Introduction Model Preliminary analysis of feedback effect Analysis Discussion Concluding remarks

Feedback Effects, Market Valuations, and Real Efficiency

Junghum Park

Bank of Lithuania & Vilnius University

August 2024

Motivation

Secondary financial markets appear to have real effects

- Corporate decision makers learn from prices, thereby allocating the resources more efficiently
- "Feedback effect" between real and financial sectors

Empirical evidence?

- Firms respond to stock prices (e.g., Chen et al, 2007)
- But the contribution of learning from stock price to firm productivity is small (David et al, 2016)

Motivation

One possibility: corporate decisions involving long-term commitments?

- E.g., strategic planning and market positioning of firms
- Stock markets may promote myopic corporate behavior
- The "short-termism" may happen when short-term prices incorrectly reflect the long-term consequences of certain types of actions

Motivation Situation and research questio Main results Literature

Motivation

This paper studies the interdependence of myopic corporate behavior and the feedback effect

- The feedback effect leads to an inflated equity price through risk-driven asymmetric trading behavior of speculators
- Combined with the short-term incentive for decision makers, this feature can explain:
 - why the feedback effect is prevalent (through ex ante project choice)
 - weak contribution of learning from prices to firm productivity

Situation and research question

A modeling framework to analyze the interaction between corporate investments and financial prices via information and risk channels

- A firm's decision maker chooses between two mutually exclusive projects
 - Two projects are ex ante identical in terms of initially unknown productivity, which follows a Pareto distribution
 - They differ on who has an informational advantage
- The financial market opens
- The DM determines the scale of operations on the chosen project

Situation and research question

The DM's choice between two long-term projects

- Scenario 1: The DM holds better information about the productivity of project, which leads to better decison making.
- Scenario 2: Its productivity is better known to the financial market. Thus, the DM learns from the price.

How does the short-term incentive for the DM affect his project choice?

- Example: Innovation strategy of corporate executives
- Existing customers' needs vs. creating new markets
- Equivalently, demand- vs. quality-related information

Main results

Scenario 1: Superior information for the firm

- The price is unbiased about the firm's profit from operations
- It is due to a symmetric impact of noise trade on the price conditional on large project values

Scenario 2: Superior information for the financial market

- The average price is higher than the firm's profit from operations
- Higher price -> Higher operation scale -> Higher valuation risk
- Speculators are less (more) aggressive against higher (lower) prices. Accordingly, the impact of noise trade is asymmetric.

Main results

Combining these scenarios together:

- Learning from price causes an ex ante price inflation
- The DM chooses the less efficient long-term project which is more informative to the financial market

Other insights than the inefficient project choice:

- Explains the availability of superior information in financial markets
- The feedback effect results in smaller scale of operations by the firm

Motivation
Situation and research questio
Main results
Literature

Literature

Feedback effects of secondary financial markets

- The existing frameworks explain multiple equilibria, trading frenzy, and side effects of information disclosure, etc (e.g., Goldstein, Ozdenoren & Yuan, 2013; Boleslavsky, Kelly & Taylor, 2017; Goldstein & Yang, 2019)
- But they abstract from investors' risk aversion and the resulting asymmetry in their trades
- Asymmetry in trading behavior (Boleslavsky, Kelly & Taylor, 2017; Edmans, Goldstein & Jiang, 2015)

Corporate short-termism

- Signal-jamming based on hidden actions (e.g., Stein, 1989; Aghion & Stein, 2008)
- Determination of executive compensation (e.g., Bolton et al., 2006)

Model

A firm has access to the following production technology for project $d \in \{A, B\}$:

$$\pi_d = \underbrace{a_d}_{\text{Operation}} \cdot \underbrace{\left(\theta_d + \varepsilon_d\right)}_{\text{Per-scale}} - \underbrace{\frac{1}{2}a_d^2}_{\text{Operations}},$$

where

- θ_d and ε_d are the forecastable and unforecastable parts of productivity factors, respectively;
- a_d is the scale of operations on the chosen project d.

Model

The order of game:

• At t = 0, the DM chooses project $d \in \{A, B\}$. They differ on which side is more informative at t = 1:

	Project A	Project <i>B</i>
DM's information	$\mathscr{I}_{IA} = \{\theta_A, p_A\}$	$\mathscr{I}_{IB} = \{p_B\}$
Market's information	$\mathscr{I}_{OA} = \{s, p_A\}$	$\mathscr{I}_{OB} = \{\theta_B, p_B\}$

- At t=1, the financial market opens and determines p_d
- At t = 2, the DM decides the scale of operations a_d
- At t = 3, the firm generates cash flows π_d and all agents get paid

Model: productivity of projects

The per-scale revenue is $\theta_d + \varepsilon_d$ for project $d \in \{A, B\}$

• The project value $\theta_d \geq 0$ commonly follows a Pareto distribution

$$g(\theta_d) = \frac{\lambda - 1}{\gamma} \left(\frac{\theta_d}{\gamma} + 1 \right)^{-\lambda}$$

for constant $\gamma > 0$ and $\lambda \in (1,3]$. Notably, it has a "fat" tail.

ullet The unforecastable part $arepsilon_d$ follows $N(0,\sigma_arepsilon^2)$

Model: financial sector

At t = 1, a continuum of informed speculators $i \in [0,1]$ and noise traders participate in the financial market

- Given project d, informed speculators submit $x_{id}(\mathscr{I}_{Od})$ to maximize $U_{id} = -\frac{1}{\sigma} \exp\left[-\varphi\left\{x_{id}\left(\pi_d p_d\right)\right\}\right]$
- Recall $\mathscr{I}_{OA} = \{s, p_A\}$ and $\mathscr{I}_{OB} = \{\theta_B, p_B\}$
 - In case of project A, we assume $s = \theta_A + \eta$, where η 's support is $\{\eta_1, \dots, \eta_K\}$ with probabilities r_1, \dots, r_K , respectively. Wlog, $E[\eta] = 0$.
- Noise trade is a random variable ω whose support is $\{\omega_1, \cdots, \omega_J\}$ with probabilities q_1, \cdots, q_J , respectively. Wlog, $E[\omega] = 0$.

Model: feedback from price

Two scenarios at t = 2:

- Project A: The DM knows θ_A , which is used to decide the scale of operations a_A . No need for price learning.
- Project B: The DM learns from the price p_B to decide the scale of operations a_B .

Model: equilibrium definition

Equilibrium consists of

- Project choice $d \in \{A, B\}$
- Informed speculators' demands $x_{iA}^* = x_{iA}^*(\mathscr{I}_{OA})$, $x_{iB}^* = x_{iB}^*(\mathscr{I}_{OB})$
- Price functions $p_A^* = p_A^*(\mathscr{I}_{OA}, \omega), \ p_B^* = p_B^*(\mathscr{I}_{OB}, \omega)$
- DM's investment strategies: $a_A^* = a_A^*(\mathscr{I}_{IA}), a_B^* = a_B^*(\mathscr{I}_{IB})$

Model: equilibrium definition

...such that the following conditions are satisfied:

- **1** The project $d \in \{A, B\}$ maximizes $E_{\hat{g}}[p_d] = \int_0^M p_d \hat{g}_{(0,M)}(\theta_d) d\theta_d$ given truncated distribution $\hat{g}_{(0,M)}(\theta_d)$ over (0,M) for sufficiently large M > 0
- ② Demands $x_{id}^*(\mathscr{I}_{Od})$ maximize $E[U_{id}|\mathscr{I}_{Od}]$ at t=3, where $\mathscr{I}_{OA}=\{s,p_A\}$ and $\mathscr{I}_{OB}=\{\theta_B,p_B\}$. Also, the price p_d clears the market, i.e. $\int_{i\in[0,1]}x_{id}^*(\mathscr{I}_{Od})\,di+\omega=0$;
- **3** At t = 2, the scale of operations a_d^* maximizes $E[\pi_d | \mathcal{I}_{Id}]$, where $\mathcal{I}_{IA} = \{\theta_A, p_A\}$ and $\mathcal{I}_{IB} = \{p_B\}$.

Model: equilibrium definition

As M is large, the expected price $E_{\hat{g}}[p_d]$ predominantly reflects those conditional on large project values θ_d . That is, $E_{\hat{g}}[p_d] \approx E[p_d|\theta_d]$ for large θ_d .

• The decision maker effectively restricts attention to these large values of θ_d when it comes to comparing the expected prices

Feedback effect without fat-tailedness?

Let's focus on project B where the feedback effect occurs. What if the per-unit asset payoff is the project value $\tilde{\theta}_B$ (rather than the firm's profit), and it is normally distributed?

$$\tilde{p}_B = \tilde{\theta}_B + \varphi \sigma_{\varepsilon}^2 \tilde{\omega}$$

- The existence and uniqueness of equilibrium
- ullet The price $ilde{
 ho}_B$ is equal to $ilde{ heta}_B$ on average
 - Why? (i) The asset supply is zero so that speculators buy or sell symmetrically; (ii) Speculators' trading aggressiveness is symmetric between when they buy and when they sell.
- Linearity of $E[\tilde{\theta}_B|\tilde{p}_B]$ in $\tilde{\theta}_B$ (provided that ω is normal as well)

Feedback effect without fat-tailedness?

Now, what if the per-unit asset payoff is the firm's profit $\pi_B = \tilde{a}_B \tilde{\theta}_B - \frac{1}{2} \tilde{a}_B^2$, maintaining $\tilde{\theta}_B$ being normal?

$$\tilde{p}_{B} = \underbrace{\tilde{a}_{B}\tilde{\theta}_{B} - \frac{1}{2}(\tilde{a}_{B})^{2}}_{E[\pi_{B}^{*}|\tilde{\theta}_{B},\tilde{p}_{B}]} + \underbrace{\varphi\sigma_{\varepsilon}^{2}(\tilde{a}_{B})^{2}\tilde{\omega}}_{\varphi\omega \text{Var}[\pi_{B}^{*}|\tilde{\theta}_{B},\tilde{p}_{B}]}, \text{ where } \tilde{a}_{B} = E[\tilde{\theta}_{B}|\tilde{p}_{B}]$$

- ullet As the operation scale increases, the noise term becomes larger in the price $ilde{
 ho}_B$ because speculators face larger risk
- The operation scale depends on the price via the DM's learning
- ullet This chain of influence undermines the linearity of $E[ilde{ heta}_B| ilde{p}_B]$
- ullet It is the case $\mathit{unless}\ ilde{ heta}_{B}$ follows a power distribution

In the case of project A, the decision maker optimally chooses $a_A^*(\mathscr{I}_{IA}) = \theta_A$ so that the firm's profit is given by

$$\pi_A^* = a_A^* (\mathscr{I}_{IA}) (\theta_A + \varepsilon_A) - \frac{(a_A^* (\mathscr{I}_{IA}))^2}{2} = \frac{\theta_A^2}{2} + \theta_A \varepsilon_A.$$

How about the financial market? Informed speculators make inference about the firm's profit π_A given their signal s.

The complication in the equilibrium price is due to the non-normal uncertainty given signal s. We have

$$\begin{split} \rho_A &= \frac{E[\theta_A^2|s]}{2} + \varphi \omega \sigma_{\varepsilon}^2 E[\theta_A^2|s] \\ &+ \left(\frac{1}{2} + \varphi \omega \sigma_{\varepsilon}^2\right) \frac{\sum_{k=1}^K \hat{\eta}_k(s) r_k \exp\left(\hat{\eta}_k(s) \left(\frac{\varphi}{2}\omega + \frac{\varphi^2}{2}\omega^2 \sigma_{\varepsilon}^2\right)\right)}{\sum_{k=1}^K r_k \exp\left(\hat{\eta}_k(s) \left(\frac{\varphi}{2}\omega + \frac{\varphi^2}{2}\omega^2 \sigma_{\varepsilon}^2\right)\right)}, \end{split}$$

where $\hat{\eta}_k(s)$ is the (perfectly) inferred realization of $\theta_A^2 - E[\theta_A^2|s]$ given the realization of s and η_k for $1 \le k \le K$.

- The firm's expected profit
- 2 Mispricing term from the residual uncertainty over π_A given θ_A
- 3 Mispricing term from the uncertainty over θ_A given s

Proposition 1. In the scenario where project A is chosen at t = 0, there is at least one equilibrium where the decision maker uses her own information about the project value θ_A at t = 2.

Corollary 1. In every equilibrium, the following equality holds:

$$\lim_{M\to\infty}\frac{E_{\hat{g}}\left[p_A^*-\pi_A^*\right]}{E_{\hat{g}}\left[\pi_A^*\right]}\to 0.$$

- ullet The corollary suggests that the firm is ex ante valued as π_A^*
- The price is "unbiased" due to two reasons again: (i) The asset supply is zero; (ii) Speculators' trading aggressiveness is symmetric between when they buy and when they sell.
- The latter holds only at the "tail" of θ_A , where their signal $s = \theta_A + \eta$ is precise about θ_A

In the case of project B, the DM decides the scale of operations based on p_B . With conjectured investment strategy $a_B^* = a_B^*(p_B)$, the firm's profit is given by

$$\pi_B^* = a_B^*(p_B)(\theta_B + \varepsilon_B) - \frac{1}{2}(a_B^*(p_B))^2,$$

which pins down the price p_B as follows:

$$p_{B} = \underbrace{a_{B}^{*}(p_{B})\theta_{B} - \frac{1}{2}(a_{B}^{*}(p_{B}))^{2}}_{E[\pi_{B}|\theta_{B},p_{B}]} + \underbrace{\varphi\sigma_{\varepsilon}^{2}(a_{B}^{*}(p_{B}))^{2}\omega}_{\varphi\omega Var[\pi_{B}|\theta_{B},p_{B}]}.$$

Conjecture

$$a_B^*(p_B) = \alpha(p_B) \cdot \hat{\theta}(p_B),$$

where $\hat{\theta}(p_B) := \frac{p_B + \frac{1}{2} \left(a_B^*(p_B)\right)^2}{a_B^*(p_B)}$ is a "normalized" signal from the price.

• Suppose $p_B = p_B^*(\theta_B, \omega)$ in equilibrium. Then the signal $\hat{\theta}(p_B^*(\theta_B, \omega))$ is equal to $\theta_B + \varphi \sigma_{\varepsilon}^2 a_B^*(p_B^*(\theta_B, \omega)) \omega$.

Given this conjecture, the optimal scale of operations $E[\theta_B|p_B]$ is

$$E[\theta_B|p_B] = \frac{\sum_{j=1}^J \theta_{Bj}(p_B) g\left(\theta_{Bj}(p_B)\right) q_j}{\sum_{j=1}^J g\left(\theta_{Bj}(p_B)\right) q_j},$$

where

$$\theta_{Bj}(p_B) = \hat{\theta}(p_B) (1 - \varphi \sigma_{\varepsilon}^2 \omega_j \alpha(p_B));$$

$$\hat{\theta}(p_B) = \sqrt{\frac{2p_B}{2\alpha(p_B) - (\alpha(p_B))^2}}.$$

Then match with the initial conjecture $a_B^*(p_B) = \alpha(p_B) \cdot \hat{\theta}(p_B)$ to determine $\alpha(p_B) \in (0,1)$ for each $p_B > 0$.

So, $\alpha(p_B) \in (0,1)$ is pinned down by

$$\alpha\left(p_{B}\right) = \frac{\sum_{j=1}^{J}\left(1-\varphi\sigma_{\varepsilon}^{2}\omega_{j}\alpha\left(p_{B}\right)\right)g\left(\hat{\theta}\left(p_{B}\right)\left(1-\varphi\sigma_{\varepsilon}^{2}\omega_{j}\alpha\left(p_{B}\right)\right)\right)q_{j}}{\sum_{j=1}^{J}g\left(\hat{\theta}\left(p_{B}\right)\left(1-\varphi\sigma_{\varepsilon}^{2}\omega_{j}\alpha\left(p_{B}\right)\right)\right)q_{j}}.$$

• For large θ_B , we can see $g\left(\hat{\theta}\left(p_B\right)\left(1-\varphi\sigma_{\varepsilon}^2\omega_j\alpha\left(p_B\right)\right)\right) \approx \hat{\theta}\left(p_B\right)^{-\lambda}\left(1-\varphi\sigma_{\varepsilon}^2\omega_j\alpha\left(p_B\right)\right)^{-\lambda}$ so that $\hat{\theta}\left(p_B\right)^{-\lambda}$ can be taken off. As a result, $\alpha\left(p_B\right)$ is invariant to the realized price p_B .

Proposition 2. In the scenario where project B is chosen at t=0, if $\varphi \sigma_{\varepsilon}^2 \omega_j \in \left(-\frac{2}{\lambda-1},1\right)$ for every $j \in \{1,\cdots,J\}$, then there is at least one equilibrium where the decision maker learns about the project value θ_B from the price at t=2.

Proposition 2 [ctd.] Conditional on large project value θ_B , the decision maker's investment strategy a_B^* and the equilibrium price p_B^* are given by

$$a_B^*(p_B) = \sqrt{rac{2\overline{lpha}p_B}{2-\overline{lpha}}} \text{ and } p_B^*(heta_B,\omega) = \left(\overline{lpha} - rac{1}{2}\overline{lpha}^2
ight) \left(rac{ heta_B}{1 - \phi\sigma_{\mathcal{E}}^2\overline{lpha}\omega}
ight)^2,$$

where $\overline{\alpha} \in (0,1)$ is constant. In this limit,

$$a_B^*\left(p_B^*\left(heta_B,\omega
ight)
ight)=rac{\overline{lpha} heta_B}{1-arphi\sigma_{arepsilon}^2\overline{lpha}\omega}.$$

The existence of (feedback-effect) equilibrium is guaranteed when $\varphi \sigma_{\varepsilon}^2 \omega_j \in \left(-\frac{2}{\lambda-1},1\right)$ for every $j \in \{1,\cdots,J\}$

- This condition seems natural: feedback-effect equilibrium is more likely with smaller noise
- Whether ω is small or large, there is a trivial equilibrium without feedback effect (i.e., $a_B^* = 0$ and $p_B^* = 0$)

The information in the price is $\hat{\theta}(p_B) = \frac{p_B + \frac{1}{2}(a_B^*(p_B))^2}{a_B^*(p_B)}$

- As a signal about θ_B , it is equivalent to $\theta_B + \varphi \sigma_{\varepsilon}^2 a_B^*(p_B) \omega$, which is asymmetric across the price. That is, it is noisier with higher prices.
- Higher prices lead to higher operation scales, which result in higher uncertainty facing informed speculators. As a result, they are less aggressive, making these prices noisier.

Corollary 2. In the scenario where project B is chosen at t = 0, the following inequality holds:

$$\lim_{M\to\infty}\frac{E_{\hat{g}}\left[p_B^*-\pi_B^*\right]}{E_{\hat{g}}\left[\pi_A^*\right]}=2\varphi\sigma_{\varepsilon}^2\overline{\alpha}^2\sum_{j=1}^J\frac{q_j\omega_j}{\left(1-\varphi\sigma_{\varepsilon}^2\overline{\alpha}\omega_j\right)^2}>0.$$

Why $E_{\hat{g}}[p_B^*] > E_{\hat{g}}[\pi_B^*]$? Recall that

$$p_{B} = \underbrace{a_{B}^{*}(p_{B})\theta_{B} - \frac{1}{2}(a_{B}^{*}(p_{B}))^{2}}_{E[\pi_{B}|\theta_{B},p_{B}]} + \underbrace{\varphi\sigma_{\varepsilon}^{2}(a_{B}^{*}(p_{B}))^{2}\omega}_{\varphi\omega Var[\pi_{B}|\theta_{B},p_{B}]}.$$

- As $\omega = 0$, the price is identical to $E[\pi_B^* | \theta_B, p_B]$.
- ullet As ω is random, the price goes up on average.
 - As $\omega > 0$, the price goes up. Informed speculators trade against it, but they trade less as they expect $a_B \uparrow$, which means more risk. Thus, larger impact of $\omega \uparrow$ on the price.
 - As $\omega < 0$, the opposite holds, driving smaller impact of $\omega \downarrow$ on the price.

The corollary shows that the (positive) misvaluation via noise trade is non-negligible, in contrast to that via signal errors under project A. Indeed, it becomes proportionally large as θ_B is large.

- Compared with project-A scenario, what is broken is the (second) point that speculators' trading aggressiveness is symmetric between when they buy and when they sell
- Why? they face more (less) risk when they observe a higher (lower) price so that they want to sell (buy) the asset

Now we turn to the determination of projects by the DM

- The DM cares about the price at the subsequent period
- He chooses a project if the project is superior than the other for large project values

The (short-term-oriented) DM follows the criterion by Definition 1, which corresponds to maximization of the expected price (i.e., $E_{\hat{E}}[p_d^*]$)

- Project A always yields a higher expected profit
- But the decision maker may get a higher expected price at the subsequent period by choosing project B (i.e., $E_{\hat{g}}[p_B^*] > E_{\hat{g}}[p_A^*]$)
- This occurs when project *B* leads to price inflation of shares even larger than the loss of profit

Proposition 3. In equilibrium, the decision maker chooses project B at t = 0 when λ is sufficiently close to 2.

The DM's short-term incentive distorts his ex ante project choice toward a project whose information is superior in the financial market

- The prevalence of superior information in fianancial markets
- The feedback effect can cause an inefficiency in the real sector (via price inflation of equity)

Project A would be chosen in the natural "benchmark"

 E.g., long-term-oriented DM or his commitment against learning from the price

The efficiency loss of project B is given by

$$E[\pi_A^*|\theta_A = \theta] - E[\pi_B^*|\theta_B = \theta] = \frac{\theta^2}{2} \sum_{j=1}^J q_j \left(1 - \frac{\overline{\alpha}}{1 - \varphi \sigma_{\varepsilon}^2 \overline{\alpha} \omega_j} \right)^2$$

Example. We can find a simple example where the DM chooses project B even with $\lambda = 3$.

- J=2, $\pmb{\omega}_1=-\pmb{\omega}_2=\left(\pmb{\varphi} \pmb{\sigma}_{\mathcal{E}}^2 \right)^{-1} \pmb{\delta}$ for $\pmb{\delta} \in (0,1)$, and $q_1=q_2=rac{1}{2}$
- The DM chooses project B if and only if

$$\left(1 - \frac{\overline{\alpha}}{2}\right) \frac{\left\{\sum_{j=1}^{J} q_{j} \left(1 - \varphi \sigma_{\varepsilon}^{2} \overline{\alpha} \omega_{j}\right)^{-2}\right\}^{2}}{\sum_{j=1}^{J} q_{j} \left(1 - \varphi \sigma_{\varepsilon}^{2} \overline{\alpha} \omega_{j}\right)^{-3}} > \frac{1}{2}.$$

Here, we can show that the above fraction term is always larger than 1 for $\delta \in (0,1)$. This implies that the above inequality holds.

Scale of operations

Proposition 4. Conditional on large project values θ_A and θ_B , project B tends to have a smaller scale of operations than project A (i.e., $a_A^* = \theta_A$ and $E[a_B^*|\theta_B] < \theta_B$). Further, the firm tends to spend less on its operations under project B compared with project A. In particular, we have

$$\frac{E_{\hat{\mathcal{B}}}\left[\frac{1}{2}\left(a_B^*\left(\mathscr{I}_{\mathit{IB}}\right)\right)^2\right]}{E_{\hat{\mathcal{B}}}\left[\frac{1}{2}\left(a_A^*\left(\mathscr{I}_{\mathit{IA}}\right)\right)^2\right]} \to \sum_{j=1}^J \left(\frac{\overline{\alpha}}{1-\varphi\sigma_{\varepsilon}^2\overline{\alpha}\omega_j}\right)^2 q_j < 1 \text{ as } M \to \infty.$$

Scale of operations

The "biased" operation scale under project *B* is generally due to the absence of finite expectation under fat-tail distribution

• Otherwise: $E[a_B^*] = E[E[\theta_B|p_B]] = E[\theta_B]$

The sign of the bias is consistently negative under Pareto distribution

- Positive (negative) noise leads to higher (smaller) operation scale
- Such effect is weakened (reinforced) by the strong prior of fat-tail distribution concentrated on small project values.

Numerical results

Figure: Numerical results on the effects of project value θ_B on the price p_B and the operation scale a_B^*

Examples of inefficiency

Innovation strategy: exploitation vs. exploration

- Exploitation tends to meet the needs of existing customers
 - E.g. hand-wound watches to automatic ones
- Exploration examines new markets
 - E.g. battery-powered watches
- The demand-related information tends to be more useful for the former, whereas the quality-related information is more important for the latter
 - The financial market is more informative about the demand-related information

Examples of inefficiency

- The model suggests that a firm's short-term-oriented DM may choose exploitative innovation to boost the stock price through its reliance on the demand-related information
- Empirical evidence on the association between short-term incentives and exploitation (e.g., Flammer and Bansal, 2017)
 - It is not straightforward with a financial market with informed speculation, which may value long-term cash flows
 - Also, such innovation strategy may not be a "hidden" action in contrast to previous theories on short-termism (e.g., Stein, 1989; Bolton, Scheinkman and Xiong, 2006)
 - Our main results also predict price inflation with exploitative innovation strategy

Learning from stock prices

Empirical evidence

- Firms behave as if they recognize the informativeness of stock price (e.g., Luo, 2005; Dessaint et al., 2019)
- Mixed findings on the contribution of learning from stock price to the real productivity (e.g., David, Hopenhyn & Venkateswaran, 2016)

Implications of the main results

- Even if firms recognize the informativeness of stock price, they
 might not benefit from learning from stock price when their
 real decisions feature long-term commitments.
- Another related possibility is committing against learning from stock price (e.g., remaining private).

Comparison with other trading environments

"Uninformed" speculation in the financial market

- They would behave like market-makers
- In the limit, the price is unbiased in both scenarios A and B, shutting down our inefficiency result

Non-competitive financial market (together with the uninformed market maker)

- It results in a price-manipulating behavior of large informed speculator (e.g., Boleslavsky et al, 2017; Edmans et al, 2015)
- Price inflation occurs, but the mechanism is rather different

Concluding remarks

- This paper offers a framework to analyze the interaction between real and financial sectors via information and risk channels
- The feedback effect and the resulting risk-driven asymmetry in trades cause a price inflation of equity, leading to an inefficiency in project choice
- This explains the prevalence of the feedback effect and its small contribution to firm productivity
- Possibility of policy implications?

