995 and 2020

Empirical findings

Bottom vs. top expenditure deciles

Inflation rates:

Inflation volatility: 2.5 times larger for the poor Previous approaches

- \checkmark Theoretically consistent
- $\boldsymbol{\chi}$ Easy to estimate
- \checkmark Timely inflation inequality
- ✓ Product decompositions
- ✗ Theoretically consistent
- $\sqrt{}$ Easy to estimate
- χ Timely inflation inequality
- ✓ Product decompositions
- \checkmark Theoretically consistent
- ✓ Easy to estimate
- χ Timely inflation inequality
- ✗ Product decompositions

[Theoretical framework](#page-6-0)

- **[Empirical Implementation](#page-17-0)**
- É **[Empirical Results](#page-25-0)**
- ► [Conclusion](#page-33-0)

Consumer preferences: distinction between necessities and luxuries

(Muellbauer, [1975, 1976;](#page-69-0) Boppart, [2014\)](#page-69-0)

$$
V(e, p) = \frac{1}{\varepsilon} \left[\left(\frac{e}{B(p)} \right)^{\varepsilon} - 1 \right] - \frac{\nu}{\gamma} \left[\left(\frac{D(p)}{B(p)} \right)^{\gamma} - 1 \right]
$$

Consumer preferences: distinction between necessities and luxuries

(Muellbauer, [1975, 1976;](#page-69-0) Boppart, [2014\)](#page-69-0)

$$
V(e, p) = \frac{1}{\varepsilon} \left[\left(\frac{e}{B(p)} \right)^{\varepsilon} - 1 \right] - \frac{\nu}{\gamma} \left[\left(\frac{D(p)}{B(p)} \right)^{\gamma} - 1 \right]
$$

- É **e Consumption expenditures** (nominal)
- $\mathbf{B}(\boldsymbol{p})$ **Price aggregator of luxuries** (linearly homogenous)

 $D(p)$ **Price aggregator of necessities** (linearly homogenous)

Consumer preferences: distinction between necessities and luxuries

(Muellbauer, [1975, 1976;](#page-69-0) Boppart, [2014\)](#page-69-0)

$$
V(e, p) = \frac{1}{\varepsilon} \left[\left(\frac{e}{B(p)} \right)^{\varepsilon} - 1 \right] - \frac{\nu}{\gamma} \left[\left(\frac{D(p)}{B(p)} \right)^{\gamma} - 1 \right]
$$

- É **e Consumption expenditures** (nominal)
- $\mathbf{B}(\boldsymbol{p})$ **Price aggregator of luxuries** (linearly homogenous)

 $D(p)$ **Price aggregator of necessities** (linearly homogenous)

Budget share of necessities declines with the **expenditure level**:

$$
w_D = v \left(\frac{B(p)}{e}\right)^{\varepsilon} \left(\frac{D(p)}{B(p)}\right)^{\gamma} \rightarrow 0 \quad \text{as} \quad e \rightarrow \infty
$$

◀ [Section start](#page-6-0) \bigcirc Q \bigcirc Mext section 6/18

Cost-of-living index:

Change in minimum expenditures needed to maintain a fixed standard of living

Cost-of-living index:

Change in minimum expenditures needed to maintain a fixed standard of living

$$
P(u, p_s, p_t) \equiv \frac{c(u, p_t)}{c(u, p_s)} = \frac{1}{e_s} \left[\left(1 - \frac{\varepsilon v}{\gamma} + \varepsilon u \right) B(p_t)^{\gamma} + \frac{\varepsilon v}{\gamma} D(p_t)^{\gamma} \right]^{\frac{1}{\varepsilon}} B(p_t)^{1-\frac{\gamma}{\varepsilon}}
$$

Cost-of-living index: higher sensitivity to necessity prices at low incomes

Change in minimum expenditures needed to maintain a fixed standard of living

$$
P(u, p_s, p_t) = \left[\left(1 - \frac{\varepsilon w_{Ds}}{\gamma} \right) P_{Bt}^{\gamma} + \frac{\varepsilon w_{Ds}}{\gamma} P_{Dt}^{\gamma} \right]^{\frac{1}{\varepsilon}} P_{Bt}^{1-\frac{\gamma}{\varepsilon}}
$$

Function of

- **EXECUTE:** Base period **necessity budget share** (pins down standard of living)
- \blacktriangleright Price indices $P_{Ct} = C(p_t) / C(p_s)$ (standard homothetic price index formulae)
- É Parameters **ε**, **γ**

Cost-of-living index: higher sensitivity to necessity prices at low incomes

Change in minimum expenditures needed to maintain a fixed standard of living

$$
P(u, p_s, p_t) = \left[\left(1 - \frac{\varepsilon w_{Ds}}{\gamma} \right) P_{Bt}^{\gamma} + \frac{\varepsilon w_{Ds}}{\gamma} P_{Dt}^{\gamma} \right]^{\frac{1}{\varepsilon}} P_{Bt}^{1-\frac{\gamma}{\varepsilon}}
$$

Function of

Separability between necessities/luxuries:

- **EXECUTE:** Base period **necessity budget share** (pins down standard of living)
- \blacktriangleright Price indices $P_{Ct} = C(p_t) / C(p_s)$ (standard homothetic price index formulae)
- É Parameters **ε**, **γ**
- É Observable in data (given necessity/luxury split)
- É Observable in data (using prices and within-basket budget shares)
- **Estimable**

Cost-of-living index: a generalized decomposition

 $B(\boldsymbol{p})$, $D(\boldsymbol{p})$: expenditure functions that generate geometric-mean price indices, for example

$$
B(\boldsymbol{p}) = \left(\sum_{j\in J} \omega_j p_j^{1-\sigma}\right)^{\frac{1}{1-\sigma}} \qquad \Longrightarrow \qquad P_{Bt} = \prod_{j\in J} \left(\frac{p_{jt}}{p_{js}}\right)^{\frac{w_{jt} - w_{js}}{\ln w_{jt} - \ln w_{js}} / \sum_i \frac{w_{it} - w_{is}}{\ln w_{it} - \ln w_{is}}}
$$

\n**CES Sato-Vartia index**

Cost-of-living index: a generalized decomposition

 $B(\boldsymbol{p})$, $D(\boldsymbol{p})$: expenditure functions that generate geometric-mean price indices, for example

$$
B(\boldsymbol{p}) = \left(\sum_{j\in J} \omega_j p_j^{1-\sigma}\right)^{\frac{1}{1-\sigma}} \qquad \Longrightarrow \qquad P_{Bt} = \prod_{j\in J} \left(\frac{p_{jt}}{p_{js}}\right)^{\frac{w_{jt}-w_{js}}{\ln w_{jt}-\ln w_{js}} / \sum_i \frac{w_{it}-w_{is}}{\ln w_{it}-\ln w_{is}}}
$$

CES

Then the rate of change of the cost-of-living index can be decomposed according to

$$
\frac{P(u, p_t, p_s)}{P(u, p_{t-1}, p_s)} = \prod_{j \in J} \left(\frac{p_{jt}}{p_{jt-1}}\right)^{\left(\begin{array}{c}\text{weight on } j \\ \text{ necessities}\end{array}\right) \times \left(\begin{array}{c}\text{weight on } j \\ \text{in necessities}\end{array}\right) + \left(\begin{array}{c}\text{weight on } j \\ \text{luxuries}\end{array}\right) \times \left(\begin{array}{c}\text{weight on } j \\ \text{in luxuries}\end{array}\right)
$$

Cost-of-living index: a generalized decomposition

B(**p**), D(**p**): expenditure functions that generate geometric-mean price indices, for example

$$
B(\boldsymbol{p}) = \left(\sum_{j\in J} \omega_j p_j^{1-\sigma}\right)^{\frac{1}{1-\sigma}} \qquad \Longrightarrow \qquad P_{Bt} = \prod_{j\in J} \left(\frac{p_{jt}}{p_{js}}\right)^{\frac{w_{jt} - w_{js}}{\ln w_{jt} - \ln w_{js}} / \sum_i \frac{w_{it} - w_{is}}{\ln w_{it} - \ln w_{is}}}
$$

\n**CES Sato-Vartia index**

Then the rate of change of the cost-of-living index can be decomposed according to

$$
\frac{P(u, p_t, p_s)}{P(u, p_{t-1}, p_s)} = \prod_{j \in J} \left(\frac{p_{jt}}{p_{jt-1}}\right)^{\left(\begin{array}{c}\text{weight on }j\text{ vertices}\end{array}\right)\times\left(\begin{array}{c}\text{weight on }j\text{ integers}\end{array}\right)+\left(\begin{array}{c}\text{weight on }j\text{ vertices}\end{array}\right)\times\left(\begin{array}{c}\text{weight on }j\text{ integers}\end{array}\right)}
$$

Household-specific weights across vary with expenditure level

Homothetic weights within same for everyone

[Empirical Implementation](#page-17-0)

É **[Empirical Results](#page-25-0)**

► [Conclusion](#page-33-0)

Data

Expenditures

US consumer expenditure survey (CEX)

- \blacktriangleright 1995–2020 (26 years)
- \triangleright ≈ 3,000 households per year
- ▶ 21 broad **non-durable commodities** (food at home, public transport, . . .)
- \blacktriangleright Equivalence adjustment of income and expenditures

Prices

Consumer price index (CPI)

- \blacktriangleright Group-specific CPI sub-indices
- \blacktriangleright Match to each of the 21 goods

◆ [Section start](#page-17-0) A つくへ ▶ [Next section](#page-25-0) 10/18

1. Classify individual goods as **necessity** or **luxury** (slope of Engel curves)

US budget shares for food at home, 2021

- 1. Classify individual goods as **necessity** or **luxury** (slope of Engel curves)
- 2. Construct prices for **necessities** and **luxuries**

(**PD**, **PB**, standard price index formulae)

US budget shares for food at home, 2021

- 1. Classify individual goods as **necessity** or **luxury** (slope of Engel curves)
- 2. Construct prices for **necessities** and **luxuries** $(P_D, P_B,$ standard price index formulae)
- 3. Estimate parameters **ε**, **γ** (from **necessity budget share** equation)

US budget shares for food at home, 2021

$$
w_D = v \left(\frac{B(p)}{e}\right)^{\varepsilon} \left(\frac{D(p)}{B(p)}\right)^{\gamma}
$$

[Engel curves](#page-43-0) [Classification](#page-46-0) [Price indices](#page-47-0) [Estimation](#page-48-0) Estimation [Estimation table](#page-53-0) [Section start](#page-17-0) \bigcirc Q C Price indices Price indices Estimation Classification in 10/18

- 1. Classify individual goods as **necessity** or **luxury** (slope of Engel curves)
- 2. Construct prices for **necessities** and **luxuries** $(P_D, P_B,$ standard price index formulae)
- 3. Estimate parameters **ε**, **γ** (from **necessity budget share** equation)
- 4. Construct cost-of-living index (for some base-period **expenditure level**)

US budget shares for food at home, 2021

$$
w_D = v \left(\frac{B(p)}{e}\right)^{\varepsilon} \left(\frac{D(p)}{B(p)}\right)^{\gamma}
$$

$$
\left[\,\left(1-\frac{\varepsilon\,w_{Ds}}{\gamma}\right)P^{y}_{Bt}\,+\,\frac{\varepsilon\,w_{Ds}}{\gamma}P^{y}_{Dt}\,\right]^{\frac{1}{\varepsilon}}P^{1-\frac{\gamma}{\varepsilon}}_{Bt}
$$

- 1. Classify individual goods as **necessity** or **luxury** (slope of Engel curves)
- 2. Construct prices for **necessities** and **luxuries** $(P_D, P_B,$ standard price index formulae)
- 3. Estimate parameters **ε**, **γ** (from **necessity budget share** equation)
- 4. Construct cost-of-living index (for some base-period **expenditure level**)

US budget shares for food at home, 2021

$$
w_D = v \left(\frac{B(p)}{e}\right)^{\varepsilon} \left(\frac{D(p)}{B(p)}\right)^{\gamma}
$$

$$
\left[\left(1-\frac{\varepsilon\,w_{Ds}}{\gamma}\right)P^{y}_{Bt}\,+\,\frac{\varepsilon\,w_{Ds}}{\gamma}P^{y}_{Dt}\,\right]^{\frac{1}{\varepsilon}}P^{1-\frac{\gamma}{\varepsilon}}_{Bt}
$$

- **Example 2 Find School** Framework
- **[Empirical Implementation](#page-17-0)**

[Empirical Results](#page-25-0)

Cost-of-living changes similar on average . . .

But differences arise in subperiods

- \blacktriangleright Change at median expenditure level
	- 2.24 % / year
- \blacktriangleright Top-bottom difference 0.06 pp / year
- ► Top-bottom difference 2004-2015

0.37 pp / year

but more volatile for low-expenditure consumers

Inflation 2.5 times more volatile for bottom decile than top decile

Income group-specific homothetic indices generate no convergence

Key difference: we maintain fixed reference standards of living

Top-bottom difference: **0.06 pp / year** vs **0.36 pp / year**

[Section start](#page-25-0) \bigcirc \bigcirc Q \bigcirc **[Next section](#page-37-0)** 13/18

Where do the inflation differences ultimately come from?

Reference baskets and **substitution behaviour** differ across the expenditure distribution!

[Substitution decomposition](#page-61-0) \blacksquare [Section start](#page-25-0) \blacksquare Section start \blacksquare Section start \blacksquare Section start \blacksquare Section \blacksquare 14/18

Low-income consumers have higher exposure to food and energy . . .

◀ [Section start](#page-25-0) \bigcirc Q \bigcirc ▶ [Next section](#page-37-0) 15/18

... meanwhile, product substitution does not matter

Robustness: estimation of fully parametrized demand model

Generates near-identical inflation response

Parametrization:
$$
B(p) = \left(\sum_j \omega_j p_j^{1-\sigma}\right)^{\frac{1}{1-\sigma}}, \quad D(p) = \left(\sum_j \theta_j p_j^{1-\phi}\right)^{\frac{1}{1-\phi}}
$$

- **Example 2 Find School** Framework
- **[Empirical Implementation](#page-17-0)**
- ► [Empirical Results](#page-25-0)

[Conclusion](#page-33-0)

Measuring cost-of-living changes under nonhomothetic preferences does not require a fully parametrized and estimated consumer demand model

Nonhomothetic cost-of-living index

PIGL preferences between necessities or luxuries Generalizes standard homothetic indices

Easy implementation

Separability between necessities and luxuries Consistent aggregation: can use macro data

Measuring cost-of-living changes under nonhomothetic preferences does not require a fully parametrized and estimated consumer demand model

Implications

Heterogeneous inflation \implies heterogeneous real rates monetary policy transmission?

Under the hood

2.5 times higher inflation volatility for the poor from exposure to food, energy, utilities

Empirically 1995–2020: no differences 2004–2015: 0.37 pp/year between top and bottom

Nonhomothetic cost-of-living index

PIGL preferences between necessities or luxuries Generalizes standard homothetic indices

Easy implementation

Separability between necessities and luxuries Consistent aggregation: can use macro data

Measuring cost-of-living changes under nonhomothetic preferences does not require a fully parametrized and estimated consumer demand model

Implications

Heterogeneous inflation \implies heterogeneous real rates monetary policy transmission?

Under the hood

2.5 times higher inflation volatility for the poor from exposure to food, energy, utilities

Empirically 1995–2020: no differences 2004–2015: 0.37 pp/year

between top and bottom

Thank you!

[Appendix](#page-37-0)

Nonhomothetic CES as a special case when $\varepsilon = \gamma$

 $Parametrization:$

$$
B(\boldsymbol{p}) = \left(\sum_{j} \omega_{j} p_{j}^{\varepsilon}\right)^{\frac{1}{\varepsilon}}, \qquad D(\boldsymbol{p}) = \left(\sum_{j} \theta_{j} p_{j}^{\varepsilon}\right)^{\frac{1}{\varepsilon}}
$$

$$
B(\boldsymbol{p}) = \left[\sum_{j \in J} \left(\theta_{j} v + \omega_{j} (1 - v + \varepsilon u)\right) p_{j}^{\varepsilon}\right]^{\frac{1}{\varepsilon}}
$$

 $\left(\theta_j v + \omega_j (1 - v + \varepsilon u)\right) p_j^{\varepsilon}$

Cost function: $c(u, p) =$

Expenditure shares:

$$
w_j = \omega_j \left(\frac{p_j}{B(p)}\right)^{\varepsilon} + \left[\theta_j \left(\frac{p_j}{D(p)}\right)^{\varepsilon} - \omega_j \left(\frac{p_j}{B(p)}\right)^{\varepsilon}\right] \nu \left(\frac{D(p)}{e}\right)^{\varepsilon}
$$

Ĩ

Price index: P(

$$
(u, p_s, p_t) = \left[\sum_{j \in J} w_{js} \left(\frac{p_{jt}}{p_{js}} \right)^{\varepsilon} \right]^{\frac{1}{\varepsilon}}
$$

Ī

 ∇ j∈J

Decomposition of the PIGL cost-of-living index

$$
\frac{P(u, p_s, p_t)}{P(u, p_s, p_{t-1})} = \left(\frac{P_{Dt}}{P_{Dt-1}}\right)^{\frac{\gamma \phi_t}{\varepsilon}} \left(\frac{P_{Bt}}{P_{Bt-1}}\right)^{1-\frac{\gamma \phi_t}{\varepsilon}}, \qquad \phi_t = \frac{L\left(w_{Dt}^h, w_{Dt-1}^h\right)}{L\left(w_{Dt}^h, w_{Dt-1}^h\right) + L\left(\frac{\gamma}{\varepsilon} - w_{Dt}^h, \frac{\gamma}{\varepsilon} - w_{Dt-1}^h\right)}
$$

 w_{Dt}^h is the Hicksian necessity expenditure share associated with the reference utility level, $L(\cdot, \cdot)$ is the logarithmic mean:

$$
w_{Dt}^h = w_{Ds} \left(\frac{P_{Dt}^{\frac{y}{\varepsilon}} P_{Bt}^{1-\frac{y}{\varepsilon}}}{P(u, p_s, p_t)} \right)^{\varepsilon} \quad \text{and} \quad L(x, y) = \begin{cases} \frac{x-y}{\ln x - \ln y} & \text{if } x \neq y, \\ x & \text{if } x = y. \end{cases}
$$

The basket price indices use prices p_j and within-basket expenditure shares w_j^C in standard index formulae, for example Sato-Vartia:

$$
\frac{P_{Ct}}{P_{Ct-1}} = \prod_{j \in J_C} \left(\frac{p_{jt}}{p_{jt-1}} \right)^{L(w_{jt}^C, w_{jt-1}^C) / \sum_i L(w_{it}^C, w_{it-1}^C)}, \qquad C \in \{B, D\}.
$$

Consumption Expenditure Survey (CEX), 1995–2020

- \blacktriangleright Focus on households:
	- between 25 and 65 years old
	- \rightarrow 4/4 quarters and full income reporter
	- \blacktriangleright positive household income
- \blacktriangleright Exclude durable goods
- \blacktriangleright Rent equivalence to impute service flows from owned housing
- \blacktriangleright Equivalence adjustment of expenditures and income
- \blacktriangleright Aggregation into 21 goods follows Hobijn and Lagakos (2005)
- \blacktriangleright Produce annual aggregate of group expenditures for each household
- \blacktriangleright Households enter/exit the panel each month
- \blacktriangleright Aggregate monthly price level for each expenditure group:
	- Expenditure weighted annual average of monthly price index
	- \blacktriangleright Household specific

Income against consumption expenditures in the CEX data

 \bullet [Back](#page-18-0) \bullet [Section start](#page-37-0) \bullet \circ \circ \circ \bullet \bullet [Next section](#page-69-2) \bullet 4/24

Individual CPI series

1. Classify individual goods as necessity or luxury

Implementation captures non-constant Engel curves

Expenditure shares within luxuries and necessities

Expenditure shares across luxuries and necessities

● [Back to Engel curves](#page-43-0) ● [Back to main](#page-20-0) Box 3 and [Section start](#page-37-0) According to Section start According 8/24

Formal classification into necessities and luxuries

Regression equation

 $w_{ih} = \alpha_i + \beta_i \mathbf{d}_h + \epsilon_{ih}$

 w_{ih} budget share on product *j* for household *h*

 d_h expenditure decile of household h

2. Construct prices for necessities and luxuries

Increasing relative price of necessities

3. Estimate parameters $ε$, γ

Estimate ε , γ from expenditure share on necessities:

$$
w_D = v \left(\frac{P_B}{e}\right)^{\varepsilon} \left(\frac{P_D}{P_B}\right)^{\gamma}
$$

3. Estimate parameters ε , γ

Estimate ε , γ from expenditure share on necessities:

$$
w_D = v \left(\frac{P_B}{e}\right)^{\varepsilon} \left(\frac{P_D}{P_B}\right)^{\gamma}
$$

Directly observable in the data

3. Estimate parameters $ε$, γ

Estimate ε, *γ* from expenditure share on necessities:

$$
w_D = v \left(\frac{P_B}{e}\right)^{\varepsilon} \left(\frac{P_D}{P_B}\right)^{\gamma}
$$

Directly observable **Superlative price indices** in the data (Sato-Vartia, Törnqvist, . . .)

3. Estimate parameters ε , γ

Estimate ε , γ from expenditure share on necessities:

$$
w_D = v \left(\frac{P_B}{e}\right)^{\varepsilon} \left(\frac{P_D}{P_B}\right)^{\gamma}
$$

Directly observable Superlative price indices in the data (Sato-Vartia, Törnqvist, . . .)

- \blacktriangleright Both linear and non-linear estimation possible
- \blacktriangleright Infrequently bought items
	- \implies instrument expenditures on income
- \blacktriangleright Valid preferences
	- \implies penalty method on parameters

3. Estimate parameters ε , γ

 \int_{c} $\int P_D$

γ

Homotheticity rejected: $\varepsilon > 0$

Directly observable Superlative price indices $w_D = v \left(\frac{P_B}{q} \right)$ e P_B

in the data

(Sato-Vartia, Törnqvist, . . .)

- \blacktriangleright Both linear and non-linear estimation possible
- \blacktriangleright Infrequently bought items
	- \implies instrument expenditures on income
- \blacktriangleright Valid preferences
	- \implies penalty method on parameters

Parameter estimates for different price index formulae

Table 1. GMM estimates of the PIGL parameters under quasi-separability.

Notes. Robust standard errors in parentheses. "RMSE" refers to the root-mean-square error of the expenditure share on the D good: $\sqrt{\sum_h (w_{Dh} - \widehat{w}_{Dh})^2 / N}$. Observations are weighted by their CEX sampling weights.

Full price index distribution

Different base years: representative agent

Different base years: top vs. bottom expenditure deciles

Cost-of-living indices for different superlative price index formulae

Full inflation distribution

Inflation for different superlative price index formulae

[Back](#page-27-0) \overline{a} [Section start](#page-37-0) $a \rightarrow a$ [Next section](#page-69-2) 18/24

Inflation rate levels and dispersion across the distribution

Table 2. Inflation rate levels and dispersion over time across the expenditure distribution.

Notes. Arithmetic mean and standard deviation of annual inflation over the time periods 2004–2015 and 1996–2020. Under inflation rate levels, the "Relative to top decile" columns show the percentage point difference in the average annual inflation rate to that of the tenth expenditure decile. Under inflation rate dispersion, the same columns show the standard deviation of annual inflation as a multiple of that of the tenth expenditure decile.

$$
\ln P_t = \sum_{j \in J} w_{jt}^L \ln \left(\frac{p_{jt}}{p_{js}} \right) + \sum_{j \in J} \left(\chi_{jt} - w_{jt}^L \right) \ln \left(\frac{p_{jt}}{p_{js}} \right)
$$

$$
\ln P_t = \sum_{j \in J} w_{jt}^L \ln \left(\frac{p_{jt}}{p_{js}} \right) + \sum_{j \in J} \left(\chi_{jt} - w_{jt}^L \right) \ln \left(\frac{p_{jt}}{p_{js}} \right)
$$

$$
\ln P_t = \sum_{j \in J} w_{jt}^L \ln \left(\frac{p_{jt}}{p_{js}} \right) + \sum_{j \in J} \left(\chi_{jt} - w_{jt}^L \right) \ln \left(\frac{p_{jt}}{p_{js}} \right)
$$

FIGL decomposition weights
logupers weights with fixed base-period quantities

$$
\ln P_t = \sum_{j \in J} w_{jt}^L \ln \left(\frac{p_{jt}}{p_{js}} \right) + \sum_{j \in J} \left(\chi_{jt} - w_{jt}^L \right) \ln \left(\frac{p_{jt}}{p_{js}} \right)
$$

Laspeyres price index
Product substitution

- \blacktriangleright PIGL decomposition weights
- \blacktriangleright Laspeyres weights with fixed base-period quantities

$$
\ln P_t = \sum_{j \in J} w_{jt}^L \ln \left(\frac{p_{jt}}{p_{js}} \right) + \sum_{j \in J} \left(\chi_{jt} - w_{jt}^L \right) \ln \left(\frac{p_{jt}}{p_{js}} \right)
$$

Laspeyres price index
Product substitution

- \blacktriangleright PIGL decomposition weights
- \blacktriangleright Laspeyres weights with fixed base-period quantities

Laspeyres weights

The Laspeyres price index keeps **quantities** q_i fixed to some base period s:

$$
P_t^L \equiv \frac{\sum_{j \in J} p_{jt} q_{js}}{\sum_{j \in J} p_{js} q_{js}}
$$

A bit of algebra allows us to rewrite this as

$$
P_t^L = \prod_{j \in J} \left(\frac{p_{jt}}{p_{js}}\right)^{w_{jt}^L},
$$

where

$$
w_{jt}^L \equiv \frac{w_{js} L\left(\frac{p_{jt}}{p_{js}}, P_{Lt}\right)}{\sum_{i \in J} w_{is} L\left(\frac{p_{jt}}{p_{js}}, P_{Lt}\right)}.
$$

 \overline{B} [Back to formal decomposition](#page-64-0) \overline{B} \overline{B} [Back to main](#page-29-0) \overline{B} section start \overline{B} \overline{B} [Next section](#page-69-2) \overline{B} 21/24

Product substitution: difference between top and bottom deciles

Full demand system parameter estimates

Parametrization:
$$
B(p) = \left(\sum_j \omega_j p_j^{1-\sigma}\right)^{\frac{1}{1-\sigma}}, \quad D(p) = \left(\sum_j \theta_j p_j^{1-\phi}\right)^{\frac{1}{1-\phi}}
$$

Table 3. GMM estimates of the preference parameters.

Notes. Robust standard errors in parentheses. "RMSE" refers to the root-mean-square error of the expenditure share on the ^D good: $\sqrt{\sum_h (w_{Dh} - \widehat{w}_{Dh})^2 / N}$. Observations are weighted by their CEX sampling weights.

Point estimates ω_j , θ_j

Full demand system estimation: inflation rates

