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Abstract

Should we intentionally expose certain areas to higher risks to protect broader re-
gions from disasters? Policymakers often face a winner-loser dilemma when making
such decisions. In 2000, the Chinese government officially implemented the Flood De-
tention Basin (FDB) policy, where FDB counties are more frequently inundated to
absorb excess floodwater, thereby protecting larger regions, particularly urban cities.
Our analysis reveals that the flood inundation area in FDB counties tends to be about
50% higher than in comparable non-FDB counties. We then evaluate the benefits and
costs of this flood risk redistribution policy. Event-study analysis indicates that FDB
counties suffer an annual real GDP loss of approximately $10 billion. Firms’ reluc-
tance to enter and invest in FDB counties explains this economic underdevelopment.
Selection into the FDB list leads to an average of 15.9% decrease in firm entry into
FDB counties. Spatial regression discontinuity analysis also shows a 19.7% reduction
in firm-level fixed asset investments in FDB counties. Using a spatial general equilib-
rium framework, we construct a counterfactual scenario where FDB counties absorb
less floodwater. Integrating a hydrodynamic engineering model, we find the actual
benefit-to-cost ratio in total output to be around 3.5. Another counterfactual analy-
sis suggests that urban cities may be overprotected, as similar output gains could be
achieved by removing higher productivity counties from the FDB list.
JEL classification: Q54, Q56, R58, R13
Keywords: Natural Disasters, Environment and Development, Regional Development
Policy, General Equilibrium and Welfare Analysis
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1 Introduction

What is it which prompts the generous to sacrifice their own interests to the greater

interests of others? ... It is the love of the grandeur who shows us the propriety of

resigning the greatest interests of our own, for the yet greater interests of others; and

the deformity of doing the smallest injury to another, in order to obtain the greatest

benefit to ourselves.

— The Theory of Moral Sentiments, Adam Smith

The long-term global climate change has increased flood risks. According to the EM-DAT

International Disaster Database, floods have caused over $550 billion in damages since 2000.

The population in flood-prone areas has also risen substantially by 34.1% from 2000 to 2018,

markedly higher than the global population growth of 18.6% over the same period (Tellman

et al. 2021). For centuries, we have taken precautionary actions, such as constructing levees

and dams (Duflo and Pande 2007) and protecting wetlands (Taylor and Druckenmiller 2022),

to manage floods. However, as the threat of extreme floods intensifies, policymakers may also

face extreme decisions. A crucial question in flood management is whether to deliberately

expose certain areas to higher risks, such as through flood water diversion, to protect broader

regions from severe flood damage. These decisions are difficult, as environmental policies

often result in uneven impacts (e.g., He et al. 2020), creating potential winners and losers,

necessitating policymakers to carefully consider the trade-offs between equity and efficiency.

This study focuses on the Flood Detention Basin (FDB) policy in China, a country

with the most severe river flood risk in the world.1 In 2000, the Chinese government of-

ficially implemented the FDB policy, which clearly designated areas to bear higher flood

risks. According to the Ministry of Water Resources in China, “residents in FDB counties

make significant sacrifices to protect the collective social welfare and enhance overall eco-

nomic resilience against floods.” Under this policy, some pre-designated rural counties will

be intentionally flooded in severe flood events to protect broader areas, particularly major

cities, from inundation. In 2000, the government designated 98 low-lying wetlands as flood

1According to the EM-DAT International Disaster Database, China ranks first in the number of total river
flood events from 2000 to 2017. The EM-DAT International Disaster Database also records 4,066 disaster
events that occurred between 2000 and 2024, with damage data available for 1,155 of these events. The
total recorded damage amounts to US$736 billion, of which US$555 billion pertains to developing countries.
Specifically, China accounts for US$211 billion, and India for US$77 billion.
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detention basins, covering over 30,000 km2 and directly affecting more than 15 million resi-

dents across 96 FDB counties. Since its implementation, floodwaters have been diverted to

FDB counties more than 100 times to manage excess water. Using a flood proxy constructed

from the Global Flood Database (Tellman et al. 2021), we find that flood inundation areas in

FDB counties are over 50% larger than in other counties, holding key geographical attributes

constant.

To the best of our knowledge, this study is the first to examine the impact of a risk-

redistribution disaster management policy that deliberately expose certain regions to higher

risks to protect others. Given the deliberate design of risk redistribution and explicit desig-

nation of winners and losers in this policy, we believe the benefit and cost analysis of FDB

policy would offer reference for managing floods globally. Our research also contributes to

the early body of work on flooding in China.

In this research, our first goal is to quantify the cost of the policy on FDB counties so

that we can understand the extent to which those counties have sacrificed for the greater

good. Our second goal is to evaluate whether the policy has resulted in a net gain in total

output by extending our investigation to a general equilibrium context.

There are three primary findings. First, being selected into the FDB list has caused

persistent negative impacts on the economic development of FDB counties. Based on the

difference-in-differences approach, we find that the nighttime light intensity in counties in-

cluded in the 2000 FDB list has decreased by approximately 10% over a decade. Drawing

on the work of Henderson et al. (2012) and Martinez (2022), which estimate the elasticity of

GDP to nighttime light at approximately 0.3, we translate the reduction in light intensity

to an annual GDP loss of around US$10 billion in FDB counties. This cost estimation also

aligns with that by hydrologists (Wang et al. 2021).

Second, in studying the mechanism, we find that the ‘firm response effect’ is the major

reason causing economic underdevelopment in FDB counties.2 To be more specific, firms

have less incentives to enter and invest in FDB counties due to their increased flood risks.

By identifying the causal impact of the 2010 policy change, where the Chinese government

2In Section 6, we also study three other mechanisms: the migration channel, the direct flood inundation
channel, and the agricultural channel. We then provide empirical evidence to rule out those channels.
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added 20 counties to the FDB list and removed 10, we provide empirical evidence supporting

this mechanism:

(i) The difference-in-differences analysis using synthetic weights (Arkhangelsky et al. 2021)

shows that, on average, the number of new firm entries declines by 15.9% in the newly

selected FDB counties following the 2010 policy change;

(ii) Spatial regression discontinuity (Imbens and Wager 2019) analysis indicates a 19.7%

gap in fixed asset investment between FDB counties and their neighboring counties,

and this gap only emerged after the 2010 policy change;

(iii) The hesitance of firms to enter and invest in FDB counties leads to a lag in manu-

facturing. Annual manufacturing output, on average, has reduced by 18.2% in newly

listed FDB counties;

(iv) In contrast, counties that were removed from the 2010 FDB list experience a significant

has increased in the number of new firm entry and investment in fixed assets. We

view this balanced and symmetrical result as compelling evidence that highlights the

important influence of the FDB policy on firm decision-making.

Third, based on a spatial general equilibrium model, we conduct two counterfactual

practices to (i) assess whether the FDB policy has yielded an overall increase in total output;

(ii) and assess whether the policy is optimally designed in terms of the number of FDB

counties. Inspired by the research of Desmet and Rossi-Hansberg (2014), Balboni (2019),

and Jia et al. (2022), our model allows the flow of tradable manufacturing goods between FDB

counties and other counties. The key parameter for our counterfactual practice is the flood

exposure redistribution rate between FDB counties and non-FDB counties. In the absence

of FDB counties absorbing excessive water, flood exposure in FDB counties would decrease,

while exposure in protected areas would increase. We then use hydro-dynamic engineering

model to determine the actual exposure distribution rate to be 45%. Based on that, we find

the benefit to cost ratio in output is 3.5, and the net output gain is $3.03 billion. In our

second counterfactual practice, we successively remove FDB counties of higher productivity

from the FDB list. Results indicate that counties of higher productivity do not contribute
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much to the output gain, which implies that the Chinese government may overprotect urban

cities from floods as similar output gains can be gained from removing FDB counties of

higher productivity from the FDB list.

Our research resonates with existing research on floods (e.g., Kocornik-Mina et al. 2020,

Rentschler et al. 2022, and Patel 2023) and are important for three reasons. First, we

introduce another dimension to the discussion of costs of disasters by showing that policies

designed to manage disasters can also generate costs. Previous literature (e.g., Kahn 2005,

Weitzman 2009, Strobl 2011, Hsiang and Jina 2014, Felbermayr and Gröschl 2014, Elliott

et al. 2015, Shah and Steinberg 2017, and Desmet et al. 2018) mainly focuses on the short-

term or long-term costs of disasters. Our research indicates that policies aiming to enhance

economic resilience against natural disasters could also lead to long-term expenses due to

the redistribution of risk. This aspect has received less attention in the existing literature.

Second, our study contributes to the strand of literature examining the adaptation of

individuals and firms to natural disasters (e.g., Boustan et al. 2012, Barone and Mocetti

2014, Gibson and Mullins 2020, Bakkensen and Ma 2020, Gandhi et al. 2022, Balboni et al.

2023). Barone and Mocetti (2014) documents the long-term market distortions induced by

earthquakes. Balboni et al. (2023) reveals a tendency among firms to relocate from flood-

affected zones to less flood-prone areas. Jia et al. (2022) investigates how flood risk influence

firm location decisions within the United States and its impact on long run economic cost.

Our work is consistent with the previous research in finding the reluctance of firms to invest

in areas of higher natural disaster risks. Moreover, we use this mechanism as a foundation

to investigate the general welfare implication of a natural disaster management policy. Also,

we help to explain why urban cities in China recover quickly from floods, as suggested by

Kocornik-Mina et al. 2020.

Third, our research contributes to the discussion on the impact of environmental poli-

cies, highlighting the distributional impacts and welfare gain caused by such policies. Duflo

and Pande (2007) reveals that residents situated upstream of dams in India face significant

limitations in economic mobility relative to those living downstream. Similarly, He et al.

(2020) documents that upstream polluting firms near monitoring stations in China undergo

greater reductions in TFP compared to their downstream counterparts. Taylor and Druck-
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enmiller (2022) finds spatial heterogeneity in benefiting from the Clean Water Act in the

United States. Consistent with their work, we also find that environmental policy would

cause unequal outcomes to different groups of people. In terms of flood management policy,

existing literature mainly focuses on the flood insurance programs in the United State (e.g.,

Gallagher 2014, Mulder 2021, Georgic and Klaiber 2022) or approaches to mitigate coastal

flood risks in developing countries (e.g., Balboni 2019 and Hsiao 2023). Our study extends

the discussion to examine the impacts of a unique flood risk management strategy, the FDB

policy, that involves clear design of flood risk redistribution.

Section 2 provides an overview of the institutional background. Section 3 introduces

the data used in the study and presents descriptive statistics. Section 4 introduces the

identification methods employed to determine the economic costs incurred by FDB policy. In

Section 6, we discuss the mechanisms driving these costs. Subsequently, Section 7 estimates

the net output gain using a spatial general equilibrium and hydro-dynamic model so that

we can estimate the benefit to cost ratio of the FDB policy. Section 8 concludes.

2 Research Background

2.1 Substantial Flood Damage in China

Based on the estimation of the EM-DAT database, from 2000 to 2017, China suffered

from 135 river floods, causing a damage of 150 billions USD and affecting 74 million people.

According to the EM-DAT International Disaster Database, China ranks No.1 in terms of

total river flood events, total river flood damages, and total affected populations from 2000-

2017. China’s susceptibility to flood risks arises from a combination of several factors: its

large land area, intricate topographical variances, substantial population density, and rapid

urban development. An important feature of China floods is that floods disproportionately

affect the country’s economically important regions as indicated in Figure 1, leading to

substantial threats to the economy. For example, Huai River basin is identified as a high-risk

flood zone, according to hydrological studies (e.g., Zhang and Song (2014)). However, some

of China’s economically important provinces, including Jiangsu Province, are also located in
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this river basin. Flooding those richer regions could hinder overall economic growth. And

that is the reason why addressing floods is a critical concern for the Chinese government.

2.2 Flood Detention Basin Policy

The Flood Control Law of the People’s Republic of China, implemented in 2000, stands

as China’s first legislation governing flood management. It is also the first law that officially

designates Flood Detention Basins (FDBs). According to the law, FDBs refer to the flood

storage and detention basins that are low-lying lands and lakes used for temporary storage

of floods. Chinese government then builds dams and dikes in those Flood Detention Basin

(FDB) counties so that the government can successfully divert flood water to FDBs during

floods. According to this plan, the goal of establishing flood detention basins is to “safeguard

the interests of pivotal regions and the whole watershed”. The government also claims

that residents within these basins make substantial sacrifices to protect the collective social

welfare. As shown in Figure 2, FDB counties in Huai River Basin are protecting downstream

urban districts from severe flood damages.

As highlighted in Table 1, the FDB policy directly affects about 1.1% of China’s total

population. The aggregate area of FDBs is 30,443 km2 (0.3% of China’s total land), which is

comparable to the territories of Switzerland. To illustrate how FDB is used to store excessive

flood water, we provide an example of Mengwa Flood Detention Basin, the most frequent

used FDB in China, in Appendix A.1.

2.3 2000 and 2010 Policy Change

According to the 2000 Flood Control Law, 96 counties were designated as Flood Detention

Basin (FDB) counties, marking the first time in the history of the People’s Republic of China

that the locations of flood detention basins were officially confirmed. In 2010, Ministry of

Water Resources revised the previous regulation in the National Flood Detention Basin

Construction and Management Plan. As indicated in Table 2, under this new plan, 13 FDBs

were added and 12 were removed. Consequently, the number of counties classified as FDB

counties changed. 20 counties were newly selected into the FDB list, while 10 were removed
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from this list. Table 1 and Table 2 offer an overview of the Flood Detention Basins (FDB)

in China’s major river basins in 2000 and 2010.

3 Data and Descriptive Results

3.1 Data

FDB List - The Ministry of Water Resources officially announced the list of Flood

Detention Basins (FDB) in 2000 and 2010. We then define counties that hold flood detention

basins as FDB counties.

Data on Floods - We gathered data on each flood event from the Global Flood Database

(GFD), which provides comprehensive tracking of floods in China from 2000 to 2018. This

database documents a total of 189 flood events within China. Using GFD, we are able to

construct proxies of flood exposures. Given GFD offers satellite maps that record flood

events for every county (see (Figure A3), we are able to collect data regarding the length of

flooding experienced by each pixel (30m × 30m). Additionally, the database allows us to

identify whether a pixel includes permanent water bodies, which “are consistently identified

with the presence of surface water for the majority of observations in two time periods (1984-

1999 and 200-2018) at 30m resolution which was resampled to 250m resolution in Google

Earth Engine using nearest neighbor resampling.”, according to GFD. We then proxy flood

exposure using pixel-adjusted flood duration, which is calculated following three steps for

each county.

First, we identify all the pixels within a county that are not occupied by permanent

water bodies. Next, we look at every flood event individually, adding together the duration

of flooding for each non-permanent water pixel to get the county’s total flood duration for

each flood event. Finally, to proxy flood risk of each county, we divide the county’s flood

duration by the count of non-permanent water pixels. We believe that this index provides a

nuanced quantification of flood risk, adjusted for the spatial extent of the county’s land area

susceptible to flooding.
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Following this thought, we define the size-adjusted flood duration as

AdjustedF loodExposureift =

∑
j∈Ai

FloodDurationfjt

|Ai|

where AdjustedF loodExposureift indicates the size-adjusted flood exposure at flood

event f that happened at time t. Ai represents pixels that have not contained perma-

nent water in county i. FloodDurationfjt is the number of flooded days experienced by

non-permanent water pixel j at the flood event f of time t. It will be 0 if the non-permanent

water pixel has not been flooded at the flood event. And it will take a positive value if that

non-permanent water pixel has been flooded at the flood event. Here, we define a pixel as a

flood-pixel at a flood event f if that pixel: (i) has not contained permanent water previously,

which means j ∈ Ai; (ii) but has been marked as flooded by Global Flood Database in the

flood event f of time t. Hence,
∑

j∈Ai
FloodDurationfjt measures the total sum of flood

duration experienced by non-permanent water pixels in county i at flood event f of time

t. By dividing this sum by total number of non-permanent water pixels |Ai|, we adjust the

total sum of flood duration by the size of non-permanent water in county i.

Data on Light - Given possible threats to GDP estimation in datasets provided by

the National Bureau of Statistics (NBS), as suggested by Martinez (2022), we use nighttime

light data as a proxy of economic activity. Specifically, we use the 1984-2020 ‘Prolonged

Artificial Nighttime-light Dataset of China’ data by Zhang et al. (2024).

Data on Firm-level Outcomes - Firm-level data is collected from National Enter-

prise Credit Information Publicity System (NECIPS) and Annual Survey of Industrial Enter-

prises (ASIE). NECIPS, administered by China’s State Administration for Market Regula-

tion (SAMR), provides annual registration records for all Chinese enterprises spanning from

1960 to 2023. This dataset is rich in detail, encompassing key information such as the date of

establishment, ownership type, and geographical location of each firm. Using the geo-located

data within this resource, we are able to accurately track the entry of firms in counties and

towns designated as Flood Detention Basins (FDB). The firm-level data derived from ASIE

spans from 1998 to 2014. ASIE encompasses private industrial enterprises with annual sales

exceeding 5 million RMB (approximately 0.7 million USD) and all state-owned industrial
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enterprises (SOEs). Compiled and maintained by the National Bureau of Statistics (NBS),

this dataset offers an extensive array of information sourced from the accounting records

of these firms. It includes data on inputs, outputs, sales, taxes, and profits. This dataset

contrasts with the National Enterprise Credit Information Publicity System (NECIPS) in

two key aspects. Firstly, ASIE’s temporal scope is confined to the period between 1998 and

2014, whereas NECIPS provides a wider temporal range for analysis (1960 to 2023). Sec-

ondly, ASIE primarily concentrates on collecting comprehensive details about firm activities,

whereas NECIPS is oriented towards the registration of new firms.

Data on Other Socio-economic Outcomes - Other county level data is collected

from the County-level Statistical Annual Yearbooks from 1999 to 2022. The National Bu-

reau of Statistics (NBS) conducts county-level survey each year. It is a longitudinal survey

that collects county-level socio-economic data for all counties in China. County-level vari-

ables include local output (disaggregated by sector), number of firms, fiscal income, fiscal

expenditure, savings and etc.

Geographical Data - Elevation and gradient information is obtained from the NASA

ASTER Global Digital Elevation Model (GDEM). The GDEM, with its extensive coverage

from 83 degrees north to 83 degrees south latitude, encompasses 99 percent of the Earth’s

landmass. This comprehensive database enabled us to gather detailed elevation and gradient

data for all counties and towns across China. For precipitation data, we turned to the Global

Surface Summary of the Day (GSOD), sourced from the Integrated Surface Hourly (ISH)

dataset. GSOD provides daily summaries typically within 1-2 days of the observation date.

It encompasses data from over 9,000 stations worldwide, offering historical records from 1929

onwards, with the period from 1973 to the present being the most complete. Utilizing this

resource, we calculated the mean monthly precipitation for each village and town in China.

3.2 Descriptive Statistics

In Table 3, we compare several descriptive statistics of FDB counties and non-FDB coun-

ties. FDB counties, compared to non-FDB counties, exhibit differences in geographical, flood,

and socio-economic characteristics. Geographically, FDB counties have lower elevations and

slopes but more permanent water pixels. This is consistent with the government claim that
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flood detention basins are typically low-lying lands and lakes used for temporary storage

of floods. In descriptive results, we find that FDB counties experience higher flood expo-

sure and larger areas of flood inundation. Contrary to the claim that FDB counties should

hold less population and be poorer, the data demonstrates that FDB counties actually have

larger populations and higher nighttime light intensity, which is often an indicator of greater

economic activity. Additionally, FDB counties have a slightly greater number of firms com-

pared to non-FDB counties. These socio-economic indicators suggest that FDB counties are

not poorer; rather, they have significant economic activities. This evidence contradicts the

assumption that FDB counties are less populated and economically disadvantaged.

Figure 3 demonstrates that size-adjusted flood exposure is higher in FDB counties com-

pared to non-FDB counties. From 2000 to 2018, FDB counties consistently experience higher

levels of flood exposure. Notably, the peaks in the graph around 2003, 2006, 2010, and 2014

highlight periods where FDB counties face substantially increased flood risks, possibly due

to flood water detention. This elevated flood exposure in FDB counties imply the policy’s

deliberate design to absorb excess floodwater in designated areas. We quantify the impact

of FDB policy on flood exposure in Section 5.1.

4 Empirical Strategies

4.1 Identification Challenge: FDB Location Choice

From a geographical perspective, detention basins are typically placed in topographically

low areas conducive to floodwater containment. The field of hydrology has provided a wealth

of research on optimizing the selection of flood detention basins. Mays and Bedient (1982)

developed an optimal model based on dynamic programming, aiming to determine the ideal

size and location of detention basins, with the goal of minimizing system construction expen-

ditures. This model was further refined by Bennett and Mays (1985) by incorporating the

cost implications of detention basin structures and downstream channel designs. Utilizing

this evolved model, Taur et al. (1987) optimized the detention basin system in Austin, Texas.

Travis and Mays and Bedient (1982) advanced this line of research by optimizing the place-
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ment and sizing of retention basins in a watershed, targeting the reduction of aggregated

costs encompassing construction, maintenance, and sediment removal. Subsequent studies

have integrated various optimization techniques, such as genetic algorithms and simulated

annealing, and incorporated detailed engineering cost assessments into the design frame-

works for detention basin-river-protected region systems (e.g., Perez-Pedini et al. 2005; Park

et al. 2014).

However, potentially non-random FDB location choice remains the major challenge in

identifying the effects of the Flood Detention Basin (FDB) policy. The selection or removal

of counties from the FDB list is likely influenced by factors other than geographical factors.

For instance, the government may designate less economically developed counties to host

those basins, or conversely, remove a county from the FDB list due to its better economic

performance.

In Table 4, we apply a logit regression model to identify the determinants influencing the

selection of Flood Detention Basins (FDB) locations. Our findings suggest that the choice of

FDB sites is predominantly influenced by geographical characteristics. This aligns with the

official stance of the Chinese government, which defines FDBs as ‘low-lying lands and lakes

situated beyond the back scarps of dikes, inclusive of flood diversion outfalls, utilized for

the temporary storage of floodwaters.’ Our analysis corroborates this definition, revealing

a significant tendency for counties with lower elevation levels to be selected as FDBs. We

do not find empirical evidence to claim that the Chinese government intentionally selected

relatively poorer counties as FDBs.

4.2 Identification Strategy

Our analysis, employing logit regression as shown in Table 4, reveals no significant cor-

relation between a county’s FDB status and its GDP, which suggests that FDB policy im-

plementation may not directly hinge on economic output. However, this does not entirely

rule out the possibility that socioeconomic factors influence FDB selection decisions.To ad-

dress the endogeneity concern, we use three identification strategies: traditional TWFE

Difference-in-Differences, the Synthetic Difference-In-Differences (SDID) and spatial regres-

sion discontinuity (SRD).
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Two-Way-Fixed-Effects (TWFE) Difference-In-Differences

We first use the most traditional Two-Way-Fixed-Effects (TWFE) Difference-In-Differences

approach to investigate the imapct of FDB policy. The regression specification takes the form

of:

ln(Y )it = α + β1FDBit + γi + λt + ϵi

where Yit measures the outcome of interest of county i in year t, FDBit is a dummy variable

that equals 1 if the county i is an FDB county in year t, and 0 if not. γi, and λt indicate

county and year fixed effects, respectively. Standard errors are clustered at the county level.

In this regression specification, β1 is the difference-in-difference estimate that measures the

impact of FDB policy on outcomes of interests.

Synthetic Difference-In-Differences (SDID)

Considering recent discussions on the properties of the staggered Difference-in-Differences

(DID) approach, particularly regarding potential biases stemming from the weighting prob-

lem as highlighted by Borusyak et al. (2024), we argue that the Synthetic Difference-in-

Differences (SDID) method, proposed by Arkhangelsky et al. (2021). Central to the SDID

framework is its ability to derive a counterfactual for each treated entity by computing a

weighted average from a comprehensive set of potential controls. We argue that SDID is

well-suited for our empirical setting for several reasons.

First, constructing a counterfactual group using synthetic weights, as proposed by Abadie

et al. (2010), effectively addresses concerns about the weighting problem inherent in tra-

ditional TWFE DID. SDID ensures that the synthetic control group closely mirrors the

treatment group’s pre-treatment characteristics, thereby enhancing the validity of causal

inferences.

Second, Roth et al. (2023) suggest that clustering at the unit level is inappropriate when

the number of treated groups is small. In our context, the 2010 policy change by the Chinese

government, which added 20 new counties to the list and removed 10, involves a limited

number of treated clusters. Given this small sample size, employing bootstrap standard

errors, as facilitated by the SDID approach, provides a more reliable measure.
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Third, the construction of synthetic weights mitigates potential threats to exogeneity by

ensuring that the counterfactual group exhibits pre-treatment outcomes that are parallel to

those of the treatment group. This parallel trend assumption is crucial for the validity of

DID estimates, and the SDID method’s ability to create a closely matched synthetic control

group strengthens this assumption.

In summary, the SDID approach offers a robust solution to the potential biases associated

with traditional DID methods, particularly in settings with small numbers of treated units

and concerns about weighting and exogeneity. This makes it a particularly suitable choice

for our analysis of the economic impacts of the 2010 policy change in China. Following

Arkhangelsky et al. (2021), the average treatment effect on the treated, or ATT, is denoted

as τ . Estimation of the ATT proceeds as follows:

(
τ̂ sdid, µ̂, α̂, β̂

)
= argmin

τ,µ,α,β

{
N∑
i=1

T∑
t=1

(Yit − µ− αi − βt −Witτ)
2 ω̂sdid

i λ̂sdid
t

}

weights ω̂sdid
i and λ̂sdid

t are optimally chosen given the design by Arkhangelsky et al.

(2021). Time fixed effects are denoted by βt and unit fixed effects are denoted by αi. Yit is

the outcome of a county i at year t. Wit is the treatment dummy that equals 1 if county i

is treated in year t, and 0 if not. µ is the constant term.

Spatial Regression Discontinuity (SRD)

We also employ a spatial regression discontinuity design based on a firm-level dataset,

the Annual Survey of Industrial Enterprises (ASIE). Both parametric and nonparametric

methods can estimate the discontinuity. Imbens and Wager (2019) demonstrated that the

parametric RD method, employing a polynomial function of the running variable as a regres-

sion control, often produces RD estimates sensitive to the polynomial’s degree and exhibits

several other unfavorable statistical characteristics. Consequently, we adopt the advised

local linear method and proceed to estimate the equation below.:

Yij = α1 FDB ij + α2 Dist ij + α3 FDB ij · Dist ij

+εij s.t. − h ⩽ Dist ij ⩽ h,
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where Yij is the assets per worker of firm i in county j. FDB ij is an indicator variable

that equals 1 if firm i is treated by policy shock (in the new FDB region or in the newly

abolished FDB region), and 0 otherwise. Dist ij measures the distance between firm i and

new FDB county border (or abolished FDB county border) j (negative if outside the county

and positive within the county), and h is the estimated MSE-optimal bandwidth following

Calonico, Cattaneo, and Farrell (2018). The standard error is clustered at the county level

to deal with the potential spatial correlation of the error term, as suggested by Cameron and

Miller (2015).

4.3 Counties as the Unit of Analysis

In this study, we concentrate on the county level rather than the town level within China’s

administrative hierarchy. Counties, situated between prefectures and townships, form the

third tier of the administrative structure. Mainland China comprises 2,851 county-level

divisions. According to 2000 and 2010 FDB policy, in total, 96 and 106 counties could

be identified as a FDB county, respectively. We focus on counties for two reasons. First,

county-level data is more comprehensive. The National Bureau of Statistics (NBS) provides

the most extensive collection of socioeconomic variables at the county level. By focusing our

analysis here, we can more effectively examine the impact of policies on crucial socioeconomic

indicators, such as the output of various sectors. Second, flood detention typically will impact

most towns in a county. Although dams are situated in towns, we observed that in the event

of a flood, the impact typically extends to encompass the entire county.

5 Economic Costs on FDB Counties

5.1 FDB Policy and Flood Risk Redistribution

Figure 3 straightforwardly demonstrates that the size-adjusted flood exposure is much

higher in FDB counties, compared to non-FDB counties. We then use the following specifi-

cation to determine whether the flood exposure in FDB counties is significantly higher than

non-FDB counties.
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ln(Exposureijt) = α + β1FDBijt + β2Xijt + γj + θt + ϵi

where ln(Exposureijt) is the proxy of flood risk in county i, city j, at year t. In our

setting, we use two proxies to investigate the impact of FDB policy on flood exposure.

The first proxy is the size of inundation area. And the second one is the size-adjusted flood

exposure (detailed explanation can be found in Section 3.1), which measures the average days

of flood inundation of a county in a flood event. FDBijt is a dummy that equals 1 if the

county i is a FDB county, and 0 if not. γj represents the city fixed effect, and θt represents

time fixed effect. ϵi is the standard error that is clustered at city level. Xijt contains

geographical controls (precipitation, elevation and slope), which are important determinants

of floods. β1 then measures whether FDB counties have a higher flood exposure than other

counties in a given city, holding geographical factors constant.

As indicated in Column (1) and (2) of Table 5, we find that after controlling for important

geographical controls, the size of flood inundation area in FDB counties is more than 50%

higher in FDB counties than other counties in the same city. Column (3) and (4) also

suggest that the size-adjusted flood exposure is 5% higher in FDB counties, compared to

other counties in the same city. This empirical evidence supports the claim that FDB policy

induces flood risk redistribution across different regions. In other words, FDB counties tend

to absorb more flood water according to the policy design.

In Figure 4, we examine the impact of being selected for the 2010 FDB list on the size of

flood inundation. By controlling for county and time fixed effects, we find that selection into

the 2010 FDB list tends to increase flood inundation size by 48.59%, which is consistent with

resutls in Table 5. Notably, in 2013, a year of severe floods, the inundation size increased

by over 200% in the FDB counties. However, since only 20 counties were newly added to

the 2010 FDB list, and not all of them were utilized for floodwater diversion post-2010, the

results in Figure 4 are relatively noisier compared to those presented in Table 5.
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5.2 Main Result: Nighttime Light

To quantify the economic costs on FDB counties, we examine the impact of the FDB

policy on nighttime light intensity. We choose nighttime light as a proxy for economic

activity over GDP for two reasons. First, GDP data before 2000 is unavailable, preventing

us from analyzing the impact of the 2000 policy change. Second, nighttime light is a more

credible indicator of economic activity in China in that Chinese GDP figures are likely to be

exaggerated (Martinez 2022). Moreover, the level of exaggeration differs across time because

of incentive changes (Zeng and Zhou 2024).

Table 6 summarizes the impact of the FDB policy on nighttime light intensity. Panel A

presents results using traditional two-way fixed-effect difference-in-differences (TWFE DID)

estimates without any controls. In Column (1), we find that a county being selected into

the FDB list leads to an average decrease of 17.6% in nighttime light intensity. Considering

recent discussions on the properties of the staggered DID approach (e.g., Borusyak et al.

2024), potential biases may arise from the weighting problem. Therefore, we separately

investigate the impacts of the 2000 and 2010 policy changes in Columns (2) and (3). Column

(2) shows that selection into the 2000 FDB list leads to a 13.7% decrease in nighttime light

intensity, while Column (3) indicates a 7.8% decrease for the 2010 FDB list.

Panel B reports results using the synthetic difference-in-differences (SDID) approach

proposed by Arkhangelsky et al. (2021). We believe SDID is appropriate for our empirical

setting for three reasons. First, constructing a counterfactual group using synthetic weights

(Abadie et al. 2010) addresses concerns about the weighting problem in traditional TWFE

DID. Second, as suggested by Roth et al. (2023), clustering at the unit level is not suitable

when the number of treated groups is small. In the 2010 policy change, the Chinese govern-

ment selected 20 new counties and removed 10 from the list. Given the small size of treated

clusters, using bootstrap standard errors offered by the SDID approach is more appropriate.

Third, synthetic weight construction helps mitigate potential threats to exogeneity by cre-

ating a counterfactual whose pre-treatment outcomes are parallel to the treatment group.

Results in Panel B are robust and indicate a negative impact of being selected into the FDB

list on nighttime light intensity, with magnitudes similar to those in Panel A.
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In Column (4) of both Panels A and B, we focus on the impact of removal from the FDB

list in 2000. The results in both panels are not significant, indicating that being removed

from the FDB list does not lead to significant economic recovery. We interpret this as a

‘scarring effect,’ where counties once selected into the FDB list struggle to recover even after

removal. We consider the result in Column (4) of Panel B to be more credible than that

in Panel A, given the small number of counties removed from the list, making SDID more

appropriate than TWFE.

Figure 5 illustrates the dynamic impacts of the FDB policy on nighttime light intensity

using an event-study approach. Before the treatment, there is no significant difference be-

tween the treated and control groups. This suggests that the treated and control groups

followed similar trends in nighttime light intensity prior to the policy intervention, validat-

ing the parallel trend assumption. Immediately after the implementation of the FDB policy,

we observe a noticeable and persistent decline in nighttime light intensity for the treated

counties. This indicatres both immediate and lasting adverse effects of the FDB policy on

economic activity as proxied by nighttime light intensity. We present the SDID event-study

results in Figure 6.

5.3 Interpreting Effect Size: from Light to GDP

According to column (2) in Panel B of Table 6, being selected into the FDB list in 2000

results in a 10.7% decrease in nighttime light intensity. Various studies have examined the

elasticity between nighttime light intensity and GDP, allowing us to translate this reduction

into a loss in real GDP. Henderson et al. (2012) find that the elasticity of GDP with respect

to nighttime lights is 0.277, which is supported by Martinez (2022), who finds an elasticity

of 0.296. Additionally, Martinez (2022) notes that elasticity is higher in non-democratic

regimes, estimating an elasticity of 0.312 for China. This translates into an annual GDP

loss of 2.96%, 3.17%, and 3.34%, respectively. Using real GDP data from Chen et al. (2022),

we estimate the GDP loss to be $9.84 billion, $10.54 billion, and $11.13 billion, respectively,

based on the elasticities from Henderson et al. (2012) and Martinez (2022). On average, an

FDB county tends to lose $0.10-0.12 billion per year due to being selected into the FDB list.

To validate these findings, we conducted an interdisciplinary cross-check. Our results align
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with a hydrological case study by Wang et al. (2021), published in the leading hydrological

journal Journal of Hydrology, which also reports an annual economic loss of $0.1 billion for

an FDB county in Yangtze River.

5.4 Robustness and Placebo

In Figure 7 and Table 7, we report our results using other difference-in-differences meth-

ods. Although we believe that synthetic difference-in-differences (Arkhangelsky et al. 2021)

is the most suitable method in our setting, we report the event-study results using dif-

ferent methods proposed by De Chaisemartin and d’Haultfoeuille (2020), Gardner (2022),

and Callaway and Sant’Anna (2021). The robustness checks demonstrate that our main

findings are consistent across these alternative methodologies. Specifically, the results in

Table 6 are robust in terms of both statistical significance and magnitude when using other

difference-in-differences approaches. Overall, the consistency of our findings across multiple

methodologies underscores the validity of our results and the robustness of our conclusions.

In Figure 8, we conduct three distinct types of placebo tests: the in-time placebo test, the

in-space placebo test, and the mixed placebo test. In the in-time placebo tests, we forward

the treatment time by several years, using fake treatment times to assess if our results are

driven by temporal trends rather than the actual intervention. For the in-space placebo tests,

we assign treatment to randomly selected units that did not receive the intervention, testing

the robustness of our findings against spatial confounding factors. Lastly, the mixed placebo

tests combine both approaches by randomly assigning fake treatment units and times. The

results shown in Figure 8 indicate that our main findings hold up under these placebo tests,

as the estimated effects do not show significant deviations from zero, thus confirming the

robustness and validity of our original results.
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6 Mechanisms

6.1 Migration Channel

A natural hypothesis is that rational agents will leave FDB counties, leading to a loss of

labor which results in economic underdevelopment. However, as shown in Figure 9, we do

not find significant evidence of people leaving FDB counties. Although there is a downward

(upward) trend of registered population after counties being selected (removed) from the

FDB list, we do not find the estimate being neither economically significant nor statistically

significant, indicating that migration decision is not sensitive to FDB policy. We do not

find this result surprising because extensive literature has demonstrated the difficulty of

individuals in developing countries to make rational migration decisions, as summarized in

Lagakos (2020). For China specific studies, we would like to propose several possible reasons

that people do not migrate in response to FDB policy.

First, according to the seminal work of Zhao (1999), the existing arrangement of land

management is a major reason why rural people in China choose not to migrate in spite of the

incentive and ability to migrate. In the early 1980s, the Chinese government introduced the

Household Responsibility System that grants rural households land use rights and income

rights over lands. Although land belongs to the village, land allocation within villages

was highly egalitarian, resulting in minimal per capita differences in landholdings among

households within a village. A recent paper by Adamopoulos et al. (2024) also indicates

that the land system is a major friction of rural-urban migration.

Second, the Chinese government has not designed a suitable incentive scheme to motivate

FDB residents to leave. According to the latest migration subsidy plan in 2017, the gov-

ernment compensates $2.4k per person, which is significantly less than the $8.1k per person

provided under the Relocation for Poverty Alleviation program and is insufficient to cover

migration costs. According to a survey conducted by the Huai River Regulation Commission

of the Ministry of Water Resources, 93% of residents in the Mengwa Flood Detention Basin

are dissatisfied with the migration subsidy provided by the government, and 94% are un-

happy with the proposed migration destinations. This dissatisfaction reflects broader issues

in the policy’s design, including inadequate financial support and poorly planned relocation
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sites, which fail to meet the needs and preferences of the affected residents. Consequently,

the lack of proper incentives and satisfactory relocation plans has resulted in non-optimal

migration from FDB counties.

6.2 Direct Flood Inundation Channel

To determine whether the economic cost in FDB counties is primarily due to direct flood

inundation or policy effects, we analyze the heterogeneous impacts of FDB policy on night-

time light intensity. The Chinese government classifies FDB counties into three categories:

Important FDB counties, General FDB counties, and Reserved FDB counties. These classi-

fications reflect the varying likelihood of these counties being used for flood water diversion

both before and after the official FDB implementation. For example, most important FDB

counties have served for flood water diversion even befor the official implementation of the

FDB policy.

Our findings in Figure 10 and Table 11 reveal a striking pattern: nighttime light in-

tensity decreases the least in Important FDB counties (11.6%). On the other hand, light

has decreased by 30.8% and 16.6% in Reserved and General FDB counties. This initially

counter-intuitive result suggests that these counties, which are historically more exposed to

frequent flooding and flood water detention, have developed better expectations for floods.

This anticipation mitigates the adverse economic impacts of the FDB policy. Consequently,

although there is a reduction in nighttime light intensity in Important FDB counties, the

decrease is less pronounced compared to other FDB categories.

In contrast, counties classified under General and Reserved FDBs, which lack a historical

precedence of frequent flooding, experience a more severe reduction in nighttime light inten-

sity. For these regions, the FDB designation introduces an unexpected shock. The sudden

imposition of flood designation leaves these areas more vulnerable and less prepared for the

economic constraints imposed by the policy. This results in a more substantial negative

impact on economic activities in these regions.

The critical distinction lies in the anticipation effect. Important FDB counties, with their

established flood expectations and adaptive measures, experience a moderated impact on

economic activity. On the other hand, General and Reserved FDB counties face heightened
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economic challenges due to the policy-induced risks, leading to a more pronounced decline

in light intensity.

Overall, these findings indicate that the economic cost associated with FDB policies is

not primarily due to direct flood inundation. Instead, the anticipation effect of policy imple-

mentation plays a more significant role in affecting economic development. The unexpected

designation shocks in General and Reserved FDB counties exacerbate economic underper-

formance. Thus, the economic underdevelopment observed in these regions is largely a result

of the policy itself rather than direct flooding events.

6.3 Loss in Agriculture or Manufacturing?

We also investigate whether the costs associated with flooding are predominantly caused

by its impact on agriculture. Given that FDB counties primarily depend on agriculture, it is

plausible that floods would incur significant costs by damaging agricultural crops. However,

our findings (Figure 11) do not show significant evidence of a decline in agricultural output,

with the observed change being minimal (0.3%). This resilience in agricultural output could

be possibly attributed to the geographical conditions of China’s agricultural land. For in-

stance, in Hunan Province, the quality of arable land tends to improve after floods, which

may mitigate the adverse effects. Additionally, farmers in the southern region can harvest

three times a year, so even if they suffer flood damage during the rainy season, they can

partially compensate for the losses through winter crops.

In contrast, manufacturing output experiences a substantial and significant decrease of

18.2%. Specifically, there was a sustained output reduction of about 20% during the ini-

tial five years (2010-2015), which widened to approximately 40% post-2016. This suggests

that the FDB policy has a lasting negative impact on manufacturing activities within FDB

counties. This stark decline underscores the lag in structural transformation within FDB

counties. While farmers adapt to new policies, they remain largely confined to agriculture

due to limited opportunities for transitioning into the manufacturing sector.
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6.4 Firm Response Effect

We propose the ‘firm response effect,’ suggesting that firms have less incentive to enter

and invest in counties with higher flood risk, leading to an underdeveloped manufacturing

sector in FDB counties. This hypothesis has two empirical implications. First, when a

county is added to the FDB list, firms are less likely to enter and invest in that county.

Second, when a county is removed from the FDB list, firms begin to reenter and invest. In

2010, the Chinese government added 20 counties to the FDB list and removed 10 counties

from it, allowing us to empirically test the ‘firm response effect’ hypothesis.

In this section, we present balanced and symmetric results of three different outcomes that

show both the impact of being added to the FDB list and the impact of being removed from

the list. By comparing these two scenarios, we can confirm that the FDB policy significantly

influences firms’ entry and investment decisions. Specifically, we find a decline in firm entry

and investment in counties added to the list, and an increase in firm entry and investment

in counties removed from the list. These balanced and symmetric findings serve as strong

evidence to rule out other possible mechanisms and underscore the exclusive impact of FDB

policy on firms’ decision making.

It would be ideal for us to study the causal impact of both 2000 policy and 2010 policy,

especially the 2000 policy given its importance. However, the unavailability of firm-level

data prior to 2000 makes us impossible to construct pre-treatment counterfactual control

groups. Hence, we have to restrict our examination to the causal impacts of 2010 policy on

various firm level outcome variables.

Firm Entry - The increased flood risk in FDB counties necessitates higher expected

returns on investment for firms considering entry into these areas. Consequently, firms have

less incentive to enter FDB counties. In other words, the increase in flood risk acts as a de-

terrent for new firm entry. To explore this intuition, we examine the impact of the 2010 FDB

policy change on firm entry using the Annual Registration Data of Chinese Enterprises from

2000 to 2020. In Panel A of Figure 12, we find balanced and symmetric impacts of selection

into and removal from the FDB list. Each dot in the figure represents a point estimate,

showing the difference between actual FDB counties and their synthetic counterparts. Prior
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to 2010, the proximity of these estimates to zero, coupled with their statistical insignificance,

confirms that our synthetic group effectively mirrors the counterfactual FDB counties.

The negative impact on firm entry in these counties is immediate and persists over a

decade, as evidenced by the consistently negative and significant coefficients observed even

in 2020. One year after the policy implementation, in 2011, firm entry in FDB counties

decreased by approximately 10.9%. In 2012, this decrease grew to around 25.2%. The

negative impact then persists from 2013 to 2021, stabilizing at around 15%. This empirical

evidence supports our theory that firms lack incentives to enter counties newly designated as

FDB-county. Conversely, we also find that firms begin to reenter counties removed from the

FDB list. Although the impact is not immediate, by 2013 we observe a significant increase

in firm entry, with a magnitude of 29.2%. This positive impact persists until 2020.

Regarding the average treatment effect, we find that firm entry tends to significantly

decrease by 15.9% after a county is selected into the FDB list. This indicates that selection

into the FDB list diminishes the county’s attractiveness for the entry of manufacturing

firms. On the other hand, firm entry tends to significantly increase by 16.8% after a county

is removed from the FDB list. The balanced and symmetric result indicate the importance

of FDB policy in affecting firms’ entry decisions.

Number of Large Manufacturing Firms - In Panel B of Figure 12, we present

robust evidence that the FDB policy influences firm entry decisions, focusing specifically

on the number of larger manufacturing firms. Using county-level statistical yearbook data

from 2000 to 2010, we find that the average number of larger manufacturing firms in a

county significantly decreases by 21.7% after the county is included in the FDB list in 2010.

Conversely, when a county is removed from the FDB list, the number of larger manufacturing

firms increases by 14.1%, although this change is not statistically significant. Comparing

the results of Panel B with those of Panel A, we observe that the impact of being added

to the FDB list is more pronounced for larger manufacturing firms compared to all firms.

However, when a county is removed from the FDB list, larger manufacturing firms show more

hesitation in re-entering these counties, while all firms tend to respond more sensitively to

the policy change. This suggests that larger manufacturing firms are more cautious in their

entry decisions, possibly due to their higher position in fixed asset investments.
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Combining the findings from Panel A and Panel B, we conclude that: (i) being included

in the FDB list tends to decrease a county’s attractiveness for firm entry, whereas removal

from the list tends to increase it; (ii) larger manufacturing firms, compared to other firms,

are more cautious in their entry decisions.

Fixed Assets Investment - By using spatial Regression Discontinuity (SRD), we

provide evidence to indicate that the FDB policy affects firms’ investment decision. We

specifically focus on fixed assets investment because fixed assets are especially prone to

suffering from flood damage because they are either immovable or it is highly challenging to

relocate them. Given the data availability constraints that prevent tracking post-2013 data,

we concentrate on outcomes likely to be immediately influenced by the FDB policy. We

hypothesize that the considerable financial costs associated with either repairing or replacing

these assets makes entrepreneurs hesitate to invest in fixed assets situated in FDB counties

with higher flood risk.

Figure 13 displays the logarithm of fixed asset investment, adjusting for both county

fixed effects and industry fixed effects, plotted against the distance to the corresponding

FDB county boundary. Each point on the graph represents the average logarithmic fixed

asset investment for firms within specific distance intervals. And the 95% confidence intervals

for these averages are also indicated in the figure. To highlight the policy’s impact at the

FDB county boundary, a curve fitting these data points is presented on the plot, clearly

demonstrating the discontinuity at the boundary of FDB counties.

Panel A of Figure 13 presents a regression discontinuity (RD) plot of the residual loga-

rithm of fixed asset investment. In the left sub-figure of Panel A, we explore how being des-

ignated as an FDB county influences fixed asset investment. This plot reveals a pronounced

decline in fixed asset investment exactly at the boundary of counties newly included in the

FDB list. This observation implies that within firms of these newly designated FDB coun-

ties, fixed asset investment is substantially lower compared to firms in adjacent counties.

Conversely, the right sub-figure of Panel A in Figure 13 examines the effects on fixed asset

investment following a county’s removal from the FDB list. Contrary to Panel A, we ob-

serve a significant jump in fixed asset investment right at the boundary of counties recently

excluded from the FDB list. This suggests that after being removed from the FDB list,
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firms in these counties exhibit considerably higher fixed asset investment relative to those in

neighboring counties.

Following the work by He et al. (2020), we investigate the dynamics in fixed assets

investment in Panel B of Figure 13. This SRD approach hinges on comparing firms located

within FDB-designated areas to those in geographically adjacent but non-FDB counties. A

critical assumption of SRD is the similarity in pre-treatment outcomes between neighboring

FDB and non-FDB counties. For newly-selected FDB counties, we find that the fixed assets

discontinuity was close to zero before 2010, but became significantly larger in 2011.3 This

negligible and insignificant effect prior to 2010 supports our foundational assumption: absent

the FDB policy, manufacturing firms in FDB and non-FDB counties would have similar

trends for fixed asset investment.

Table 12 quantifies the graphical evidence depicted in Figure 13, examining the impact

of counties entering and exiting the FDB list. Panel A presents the SRD analysis without

control variables. Columns (1) to (3) show that firms in counties newly included in the

FDB list exhibit lower levels of fixed asset investment compared to firms in geographically

adjacent counties. Conversely, columns (4) to (6) indicate that firms in counties recently

removed from the FDB list demonstrate higher fixed asset investments than their counter-

parts in neighboring counties. To further validate our findings, we conduct robustness tests

in Panel B, incorporating both county and industry fixed effects, and in Panel C, incorpo-

rating county-by-industry fixed effects. Panel B assesses differences in fixed asset investment

across counties and industries, while Panel C provides a more detailed comparison by eval-

uating firms within the same industries but located in proximate geographical areas, thus

eliminating potential industry-specific confounding factors. Our analyses yield significant

results across Panels A, B, and C, with consistent effect sizes in Panels B and C. Addition-

ally, the SRD estimates exhibit strong robustness across various kernel function selections.

Findings from Panels B and C underscore the significant influence of the FDB policy on

firms’ investment decisions.

3Due to data availability, unfortunately, we can only track the impact to the year of 2013.
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7 Spatial General Equilibrium: Assessing the Benefit

to Cost Ratio of FDB Policy

7.1 An Illustrative Partial Equilibrium Model

We begin by concretizing the ‘firm response effect’ using an illustrative partial equilib-

rium model. While our comprehensive general equilibrium model accounts for interactions

between different counties by including the flow of capital and manufacturing goods, this sim-

pler model offers more straightforward economic intuitions regarding the trade-off between

equality and efficiency in designing this flood risk redistribution policy. We then extend our

analysis to the full general equilibrium model, which we use for counterfactual scenarios and

to assess the benefit to cost ratio of FDB policies.

Flood Risk and Firm Investment Decision

In a two-period model, we assume that there are two types of counties, i = s, p. County s

represents FDB counties that are sacrificed for protecting other counties, county p represents

counties that are protected by FDB counties.

In period 1, the risk-neutral investor is endowed with an initial wealth, W , that can be

used for consumption, investments in different counties, and investment in bonds. In period

2, investors consume the investment returns from the first period. The optimization problem

is characterized below.

max
c0,c1,as,ap,b

c0 + βEµc1

s.t. c0 +
∑
i=s,p

ai + b = W

c1 =
∑
i=s,p

(1 + ri)ai + (1 + rf )b

Here, c0 and c1 represent the consumption at period 1 and period 2, respectively. as and

ap represent investors’ period-one investment in sacrificed county and in protected county. b

represents the bond investment. ri is the return of assets, or the marginal benefit of investing
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in assets. rf is the risk-free interest rate.

The production problem is characterized as:

max
ki

zik
α
i − r̄iki

Here, ki is the capital input in county i. zi represents the productivity in county i. r̄i

represents the effective cost of investment in county i.

At each flood event, µ = {τs, τp}, where τi is a dummy that equals 1 if the county is

flooded at the flood event, and 0 if not. We consider flood as independent event in two types

of counties. The flood probability of each county is Pr(τi = 1) = pi. Flood event will create

a wedge between return of asset, ri, and effective cost of investment, r̄i such that

ri = r̄i − τid

where d is the damage per asset caused by flood. Here, we assume that flood will cause

proportional damages per asset that are identical across sacrificed and protected county.

The market clearing condition requires ri,t to clear the local capital market such that:

ki = ai

Following the above conditions, the optimal investment can be characterized as below:

αzia
α−1
i − rf = pid

We can also consider the optimally condition as the characterization of flood risk pre-

mium. Here, the marginal product of capital is MPKi = αzia
α−1
i . Hence, the difference

between MPKi and rf can be interpreted as the flood risk premium, which equals the ex-

pected damage caused to the county i. Hence, the optimal investment ai is determined by the

flood probability pi. Specifically, when flood probability increases, the amount of investment

will decrease.
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Impact of FDB Policy

We believe that the key function of FDB policy is to redistribute flood risk. To be

more specific, the FDB policy aims to increase the flood risk in sacrificed county by ∆p

and decrease the flood risk in protected county by ∆p. Hence, in sacrificed county, the

FDB-adjusted flood probability will be p′s = ps +∆p. And in protected county, In protected

county, the FDB-adjusted flood probability will be: p′p = pp − ∆p. In Section 5.1, we

find empirical evidence to confirm the validity of this assumption. Holding geographical

conditions constant, we find that flood inundation area in sacrificed FDB counties is more

than 50% higher, and the size adjusted flood exposure is around 5% higher in FDB counties

(see Table 5).

Proposition 1 (Trade-off in Equality and Efficiency ) Assume zp
(ppd+rf )2−α > zs

(psd+rf )2−α ,

then we have: d(ap+as)

dp
> 0 and d(ap−as)

dp
< 0.

zp
(ppd+rf )2−α > zs

(psd+rf )2−α indicates that the damage standardized productivity in protected

county is higher than that in sacrificed county. In other words, it specifies that a government

that prioritizes efficiency has correctly identified counties worth to be protected.

The implication of this proposition are twofolds. First, FDB policy will bring an increase

in total investment and will improve the economic resilience towards floods. The flood risk

redistribution from protected to sacrificed counties will increase the total investment ap+as.

Second, FDB policy will also bring the inequality between sacrificed counties and protected

counties because the investment gap ap − as will increase as well. We provide proof of this

proposition in the Appendix A.3.

7.2 Model Environment and Equilibrium Conditions

Model Framework

Consider an economy with N regions, each indexed by n ∈ N . There is a unit mass of

hand-to-mouth workers in the economy. In this general equilibrium model, worker cannot

migrate across regions, which is consistent with our empirical evidence showing no evidence

of migration (Section 6.1). Each region has one representative capital owner who cannot
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move across regions and makes optimal investment decision to determine asset positions.

Manufacturing goods are traded between region n and region i, which is subject to iceberg

trade cost. For example, dni measures the trade cost of shipping one unit of goods from

region n to destination region i. Agricultural and service goods are not tradable across

different regions.

Before the realization of each type of flood events sj, capital owners in region n decide

their optimal asset positions an,t+1, and manufacturing firms decide entering the region n,

thus determining the number of manufacturing firms In,t. The manufacturing firm count sat-

isfies the free entry condition. After the flood realization, workers and capital owners choose

optimal consumption bundles, and firms maximize their profits accordingly. Finally, factor

prices clear the national capital market, local labor markets, and local product markets.

The figure below provides an illustration of the model’s timeline. It shows the sequence

of events and decisions made by capital owners, manufacturing firms, and workers, both

before and after the realization of a specific flood event. It also outlines the market clearing

conditions for national capital market, local labor markets, and local product markets.
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Floods

Considering the varying damage level of flood events from 2000 to 2010, we define

S = {s1, s2, ..., sj}, where each sj corresponds to a unique type of flood event, catego-

rized by its severity.4 For each type of flood event sj, it happens with a probability

of pr(sj). The collective flood risk is then characterized by a vector of flood probabil-

ity Pr = {pr(s1), pr(s2), ..., pr(sJ)}. For each flood type j, region n is either flooded or

not. Hence, flood event sj consists of a vector of region-specific flood events, {fn,j}, that

sj = {f1,j, f2,j, ..., fN,j}. Here, fn,j is a dummy variable that takes the value of 1 if region n

is flooded in this type of flood, and 0 if not.

We assume that a flood event sj affects the economy by decreasing the productivity of each

sector. Specifically, floods negatively affect the region-specific manufacturing productivity

zMn (sj). We model the productivity as:

zMn (sj) = ¯zMn exp(−ϵMfn,j) (1)

where ¯zMn denote the region-specific productivity during non-flooding time; ϵM denotes

the magnitude of region-specific percentage productivity loss during flooding seasons fn,t = 1.

From 2000 to 2010, we believe that each flood event at time t represents a specific type

of flood event because of their different levels of severity. Hence, we can also denote sj as st.

We will use st, instead of sj, in the following description.

Workers

There is a unit mass of hand-to-mouth workers living in N regions, denoted by Ln, who

are immobile across regions (
∑N

n=1 Ln = 1). Workers are assumed to be hand-to-mouth

and supply one unit labor inelastically in the region they live in. After the actualization

of each flood event, workers then optimize their consumption bundles given flood event st.

4No flood is still considered as a type of flood, though the induced damage is 0 in this case.
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Specifically, workers maximize their utility function, according to the budget constraint.

max
{CA

n (st),CM
n (st),CS

n (st)}
U(CA

n (st), C
M
n (st), C

S
n (st))

s.t. PA
n (st)C

A
n (st) + PM

n (st)C
M
n (st) + P S

n (st)C
S
n (st) = wn(st)

(2)

where U(CA
n (st), C

M
n (st), C

S
n (st)) takes a Cobb-Douglas form such that U(CA

n (st), C
M
n (st), C

S
n (st)) =

ξAlog(C
A
n (st)) + (1− ξA − ξS)log(C

M
n (st)) + ξSlog(C

S
n (st)), wn(st) is the wage rate in region

n given flood event st, P
A
n , P

M
n and P S

n represent the prices of agricultural goods, manufac-

turing goods, and service goods, respectively, in region n.

Capital Owners

During time period t, capital owners in region n decide the asset positions, an,t+1, before

the actualization of flood event st. Hence, the asset position decision is independent of st.

After the realization of the flood event, capital owners optimize their consumption bundles

given event-specific prices. Capital owners’ preferences are identical to those of the workers.

Capital owners maximize their utility given budget constraint:

V s
n (an,t) = max

{CA
n (st),CM

n (st),CS
n (st),an,t+1}

EstU(CA
n (st), C

M
n (st), C

S
n (st)) + βV s

n (an,t+1)

s.t. PA
n (st)C

A
n (st) + PM

n (st)C
M
n (st) + P S

n (st)C
S
n (st) + an,t+1 = (1 + r(st))an,t + In,tπn(st)

(3)

where national interest rate is given by r(st). πn(st) represents the average profit of

manufacturing firms in region n. U(CA
n (st), C

M
n (st), C

S
n (st)) takes a Cobb-Douglas form such

that U(CA
n (st), C

M
n (st), C

S
n (st)) = ξAlog(C

A
n (st))+ (1− ξA− ξS)log(C

M
n (st))+ ξSlog(C

S
n (st)).

PA
n , P

M
n and P S

n represents the price of agricultural goods, manufacturing goods, and service

goods, respectively, in region n.

Production

In our model, we have three sectors: the primary (agricultural) sector, the manufacturing

sector, and the service sector. Agricultural sector, manufacturing firms, and service sector

produce three types of goods: agricultural goods Y A
n (st), manufacturing goods Y M

n (st), and
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service goods Y S
n (st). The primary sectors supply non-tradable agriculture goods in the local

market in a perfectly competitive way and produce with a linear production technology. The

profit maximization problem for the primary sector in flood event st is given by:

max
{lAn (st)}

PA
n (st)Y

A
n (st)− wn(st)l

A
n (st)

s.t. Y A
n (st) = zAn (st)l

A
n (st)

(4)

We assume the tertiary sectors also supply non-tradable service goods in the local market

in a perfectly competitive way. The difference from the primary sector is that the tertiary

sectors produce with both labor and capital in a Cobb-Douglas way. For the service sector,

the maximization problem in flood event st is given by:

max
{lSn(st),kSn(st)}

P S
n (st)Y

S
n (st)− wn(st)l

S
n(st)− rn(st)k

S
n(st)

s.t. Y S
n (st) = zSn (st)l

S
n(st)

αkS
n(st)

1−α

(5)

We assume that firms in the secondary sector supply tradable manufacturing goods in a

monopolistically competitive way. More specifically, consumers in region n consume hetero-

geneous manufacturing goods produced by firms in different regions i ∈ {1, 2, ..., N} based

on a CES aggregate function:

Y M
n (st) =

[ N∑
i=1

Ii,ty
M
in (st)

σ−1
σ

] σ
σ−1

(6)

where σ measures the level of elasticity of substitution across manufacturing goods pro-

duced by different regions, Y M
in (st) is the output of manufacturing good produced by region

i and sold to region n, and Ii,t denotes the number of manufacturing firms in region n.

Denote PM
in (st) as the price of manufacturing good produced by region i and sold to region

n, then one can easily show that the price index of manufacturing goods sold in region n is

PM
n (st) =

[∑N
i=1 Ii,tP

M
in (st)

1−σ

] 1
1−σ

.

Firms in the secondary industry produce manufacturing goods with a Cobb-Douglas

production function. The transportation of goods across regions is subject to iceberg cost

dni. Denote lMni and kM
ni as the labour and capital inputs of producing manufacturing goods
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supplied from region n to region i. The maximization problem for each firm in region n in

flood event st is given by:

πn(st) = max
{lMni(st),k

M
ni (st)}Ni=1

N∑
i=1

[
PM
ni (st)y

M
ni (st)− wn(st)l

M
ni (st)− r(st)k

M
ni (st)

]
s.t. dniy

M
ni (st) = zMn (st)l

M
ni (st)

αkM
ni (st)

1−α ∀i

(7)

During time period t, manufacturing firms decide whether to enter region n, before

the actualization of flood event st. In each period, there is a probability of η that the

manufacturing firm will exit the market. The value function of the manufacturing firm in

region n could be written as:

V s
n,t = Estπn(st) + β(1− η)V s

n,t+1 (8)

The free entry condition requires that the value function of manufacturing firms should

equal to the entry cost csn.

V s
n,t = csn (9)

Market Clearing Conditions

There are three sets of market clearing conditions.

1. National capital market: The flood-event-specific interest rate r(st) require asset posi-

tions equal flood-event-specific capital demands in all regions:

N∑
n=1

In

N∑
i=1

kM
ni (st) +

N∑
n=1

kS
n(st) =

N∑
n=1

an,t (10)

2. Local labour markets: The flood-event-specific wage rates wn(st) require labour supply

equal flood-event-specific labour demands in all regions:

lAn (st) +
N∑
i=1

lMni (st)di+ lSn(st) = Ln ∀n (11)

3. Local final good markets: The final good markets are assumed to be perfectly com-
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petitive, so prices PA
n (st), P

M
ni (st) and P S

n (st) satisfy that the final good demands and

supplies are equalized in all regions:

LnC
w,A
n (st) + Cs,A

n (st) = Y A
n (st) ∀n (12)

LnC
w,S
n (st) + Cs,S

n (st) = Y S
n (st) ∀n (13)

PM
ni (st) =

[
LiC

w,M
i (st) + Cs,M

i (st)

] 1
σ

PM
i (st)y

M
ni (st)

− 1
σ ∀i, n (14)

PM
n (st) =

[ N∑
i=1

Ii,tP
M
in (st)

1−σ

] 1
1−σ

∀n (15)

Equilibrium

The spatial general equilibrium consists of capital owners’ asset positions {an,t} and con-

sumption bundles {Co,A
n (st), C

o,M
n (st), C

o,S
n (st)}, workers’ consumption bundles {Cw,A

n (st),

Cw,M
n (st), C

w,S
n (st)}, sector-specific factor demands and outputs {lAn (st), lMn (st), l

S
n(st), k

M
n (st),

kS
n(st), Y

A
n (st), Y

M
n (st), Y

S
n (st)}, manufacturing firms counts {In,t}, and prices {wn(st), r(st),

PA
n (st), P

M
n (st), P

S
n (st)}, such that given the distribution of workers {Ln}

1. Before the realization of flood events st

(i) {an,t} satisfy capital owners’ optimal investment decisions in Equation 3;

(ii) {In,t} satisfy the free entry condition in Equation 9;

2. After the realization of flood event st

(i) {Co,A
n (st), C

o,M
n (st), C

o,S
n (st)} and {Cw,A

n (st), C
w,M
n (st), C

w,S
n (st)} satisfy capital

owners’ and workers’ utility maximization problems in Equation 2 and 3;

(ii) {lAn (st), lMn (st), l
S
n(st), k

M
n (st), k

S
n(st), Y

A
n (st), Y

M
n (st), Y

S
n (st)} satisfy sectors’

profit maximization problems in Equation 4, 5, and 7;

(iii) {wn(st), r(st), P
A
n (st), P

M
n (st), P

S
n (st)} clear the factor and product markets in

Equation 10 - 15.
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7.3 Calibration and Simulation

In this section, we calibrate our model to match Chinese counties in Huai River Basin,

the basin with the highest river flood risk, between 2000 and 2010.

Exogenously Calibrated Parameters

Panel A of Table 13 shows parameter values obtained directly from literature and data.

We treat each region as a county, and there are N = 176 counties in Huai River Area. We

standardize labour force L̄ to be 1,000. Following previous literature (Head et al. 2014 &

Jia et al. 2022), we set the elasticity of substitution across varieties, σ, as 5. We choose a

discount factor, β, to be 0.95 to generate an aggregate steady-state interest of 5%. Shares

of sector-specific consumption match the real data provided by 2000-2010 Chinese National

Bureau of Statistics. To be specific, the share of agricultural consumption, ξ1, is 11.7%, and

the share of service consumption, ξ3, is 42.2%. We choose a factor share of capital, α, that

equals 0.5 for both the secondary and tertiary industry, and 0 for the primary industry. This

is consistent of the national-level sector specific factor share in China, calculated by Chinese

input and output tables and national accounts, sourced from Chinese National Bureau of

Statistics.

Transportation Cost - The calculation of transportation costs, dni, is based on geodesic

distances across different counties. For the transportation cost within a county, we adopt a

similar approach as existing literature (e.g., Redding and Venables 2004, Au and Henderson

2006, and Balboni 2019). Specifically, we calibrated trade costs by approximating intra-unit

trade costs based on the average distance travelled to the centre of a circular unit of the

same area from evenly-distributed points within the given by 2
3
(area/π)1/2. We standardize

the smallest transportation costs to be 1.

Probability of Each Flood Type - In 2000 and 2010, there were 5 major floods in

Huai River Basin, which happened in 2002, 2003, 2005, 2007, and 2010, respectively. Those

flood events inundated different counties in Huai River Basin and caused damages of different

levels. For example, the 2003 flood caused damages to 61 counties out of 176 counties in Huai

river, while the 2010 flood caused damages to 25 counties. Based on the level of precipitation,
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we divide the monthly-averaged precipitation during flood seasons (June to September) into

two categories: (i) < 120 mm; (ii) > 120 mm. We then calculated the region-specific flooding

probability based on both historical data on monthly precipitation and actual flood event.

Productivity Losses - We estimate productivity losses in primary sector, secondary

sector and tertiary sector based on the estimation below.

Ysicjt = α + β1Floodedicjt + γjt + λt + ηc + ϵc

In this estimation, s(s = 1, 2, 3) represents primary, secondary (manufacturing), and ter-

tiary industry, respectively. i, c, j represent county, city, province, respectively. t represents

year. Ysicjt refers to the labor productivity of different sectors in a county, which is measured

by dividing output by number of employees in an industry. FloodExposureicjt indicates

the inundation size of county i in year t. γjt, λt, and ηt represent Province × Year, Year,

and Time fixed effects. α is the constant term. Standard errors are clustered at city level.

Reduced form results suggest that secondary (manufacturing) sector, estimation results sug-

gest a productivity loss of 5.9%. Productivity loss in primary and service sector are not

significant.

Internally Calibrated Parameters

In Panel B of Table 13, we calibrate the region-specific total factor productivity (TFP) of

primary, secondary and tertiary industry in different counties. The target is to match data

on county-level sector specific real outputs and labor force share. Although we estimate all

parameters together, we can pinpoint which parameter influences a specific outcome. For

instance, sector-specific real outputs at the county level are influenced by sector-specific

productivity, while regional amenities are determined by the labor force in each area. To

maintain consistency, we standardize the total national GDP and population to 1,000 in our

base calibration, as these factors do not impact our baseline calibration.

36



7.4 Model Prediction

In this section, we conduct a comparative analysis to illustrate the consistency between

the empirical findings and the predictions of our general equilibrium model. Our objective,

as displayed in Table 15, is to validate the model’s capability to accurately reflect the reality

of FDB counties. This comparative approach demonstrates the robustness and reliability

of our model as a tool for simulating the real-world economic scenarios. Table 15 offers a

comparison of the actual empirical results and model-predicted outcomes. Column 1 in Table

15 reports the spatial regression discontinuity result we gained in Table 12, while Column 2

reports the result we gain based on model simulation. Since the magnitude does not differ

a lot, we believe that our analysis reveals a close alignment between the model predictions

and the empirical data, which underscores the validity of our general equilibrium model.

7.5 Counterfactual Practice 1: FDB-induced Net Output Gain

In this section, we quantify three different effects: (1) sacrifice effect, which is the cost

caused to FDB counties due to the FDB policy. We could compare this with our reduced-

form results; (2) protection effect, which is the benefit brought to FDB-protected counties

due to the FDB policy; (3) the effect on total output, which is the net output gain to the

whole society due to the FDB policy. The key parameter for us to construct the counter-

factual scenario is the flood exposure in FDB counties and FDB-protected counties. In the

coutnerfactual scenario in the absence of FDB policy, flood exposure in FDB counties would

decrease, while flood exposure in protected aresa would increase.

Constructing the Counterfactual Practice

We construct the counterfactual scenario based on three steps. In the first step, we

identify flooded counties in each flood event. For each flood event, we calculate the flood

exposure, as measured by the average number of flooded days, of each county. In the second

step, for each flood event, we adjust the flood exposure distribution between FDB counties

and FDB-protected counties by redistributing flood exposure. We calculate the net output

change in different counterfactual scenarios in which the flood exposure in FDB county
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decreases by 10% - 90%. Figure 14 presents a mind map to illustrate how we construct the

counterfactual. To put it simply, without flood water diversion, flooded days in FDB counties

would decrease, and the amount of reduced days will be evenly distributed to downstream

urban cities. Based on Table 14, we have estimates of flood exposure on productivity. Hence,

we can then transform the increased flood exposure in protected areas to the increased

negative impacts on those areas. An illustrative graph is also presented in Figure 14. In

the actual case, we find that flood exposure decreased sharply in neighboring protected

counties. However, in the counterfactual case, the disparity is not evident. Finally, we

are able to construct a set of counterfactual flood events S ′ = {s′1, s′2, ..., s′J} based on the

counterfactual distribution of flood risk.

Using Hydro-dynamic Model to Determine the Actual Redistribution Rate

Although we are able to quantify the net output change given different exposure redis-

tribution rate, we cannot use economics knowledge to determine the actual flood exposure

redistribution rate. According to a hydro-logical research by Mingkai and Kai 2017, “inun-

dated farmland in the downstream would be increased to 2530 hectares, with an increased

area of 1340 hectares more than the use of the Mengwa Detention Basin.” This indicates

that inundation in protected areas would have increased by 50% if without flood water di-

version to FDB counties. However, we cannot translate it into the flood exposure decrease

in FDB counties.

To solve this issue, under the supervision of Danish Hydraulic Institute (DHI), we use a

hydro-dynamic engineering model to measure the flood exposure redistribution rate in a real

flood event. As shown in Figure 15, the inundation area of an important intended-to-protect

city, Wuhan, would increase by 45% if without flood water diversion. We specifically choose

Wuhan for analysis because we could directly transform the change in protected city to the

change in FDB counties given their similar sizes.

Based on our hydrological practice, we set the actual flood exposure redistribution rate

as 45%. Given this estimation, in the actual case, we assume flooded days in FDB counties

would decrease by 45%.
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Sacrifice Effect

In Table 16, we quantify the sacrifice effect on FDB counties by collecting βFDB in the

calibrated case and the counterfactual case from running the regression

lnYicpt = α + βFDB ∗ FDBicpt + γpt + ηt + λc + ϵc

where FDBicpt is a dummy variable that equals 1 if the county i in city c, province p, at time

t, is an FDB-county, and 0 if not. γpt is province-year fixed effect, ηt is time fixed effect, and

λc is city fixed effect. ϵc is the standard error, which is clustered at the city level.

Column 3 reports the magnitude of change in βFDB in the calibrated case and counterfac-

tual case (flood exposure redistribution rate: 45%). We compare the results on total output

with the result presented in Table 6. As shown in column (3) in Table 6, the average treat-

ment effect of FDB policy on nighttime light in FDB counties is around -10%. According to

the work of Henderson et al. (2012) on estimating the elasticity between light and GDP, we

can then translate this impact to around -3%, which is consistent with the result presented

in Column 3 of Table 16. This consistency further validates our methods of constructing the

counterfactual scenario.

Table 16 then helps us to overcome the limitation of data availability and provides us

with more results on the sacrifice effect. We find that the manufacturing output, total

capital, manufacturing capital, share of manufacturing labor, and wage decreases by 9.62%,

5.11%, 8.49%, 10.86%, and 3.76%, respectively, because of the policy given a flood exposure

redistribution rate of 45%.

More results on sacrifice effect of different flood exposure redistribution rates are pre-

sented in Figure 16.

Protection Effect

When focusing on the impact of FDB policy on FDB-protected counties, we believe

that the protection effect stems from two sources: (1) direct protection effect that protectd

counties suffer from less damage when being hit by floods; (2) indirect protection effect that

protected counties benefit from a reduced flood risk.
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In Table 17, we first estimate the direct protection effect by running the regression

lnLighticpt = α+β1Floodedicpt+β2Flooded×FDBicpt+β3Flooded×Protectedicpt+Xicpt+γpt+λc+ϵc

where lnLighticpt is the ln(nighttime light intensity) of county i in city c, province p, at time

t. Floodedicpt is a dummy variable that equals 1 if the county is flooded in year t, and 0 if

not. FDBicpt is a dummy variable that equals 1 if the county is an FDB county, and 0 if not.

Protectedicpt is a dummy variable that equals 1 if the county is an FDB-protected county,

and 0 if not. Xicpt are controls. γpt is province-year fixed effect, ηt is time fixed effect, and

λc is city fixed effect. ϵc is the standard error, which is clustered at the city level.

Following this specification, β2 measures the impact of a county being designated as

FDB county, while β3 measures the impact of a county being protected by FDB counties.

As shown in Table 17, we find that a protected county tends to suffer around 10% less when

being hit by floods. However, an FDB county tends to suffer around 18% more when being

hit by floods. This results indicates that FDB-protected counties are direct ly protected in

flood events.

However, in our general equilibrium setting, we are more interested in the indirect pro-

tection effect that those protected counties also benefit from a reduced flood risk that firms

are more willing to enter those counties. To understand the magnitude of protection effect,

in Table 18, we quantify the total protection effect on FDB-protected counties by collecting

βFDBprotected in the calibrated case and the counterfactual case from running the regression

lnYicpt = α + βFDB ∗ FDB Protectedicpt + γpt + ηt + λc + ϵc

where FDBicpt is a dummy variable that equals 1 if the county i in city c, province p, at time

t, is an FDB-protected county, and 0 if not. γpt is province-year fixed effect, ηt is time fixed

effect, and λc is city fixed effect. ϵc is the standard error, which is clustered at the city level.

Table 18 provides us with the result on protection effect. We find that total output,

manufacturing output, total capital, manufacturing capital, share of manufacturing labor,

and wage increases by 1.74%, 3.92%, 2.51%, 3.30%, 4.40%, and 4.17%, respectively, because

of the policy given a flood exposure redistribution rate of 45%.
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More results on protection effect of different flood exposure redistribution rates are pre-

sented in Figure 16.

Benefit to Cost Ratio

Finally, in Table 19, we quantify the welfare implication of the FDB policy by comparing

the total output in the calibrated case and the counterfactual scenario. Overall, we find a

0.06% increase in total output due to the FDB policy, which equates to an annual net increase

in output of around US$3billion in Huai River Basin. According to EM-DAT International

Disaster Database, the average flood damage in China is around US$8billion every year in

China. Hence, we believe that the FDB policy has substantially addressed the economic

threat imposed by floods.

We also examine the potential policy implications under two future scenarios character-

ized by heightened flood damages due to increasing risks associated with climate change.

To explore these scenarios, we amplify the productivity decline in the manufacturing sector

by 50% and 100%, respectively. In Table 13, the existing loss in the manufacturing sector

stands at approximately 14.8%. Under the projected future scenarios, if the productivity

decline due to floods escalates by 50% and 100%, respectively, the anticipated productivity

losses will reach 24.2% and 29.6%. We observe that the overall total output would rise by

0.08% and 0.11%, respectively.

Figure 17 presents the benefit to cost ratio in other flood exposure redistribution rates.

We find that the benefit to cost ratio is larger than 1, regardless of the redistribution rate.

This indicates that flooding counties to protect urbans will always generate a net gain in

output. However, as the redistribution rate increases, we also find that the benefit to cost

ratio increases, indicating that the policy will be more effective if the ability of FDB counties

absorbing flood water is stronger.

7.6 Counterfactual Practice 2: Is the current FDB policy optimal?

In the second counterfactual practice, we extend our discussion to think about whether

the policy is optimal. It would be ideal for us to provide a list of counties that are most
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suitable for flood water detention. But we are not able to complete this task because of

hydrological challenges. The optimal design given economic criteria may not be feasible if

we take geographical factors into account. Consider an extreme example. Under economic

criteria, we may assign a county far away from river as an FDB county. Even we incorporate

some geographical factors (e.g., elevation) into an economic model, the result may not be

hydrologically feasible.

Despite of the challenge, the discussion on policy optimality is intrinsically important.

We take a second-best approach by considering whether the government is over-protecting

urban cities by designating too many FDB counties. Among those 96 FDB counties, half of

them were not used for flood water diversion. Given this fact, we ask whether it is necessary

to include all of them into the FDB list. To answer this question, we follow three steps. In

the first step, we rank FDB counties in terms of their exposure-standardized productivity,

which is consistent with the proposition we have in Section 7.1. In the second step, we

successively remove FDB counties of higher productivity from the FDB list and calculate

the total output in each counterfactual scenario. In the third step, we calculate the relative

contribution of each productivity group by comparing the counterfactual with the actual

case.

In Figure 18, we present the net output gain of successively adding counties of higher

productivity. Overall, we find that the net output gain increases as we add more counties

to the list. However, according to Figure 19, we find that the relative contribution is much

higher in lower productivity groups than in higher productivity groups. County groups

ranking 0-10%, 10-20%, 25-40%, and 40-50% in terms of productivity contribute more than

10%. Specifically, county group with a rank of 10-25% and 25-40% contribute the most to

the net output gain, all above 25%. However, we find that the relative contribution of higher

productivity group is low. County group ranking 75-80% and 85-100% contribute 0% and

3%, respectively.

On the one hand, we do not find counter-evidence to indicate that the inclusion of higher

productivity counties is imposing negative effects on total outputs as the net output gain

is increasing with the number of included FDB counties. On the other hand, however,

the relative contribution of adding higher productivity counties is small. In terms of total
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outputs, it may be cost beneift efficient. However, if considering other non-monetary costs,

then it may not be efficient because those counties may experience other costs that we are

not able to measure in this study.

Overall, we suggest that the Chinese government is over protecting urban areas from

floods by designating too many counties as FDB counties. Removing counties of higher

productivity will not cause significant losses in output, but may save those counties from

suffering both monetary and non-monetary costs.

8 Conclusion

Flood disasters, especially prevalent in developing countries like China and India, sig-

nificantly impact individuals, highlighting the critical need for effective flood management

strategies. The construction of Flood Detention Basins (FDBs) is one such policy imple-

mented to mitigate the severe effects of river floods in China. FDBs, strategically placed in

low-lying areas, are designed to temporarily hold excess floodwaters, thus protecting down-

stream regions at the expense of increasing flood risks in the designated areas. This policy,

while crucial for minimizing overall flood damage, prompts a reevaluation of the economic

sacrifices made by communities within these basins, impacting over 15 million people across

various provinces and municipalities.

Chinese government states that residents living in FDB counties have made substantial

sacrifice for the greater good. Our study quantitatively examines the economic costs and

welfare gains of the FDB policy. We find that although the policy has improved the eco-

nomic resilience against floods, it has also induced economic inequality between between

FDB counties and their non-FDB counterparts. Firstly, our identification reveals that coun-

ties designated as FDB counties by the Chinese government in 2000 experience enduring

negative effects on their economic development. On average, nighttime light intensity in

FDB counties declined by roughly 9% annually over the long term. Based on our calcu-

lations, this translates to an annual GDP loss of around US$10 billion in FDB counties.

Secondly, in studying the mechanism, we find that firms have less incentives to enter and

invest in FDB counties due to their increased flood risks. Post-2010 FDB designation, our
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synthetic DiD estimates show a significant average annual decline in new manufacturing firm

entries by 24.5%. Spatial regression discontinuity analysis indicates a roughly 20% gap in

fixed asset investment between FDB counties and their neighboring counties, and this gap

only emerged immediately after the 2010 policy change. Thirdly, our analysis employs a

general equilibrium model to assess whether the FDB policy has yielded an overall increase

in net output. Our counterfactual practice indicates that a benefit-to-cost ratio of around

3.5, based on estimation derived from hydro-dynamic engineering model.

Our research has two major policy implications. First, our research highlights a critical

insufficiency in the Chinese government’s compensation on FDB counties. Since 2000, many

counties has started to absorb floodwaters, thereby protecting other regions from flood dam-

age. However, the provision of governmental compensation for the affected counties began

only 13 years later, in 2013. Moreover, the compensation focused solely on compensating for

direct losses caused by flood inundation, such as damage to agricultural crops, and residential

houses. Firms, however, are not compensated. Overall, the compensation could not account

for 20% of the total loss. Our findings suggest that this compensation falls markedly short

of addressing the full economic costs induced by the FDB policy. The substantial long-term

economic costs have not been adequately compensated by the Chinese government. Based

on our policy, we recommend Chinese government to provide adequate compensations to

FDB counties.

Second, the findings of our study on China’s Flood Detention Basin (FDB) policy offer

insights for other nations contemplating similar flood risk management strategies. The evi-

dence suggests that while such policies can provide broader regional protection from floods,

they may come with significant long-term economic costs for the areas designated to ab-

sorb flood risks. For countries considering the adoption of analogous policies, it is crucial

to recognize the potential for creating economic disparities and to weigh these against the

intended benefits of reduced flood risk. Policymakers must ensure that robust compensatory

mechanisms are in place to support affected regions, mitigating the economic sacrifices made

by FDB-designated areas. In sum, while such policies can be an effective component of a

comprehensive flood risk management strategy, they should be implemented with careful

consideration of their distributional impacts.
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9 Figures and Tables

(a) Flood Risk Distribution in China (b) Nighttime Light in China

Figure 1: Richer regions in China face higher river flood risk.

Figure 2: FDB Counties and FDB-Protected Districts in Huai River Basin
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Table 1: Flood Detention Basins in the Main River Basins of China (2000)

River Basin Number of FDBs Affected Population Total Area Storage Capacity
(million) (Km2) (billion m3)

Yangtze 40 6.12 11,959 63.6
Yellow 5 3.18 5,212 12.9
Hai 26 4.40 9,597 17.2
Huai 26 1.61 3,674 14.1

Total 97 15.3 30,443 107.7
% of China 1.1% 0.3%

Note: (1) This table reports the number of FDBs, affected population, total FDB areas,
and the storage capacity of FDBs in 2003; (2) ‘% of China’ refers to the percentage of
affected population to the whole population in China and the percentage of total area to
the total area of China.

Table 2: Number of FDBs under 2000 and 2010 Policy

FDBs Located in:

Rivers N(FDBs) N(Provinces) N(Municipalities*) N(Cities) N(Counties)

2000 Policy
Yangtze 40 4 0 10 28
Hai 26 3 2 11 37
Huai 26 2 0 9 19
Yellow 5 2 0 6 12
Total 97 8 2 36 96

2010 Policy
Yangtze 44 5 0 11 31
Hai 28 3 2 11 39
Huai 21 3 0 14 24
Yellow 2 2 0 5 8
Songhua 2 1 0 2 3
Zhu 1 1 0 1 1
Total 98 11 2 44 106
∆(2010-2000 ) 1 3 0 8 10

Note: (1) The term ‘2000 Policy’ refers to the National Flood Control Law implemented
by China’s Ministry of Water Resources in 2000, and ‘2010 Policy’ to its subsequent update
in 2010; (2) The ‘Total’ number might differ from the sum because some basins span mul-
tiple provinces, cities, and counties; (3) The term ‘Municipalities*’ denotes municipalities
directly governed by China’s Central Government, specifically Beijing and Tianjin in this
study; (4) Under the 2000 Policy, provinces designated as Flood Detention Basin (FDB) re-
gions included Hunan, Hubei, Anhui, Henan, Hebei, Shandong, Jiangxi, and Jiangsu. The
2010 Policy expanded this list to include Heilongjiang, Jilin, and Guangdong.
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Table 3: Descriptive Statistics: FDB Counties and non-FDB Counties

Mean Unit FDB Counties non-FDB Counties
N(Counties) 116 2,363
N(obs) 2,709 55,729
Geographical Factors:
Slope 6.14 12.46
Elevation 45.24 561.28
N(Permanent Water Pixels) 1136.33 388.77
Floods:
Size-Adjusted Flood Exposure days 0.126 0.020
Size of Flood Inundation pixels 5,024.44 679.98
Socio-Economic Variables:
Population thousands 853.41 632.80
Nighttime Light Intensity 1,676,066 1,259,737
Number of Firms 5,669.49 5,496.63

Note: (1) We use a county panel of 20 years (2000 - 2020); (2) Detailed introduction of
data used in this research can be found in Section 3.1; (3) From 2000 to 2020, a total of
116 counties have been designated as FDB counties. In 2000, the government selected
96 FDB counties. In 2010, the government selected another 20 counties into the FDB
list, but removed 10 from the list.

Figure 3: Size-Adjusted Flood Exposure in FDB and non-FDB Counties

Note: (1) The size-adjusted flood exposure is calculated using Global Flood Database. Detailed calculation

procedure is introduced in Section 3.1; (2) ‘Size-Adjusted Flood Exposure’ measures the average days of

inundation experienced by a non-permanent water pixel in a county.
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Table 4: FDB Selection Criteria: Logit Model

(in logarithm) (1) (2) (3) (4) (5)

Elevation −1.377*** −1.386***
(0.000) (0.435)

Gradient −2.301*** 0.013
(0.000) (0.866)

Precipitation −0.155 0.016
(0.176) (0.933)

Manufacturing Output 0.059 0.080
(0.071) (0.076)

N(obs) 6,330 6,330 6,330 6,330 6,330
R2 0.247 0.210 0.147 0.140 0.248

Fixed Effects
Province-Year Y Y Y Y Y
City Y Y Y Y Y

Note: (1) We use a county panel of 20 years (2000 - 2019); (2) The dependent variable is a dummy
FDBi that equals 1 if the county i has a Flood Detention Basin, and equals 0 if not; (3) All regressions
control for city fixed effects and province-by-year fixed effct; (4) Standard errors are clustered at the
county level.
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Table 5: Impacts of FDB Policy on Flood Exposure

Flood Inundation Size Size-Adjusted Flood Exposure

Sample Period: 2000-2020 (1) (2) (3) (4)

FDB 0.602*** 0.547*** 0.050*** 0.043***
(0.090) (0.087) (0.010) (0.010)

N(obs) 52,307 52,307 52,307 52,307

Controls
Precipitation Y N Y Y
Slope Y N Y Y
Elevation Y N Y Y

Fixed Effects
Year Y Y Y Y
City Y Y Y Y

Note: (1) This table presents results of fixed-effect regression: ln(Flood)ijt = α + β1FDBijt +
γj + λt + ϵj , ln(Flood)ijt indicates flood-related outcomes in county i, city j, at year t, FDBijt is a
dummy variable that equals 1 if the county i is an FDB county in year t, and 0 if not, γj is city fixed
effect, λt is time fixed effect, standard errors are clustered at the county level; (2) We have two types
of flood-related outcomes. ‘Size of Flood Inundation’ measures the area of flood inundation in each
county, while ‘Size-Adjusted Flood Exposure’ measures the average days of flood inundation experi-
enced by a non-permanent water pixel in a county. Detailed calculation is introduced in Section 3.1.
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Figure 4: Dynamic Impacts of 2010 FDB Policy Change on Size of Flood Inundation

Note: (1) The event-study figure is based on SDID approach by Arkhangelsky et al. (2021); (2) The event-
study regression includes county and year fixed effects; (3) Standard Error: Bootstrap; (4) ‘Size of Flood
Inundation’ is calculated using the Global Flood Database (detailed calculation in Section 3.1), and it refers
to the size of flood inundation area in a county; (5) In 2013, both northeast and southwest China have
experienced sever floods.
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Table 6: Main Results: Impacts of FDB on Nightime Light Intensity

Selection into FDB Removal from FDB

(ln) All 2000 Cohort 2010 Cohort

Panel A: Method - Traditional TWFE Difference-in-Differences
(1) (2) (3) (4)

βTWFE
Selection −0.176*** −0.137*** −0.078*

(0.056) (0.035) (0.045)

βTWFE
Removal −0.052

(0.074)
R-squared 0.919 0.939 0.928 0.927
Sample Period 1990-2020 1990-2010 2000-2020 2000-2020
N(obs) 70,463 46,680 47,208 50,148
N(Treated Counties) 106 86 20 10

Panel B: Method - Synthetic Difference-in-Differences (Arkhangelsky et al. 2021)
(1) (2) (3) (4)

βSDID
Selection −0.156*** −0.107*** −0.078**

(0.025) (0.015) (0.039)

βSDID
Removal −0.003

(0.064)

Sample Period 1990-2020 1990-2010 2000-2020 2000-2020
N(obs) 70,463 46,680 47,208 50,148
N(Treated Counties) 106 86 20 10

Control Group Selction
Never Treated Counties Y Y Y Y
Spillover Counties N N N N
Always Treated Counties / / N N
2010 Selected FDB Counties / / / N
2010 Removed Counties N N N /

Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) ‘Selection into FDB’ indicates the treatment of selecting counties into the FDB list in both
2000 and 2010, ‘Removal from FDB‘ indicates the treatment of removing counties from the FDB list,
solely in 2010; (2) All’ includes two treated groups: counties selected into the FDB list in 2000, and in
2010, ‘2000 Cohort’ focuses only on counties selected into the FDB list in 2000, ‘2010 Cohort’ focuses
only on counties selected into the FDB list in 2010; (3) We deliberately select control groups to remove
possibly spillover groups and groups that receive other treatments.
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Figure 5: Dynamic Impacts of Selection into FDB List on Nighttime Light Intensity
Method: Traditional TWFE DID

Note: (1) Each dot represents the policy effect (ATT) estimated using the event-study approach; (2) Data:
1990-2020 Nighttime Light Intensity data; (3) 96 counties were selected into the FDB list in 2000, while 20
counties were selected into the FDB list in 2010; (3) The event-study regression includes county and year
fixed effects, standard errors are clustered at county level; (4) We report the confidence interval at 95%
confidence level.
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Figure 6: Dynamic Impacts of 2000 and 2010 FDB Policy Change on Light Intensity

Note: (1) Each dot represents the policy effect (ATT) estimated using the SDID event-study approach
by Arkhangelsky et al. (2021)); (2) Data: 1990-2020 Nighttime Light Intensity data; (3) 96 counties were
selected into the FDB list in 2000, while 20 counties were selected into the FDB list in 2010; (3) The event-
study regression includes county and year fixed effects; (4) Standard Error: Bootstrap.
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Figure 7: Event Study Robustness Check

Note: (1) Each dot represents the policy effect (ATT) estimated using different event-study approach; (2)
‘TWFE’ represents the traditional two-way-fixed-effects approach, ‘C&D’ refers to the two-way fixed effects
estimators with heterogeneous treatment effects proposed by de Chaisemartin and D’Haultfœuille (2020),
‘Gardner’ refers to the two-stage DID approach by Gardner (2022), ‘C&S’ refers to the DID with multiple
time periods by Callaway and Sant’Anna (2021); (3) Data: 1990-2020 Nighttime Light Intensity data; (4)
96 counties were selected into the FDB list in 2000, while 20 counties were selected into the FDB list in
2010; (5) The event-study regression includes county and year fixed effects, standard errors are clustered at
county level; (6) We report the confidence interval at 95% confidence level.
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Table 7: Robustness Check using Different DID Methods

TWFE SDID C&D Gardner C&S
(1) (2) (3) (4) (5)

FDB −0.176*** −0.156*** −0.115*** −0.182*** −0.147***
(0.056) (0.025) (0.030) (0.064) (0.040)

N(obs) 70,463 70,463 70,463 70,463 70,463

Fixed Effects
Year Y Y Y Y Y
County Y Y Y Y Y

Note: (1) Each point estimate represents the policy effect (ATT) estimated using different
difference-in-differences (DID) approach, ‘TWFE’ represents the traditional two-way-fixed-effects
approach, ‘SDID’ refers to the synthetic DID proposed by Arkhangelsky et al. (2021), ‘C&D’
refers to the two-way fixed effects estimators with heterogeneous treatment effects proposed by
de Chaisemartin and D’Haultfœuille (2020), ‘Gardner’ refers to the two-stage DID approach by
Gardner (2022), ‘C&S’ refers to the DID with multiple time periods by Callaway and Sant’Anna
(2021); (2) Data: 1990-2020 Nighttime Light Intensity data; (3) 96 counties were selected into the
FDB list in 2000, while 20 counties were selected into the FDB list in 2010; (3) All regressions in-
cludes county and year fixed effects, standard errors are clustered at county level in Column (1),
and (3) - (5), standard errors in Column (2) is set to be bootstrap; (4) The selection of control
group is consistent with Column (1) in Table 6.
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Figure 8: Placebo Test

Note: (1) This figure presents results of three distinct types of placebo tests of the traditional TWFE DID:
the in-time placebo test, the in-space placebo test, and the mixed placebo test; (2) In the in-time placebo
tests, we forward the treatment time by several years, using fake treatment times to assess if our results
are driven by temporal trends rather than the actual intervention; (3) For the in-space placebo tests, we
assign treatment to randomly selected units that did not receive the intervention, testing the robustness of
our findings against spatial confounding factors; (4) The mixed placebo tests combine both approaches by
randomly assigning fake treatment units and times.
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Figure 9: Dynamic Impacts of 2010 FDB Policy Change on Registered Population

Note: (1) Each dot represents the policy effect (ATT) estimated using the SDID event-study approach by
Arkhangelsky et al. (2021)); (2) Data: 2000-2020 county-level statistical yearbook; (3) 20 counties were
selected into the FDB list in 2010, while 10 counties were removed from the FDB list in 2010; (3) The
event-study regression includes county and year fixed effects; (4) Standard Error: Bootstrap; (5) ‘Registered
population’ refers to the population who registers as the official resident of the county.
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Table 8: Impacts of 2010 FDB Policy Change on Registered Population

Selection into FDB List Removal from FDB List

Sample Period: 2000-2020 (1) (2) (3) (4)

βSDID
Selection −0.020 −0.020

(0.039) (0.030)

βSDID
Removal 0.021 0.021

(0.019) (0.052)

Standard Error Bootstrap Placebo Bootstrap Placebo
N(obs) 43,050 43,050 43,050 43,050
N(Treated Counties) 20 20 10 10

Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) We use SDID approach by Arkhangelsky et al. (2021); (2) Data: 2000-
2020 county-level statistical yearbook; (3) 20 counties were selected into the FDB
list in 2010, while 10 counties were removed from the FDB list in 2010; (3) We
use two types of standard errors (bootstrap and placebo), county and year fixed
effects are included; (4) ‘Registered population’ refers to the population who reg-
isters as the official resident of the county.
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Figure 10: Heterogeneous Impact of 2010 Policy Change on Nighttime Light Intensity
Method: SDID (Arkhangelsky et al. 2021)

Note: (1) Each dot represents the policy effect (ATT) estimated using the event-study approach; (2) Data:
1990-2020 Nighttime Light Intensity data; (3) 96 counties were selected into the FDB list in 2000, while
20 counties were selected into the FDB list in 2010; (3) The event-study regression includes county and
year fixed effects, standard errors are clustered at county level; (4) We report the confidence interval at
95% confidence level; (5) We classify FDB counties into three categories: Important, General, and Reserved
according to the government classification. The likelihood of being flooded is the highest for Important
FDBs, and the lowest for Reserved FDBs.
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Table 9: Heterogeneous Impacts of FDB on Nightime Light Intensity

Type of FDBs

All Sample Reserved FDB General FDB Important FDB
Sample Period: 1900-2020 (1) (2) (3) (4)

βSDID
Selection −0.156*** −0.308*** −0.166*** −0.116***

(0.025) (0.079) (0.043) (0.043)

N(obs) 70,463 69,316 69,998 69,657
N(Treated Counties) 106 16 46 44

Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) We use the SDID appraoch proposed by Arkhangelsky et al. (2021); (2) Data: 1990-2020
Nighttime Light Intensity data; (3) 96 counties were selected into the FDB list in 2000; (3) The
event-study regression includes county and year fixed effects; (4) Standard Error: Bootstrap; (5) We
also report the confidence interval at 95% confidence level; (6) We classify FDB counties into three
categories: Important, General, and Reserved according to the government classification. The like-
lihood of being flooded is the highest for Important FDBs, and the lowest for Reserved FDBs.
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Figure 11: Dynamic Impacts of 2010 FDB Policy Change on Manufacturing and
Agricultural Output

Note: (1) Each dot represents the policy effect (ATT) estimated using the SDID event-study approach
by Arkhangelsky et al. (2021); (2) Data: 2000-2020 county-level statistical yearbook; (3) 20 counties were
selected into the FDB list in 2010; (3) The event-study regression includes county and year fixed effects; (4)
Standard Error: Bootstrap.
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Table 10: Impacts of 2010 FDB Policy Change on Agricultural and Manufacturing Output

ln(Agricultural Output) ln(Manufacturing Output)

Sample Period: 2000-2020 (1) (2) (3) (4)

βSDID
Selection 0.003 0.003 −0.182*** −0.182***

(0.059) (0.054) (0.087) (0.081)

Standard Error Bootstrap Placebo Bootstrap Placebo
N(obs) 39,354 39,354 39,354 39,354
N(Treated Counties) 20 20 20 20

Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) We use SDID approach by Arkhangelsky et al. (2021); (2) Data: 2000-2020
county-level statistical yearbook; (3) 20 counties were selected into the FDB list in 2010;
(3) We use two types of standard errors (bootstrap and placebo), county and year fixed
effects are included.
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(a) Outcome: ln(Number of Registered Firms)

(b) Outcome: ln(Number of Large Manufacturing Firms)

Figure 12: Dynamic Impacts of 2010 FDB Policy Change on Firm Entry

Note: (1) Each dot represents the policy effect (ATT) estimated using the SDID event-study approach by

Arkhangelsky et al. (2021)); (2) Panel A Data: 2000-2020 NECIPS; Panel B data: 2000-2020 county level

statistical yearbooks; (3) 20 counties were selected into the FDB list in 2010, while 10 counties were removed

from the FDB list in 2010; (3) The event-study regression includes county and year fixed effects; (4) Standard

Error: Bootstrap; (5) Larger Manufacturing Firms refer to firms whose annual revenue exceeds US$ 3million.
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Table 11: Impacts of 2010 FDB Policy Change on Firm Entry

Selection into FDB List Removal from FDB List

Sample Period: 2000-2020 (1) (2) (3) (4)

Panel A: Outcome - ln(Number of Registered Firms)
βSDID
Selection −0.159*** −0.159***

(0.059) (0.071)

βSDID
Removal 0.168* 0.168

(0.095) (0.138)

Standard Error Bootstrap Placebo Bootstrap Placebo
N(obs) 58,191 58,191 58,191 58,191
N(Treated Counties) 20 20 10 10

Panel B: Outcome - ln(Number of Larger Manufacturing Firms)
βSDID
Selection −0.217*** −0.217***

(0.088) (0.117)

βSDID
Removal 0.141 0.141

(0.107) (0.116)

Standard Error Bootstrap Placebo Bootstrap Placebo
N(obs) 41,160 41,160 41,160 41,160
N(Treated Counties) 20 20 10 10

Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) We use SDID approach by Arkhangelsky et al. (2021); (2) Panel A Data: 2000-
2020 National Enterprise Credit Information Public System (NECIPS); Panel B data: 2000-
2020 county level statistical yearbooks; (3) 20 counties were selected into the FDB list in
2010, and 10 counties were removed from the FDB list in 2010; (3) We use two types of
standard errors (bootstrap and placebo), county and year fixed effects are included.
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(a) Spatial Regression Discontinuity (Imbens and Wager 2019)

(b) Dynamic Spatial Regression Discontinuity

Figure 13: FDB v.s. Neighboring non-FDB Counties: Firm-Level Fixed Assets Investment

Note: (1) A positive distance indicates firms located within FDB counties, while a negative distance indicates

firms located outside the border of FDB counties; (2) Industry and county fixed effects are absorbed before

plotting the regression discontinuities; (3) FDB counties refer to those selected into the FDB list in 2010.
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Table 12: Spatial Regression Discontinuity: Fixed Assets Gap

ln(Gap in Fixed Assets Investment)

Selection into FDB List: Removal from FDB List:

(1) (2) (3) (4) (5) (5)

Panel A: No Control
RD −0.403*** −0.315*** −0.368*** 0.553*** 0.593*** 0.631***

(0.100) (0.111) (0.126) (0.146) (0.147) (0.149)
Bandwidth 4.387 3.707 2.863 4.751 4.435 3.894

Panel B: County FE + Industry FE Absorbed
RD −0.217*** −0.166** −0.179* 0.279** 0.285** 0.257*

(0.078) (0.084) (0.097) (0.129) (0.131) (0.148)
Bandwidth 4.883 4.294 3.360 4.629 4.314 3.516

Panel C: County by Industry FE Absorbed
RD −0.190*** −0.203*** −0.197*** 0.258** 0.271** 0.276**

(0.065) (0.071) (0.077) (0.124) (0.124) (0.127)
Bandwidth 5.933 5.155 4.189 4.659 4.405 3.834

N(obs) 46, 044 46, 044 46, 044 16, 759 16, 759 16, 759
Kernel Triangle Epanech Uniform Triangle Epanech Uniform

Note: (1) Each coefficient represents a separate RD regression; (2) The running variable is the distance between a firm and the
border of a corresponding FDB county, where negative (positive) means firms are located outside (within) FDB counties; (3)
Negative coefficients indicate a negative gap between newly selected FDB counties and neighboring counties, positive coefficients
indicate a positive gap between newly delisted FDB counties and neighboring counties; (4) The discontinuities are estimated us-
ing local linear regressions and MSE-optimal bandwidth proposed by Calonico et al. (2014); (5) Standard errors are clustered at
the county level.
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Table 13: Calibration Targets

Parameter Numbers Value Source/Targeted Moments

Panel A: Exogenously Calibrated Parameters Source:
N - Number of regions 1 176 Number of counties in Huai River Basin
L̄ - Labour force 1 1,000 Standardized to 1,000
σ - Elasticity of substitution across varieties 1 5 Head et al. (2014)
β - Discount factor 1 0.95 Steady-state interest of 5%
ξ1 - Share of agricultural consumption 1 0.117 Chinese National Bureau of Statistics
ξ3 - Share of service consumption 1 0.422 Chinese National Bureau of Statistics
pr(st) - Natural flooding event probability 7 0.12(0.21) Precipitation and Flood Event (2000-2009)
dni - Transportation costs N2 1.23(0.04) Geodesic distances
α - Factor share of capital 1 0.5 Factor shares of secondary and tertiary industries

Immediate Loss from Flood Inundation:
ϵA - Primary productivity loss 1 0 Estimation
ϵM - Secondary productivity loss 1 -0.059 Estimation

Panel B: Internally Calibrated Parameters Targeted Moments:

z̄An - Region-specific primary productivity N 0.83(0.34) County-level real primary outputs
¯zMn - Region-specific secondary productivity N 0.29(0.12) County-level real secondary outputs

z̄Sn - Region-specific tertiary productivity N 0.21(0.22) County-level real tertiary outputs
Bn - Local amenity N 5.05(0.23) County-level labour force share

Note: (1) ‘Estimation’ refers to the regression: Ysicjt = α + β1Floodedicjt + γjt + λt + ηc + ϵc, where Ysicjt refers to the
productivity of sector s in county i, city c, province j and year t, Floodedicjt is the dummy variable that equals 1 if the
county is flooded in year t, α is the constant term, γjt, λt, and ηt are Province × Year, Year, and Time fixed effects, stan-
dard errors are clustered at city level; (2) ϵA is set to 0 because of insignificant β1.
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Table 14: Flood Impact on Productivity

(ln) Total Productivity Manufacturing Productivity

Size-adjusted Flooded Days −0.043** −0.059*
(0.021) (0.032)

N(obs) 1,283 1,283

Fixed Effects
Province Y Y
City Y Y

Note: (1) FDB is a dummy that equals 1 if the county i has once labeled as a
Flood Detention Basin county, and equals 0 if not; (2) All regressions control for
city fixed effects, province-by-year fixed effects, and a set of county-level controls
(land area, population, and precipitation); (3) Standard errors are clustered at the
county level.

Table 15: Comparison of Actual and Model-generated Regression Results

Actual Data: Model Simulation:

(in logarithm) Fixed Assets/Worker Capital/Worker
(1) (2)

FDB -0.197*** -0.175***
(0.077) (0.036)

N(obs) 46,044 1,936

Note: (1) Column 1 is extracted from Column (3) in Panel C
of our regression discontinuity regression in Table 12; (2) Col-
umn 2 is based on our model prediction; (3) The consistency
between those two estimates indicate that our model can well
predict the fixed assets per worker.
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Figure 14: Mind Map
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(a) Actual Case: Inundation in Wuhan City

(b) Counterfactual Case: Inundation in Wuhan City

Figure 15: Inundation Map in Wuhan City (Actual v.s. Counterfactual)

Note: (1) The map is drawn using MIKE hydrological modelling software launched by Danish Hydraulic

Institute (DHI); (2) Model: hydro-dynamic model; (3) We select Wuhan city because this city is a major

protected city by FDBs in Yangtze Rivers; (4) The flood exposure redistribution rate based on this estimation

is 45%.
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Table 16: Quantification of Sacrifice Effect (Actual v.s. Counterfactual)

βFDB :

A.Calibration B.Counterfactual |Diff/A|(%)
(1) (2) (3)

Output: Total −0.030*** −0.029*** 3.46%
Output: Manufacturing −0.468*** −0.427*** 9.62%

Capital: Total −0.251*** −0.239*** 5.11%
Capital: Manufacturing −0.373*** −0.344*** 8.49%

Share of Manufacturing Labor −0.052*** −0.048*** 10.86%
Wage −0.373*** −0.359*** 3.76%

Note: (1) In the counterfactual case, we redistribute 45% of the flood risk to FDB-
protected counties; (2) We collect βFDB from running the regression ln(Output)icpt =
α + βFDB ∗ FDBicpt + γpt + ηt + λc + ϵicpt, where FDBicpt is a dummy that equals
1 if the county is an FDB-county, and 0 if not, γpt is province-year fixed effect, ηt is
time fixed effect, and λc is city fixed effect; (3) The ‘|Diff/A|(%)’ can be interpreted
as the ‘sacrifice effect’, which is the impact of FDB policy on different outcomes in
FDB counties.
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Table 17: Reduced Form: Direct Protection Effect

ln(Nighttime Light Intensity)

Flooded −0.053** −0.048* −0.055* −0.059*
(0.027) (0.027) (0.031) (0.032)

Flooded × FDB −0.177* −0.180*
(0.092) (0.067)

Flooded × Protected 0.105* 0.104*
(0.061) (0.067)

N(obs) 5,242 5,242 5,242 5,242
R2 0.888 0.887 0.887 0.888

Fixed Effects
Province-Year Y Y Y Y
City Y Y Y Y
Controls
Demographic Y Y Y Y
Geographical Y N Y N

Note: (1) FDB is a dummy that equals 1 if the county i has once labeled as
a Flood Detention Basin county, and equals 0 if not; (2) All regressions con-
trol for city fixed effects, province-by-year fixed effects, and a set of county-
level controls (land area, population, and precipitation); (3) Standard errors
are clustered at the county level.
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Table 18: Quantification of Protection Effect (Actual v.s. Counterfactual)

βFDB−Protected :

A.Calibration B.Counterfactual |Diff/A|(%)
(1) (2) (3)

Output: Total 0.983*** 0.967*** 1.74%
Output: Manufacturing 1.304*** 1.255*** 3.92%

Capital: Total 0.750*** 0.732*** 2.51%
Capital: Manufacturing 1.044*** 1.011*** 3.30%

Share of Manufacturing Labor 0.138*** 0.132*** 4.40%
Wage 0.544*** 0.522*** 4.17%

Note: (1) In the counterfactual case, we redistribute 50% of the flood risk
to FDB-protected counties; (2) We collect βProtected from running the regression
ln(Output)icpt = α + βProtected ∗ FDB-Protectedicpt + γpt + ηt + λc + ϵicpt, where
FDB-Protectedicpt is a dummy that equals 1 if the county is an FDB-protected county,
and 0 if not; (3) The ‘|Diff/A|(%)’ can be interpreted as the ‘protection effect’, which
is the impact of FDB policy on different outcomes in FDB-protected counties.

Figure 16: Sacrifice Effect and Protection Effect
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Table 19: Total Output in Actual and Counterfactual Case

Current Case: Future Flood Risk Increases by:

Actual - Counterfactual: 50% 100%
(1) (2) (3)

Sacrifice Effect on FDB Counties (βFDB < 0)
∆(βFDB) 3.46% 4.79% 5.84%

Protection Effect on FDB-protected Counties (βProtected > 0)
∆(βProtected) 1.74% 2.51% 3.15%

Overall Economy:
∆(Total Output) 0.06% 0.08% 0.11%

Note: (1) We collect βFDB from running the regression ln(Output)icpt =
α+βFDB ∗FDBicpt+γpt+ηt+λc+ϵicpt, where FDBicpt is a dummy that equals
1 if the county is an FDB-county, and 0 if not, γpt is province-year fixed effect,
ηt is time fixed effect, and λc is city fixed effect; (2) We collect βProtected from
running the regression ln(Output)icpt = α + βProtected ∗ FDB-Protectedicpt +
γpt + ηt + λc + ϵicpt, where FDB-Protectedicpt is a dummy that equals 1 if the
county is an FDB-protected county, and 0 if not; (3) The coefficient in Column
(1) is the same as the coefficient in Column (3) in Table 16 and Table 18.

Figure 17: Benefit to Cost Ratio
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Figure 18: Counterfactual Practice: Successively Adding Counties

Figure 19: Relative Contribution of Different Productivity Groups
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A Appendix

A.1 Example of FDB Implementation (Mengwa FDB)

Extreme floods in primary river basins like the Changjiang, Yellow, Huai, and Hai Rivers

have effectively utilized flood basins to mitigate damage either wholly or in part. These

Flood Detention Basins have been employed to accommodate floodwaters, thereby lowering

peak flood levels. The success in flood alleviation using these detention areas establishes this

method as a central strategy for flood risk reduction in China.

Figure A1: Wangjiaba Location (Source: Zhang and Song 2014)

In scenarios where river or lake water levels surpass state-defined flood diversion bench-

marks, necessitating the use of flood storage basins, specific governmental and flood control

entities are authorized to make decisions in line with approved flood control plans. Any in-

terference or delays in the activation of these basins are prohibited, with local governments

having the authority to enforce their usage.

To illustrate the function of FDBs, we look at flood management in the Huai River Basin

(HRB). Located in the transition zone between the southern and northern climates of China,

the Huai River Basin experiences dramatic climate changes, resulting in precipitation that

varies both spatially and temporally. 70% of the precipitation is concentrated in the flood
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season from June to September. Due to the unique geographical condition of the HRB,

flooding is frequent. For example, the HRB has seen floods in six years in the 1990s.

In 2007, a high-intensity rainfall hit the HRB and the average rainfall reached 465 mm.

The precipitation led to multi-peak flooding in the Huaihe River and threatened the down-

stream areas of the Flood Detention Basin. When the water level reached 29.3m on July 10,

the government raised the flood severity level to the highest and operated the Wangjiaba

Dentention Basin. The basin diverted water for 46 hours and stored flood with a volume of

250 million cubic meters. Even though the downstream land is protected, the use of Mengwa

resulted in a forced migration of more than 3,000 people, an inundation of more than 12,000

hectares of farmland, and destruction of all Wangjiaba infrastructure. According to Chinese

government, the 2007 flood affected around 2.5 million hectares of crops and caused a direct

economic loss of around 2.5 billion USD, which is around 50 % less than the flood loss in

1991. The decrease in economic loss is largely contributed to the operation of FDBs.

Figure A2: Pre and Post Detention of Wangjia Dam (Source: NetEase Media)
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A.2 Global Flood Database

Figure A3: An Illustrative Example of Global Flood Database

A.3 Proof of Proposition 1

Given flood event µ = {τs, τp}, we can rewrite the investor’s optimization problem in

state-contingent form:

max
c0,as,ap,b,c1(µ)

c0 + βEµc1(µ)

s.t. c0 +
∑
i=s,p

ai + b = W

c1(µ) =
∑
i=s,p

(1 + ri(µ))ai + (1 + rf )b

The first-order conditions of the optimization problem yields the optimal asset positions

{ai}i=s,p:

∑
µ

Pr(µ)[1 + ri(µ)] = 1 + rf

where the actual investment returns ri(µ) are determined by intrinsic capital productivity

in the local area r̄i and flood damage under event µ:
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ri(µ) = r̄i − FloodDamage(µ)

Plugging the actual investment return expressions into the Euler equation yields:

r̄i − rf =
∑
µ

Pr(µ)FloodDamage(µ)

Assume that the county-specific events τi are independently distributed, then we get the

pricing functions for county-specific assets {ai}i=s,p are given by:

r̄i − rf = pid (16)

The intrinsic capital productivity of county i is given by the following optimization prob-

lem:

max
ki

zik
α
i − r̄iki

Combined with market clearing conditions ki = ai, the intrinsic capital return r̄i is given

by:

r̄i = αzia
α−1
i

Plugging it into equation (21), it yields:

ai =
αzi

rf + pid

1
1−α

Consider a FDB policy that reallocates dp > 0 flood risk from protected county dpp = −dp

to sacrificed county dps = dp. Assume that zp
(ppd+rf )2−α > zs

(psd+rf )2−α . The impacts on

aggregate capital investments and investment gap can be described by:

d(ap + as)

dp
=

d

1− α

[
αzp

(rf + ppd)2−α

1
1−α − αzs

(rf + psd)2−α

1
1−α

]
> 0
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d|ap − as|
dp

=
d

1− α

[
αzp

(rf + ppd)2−α

1
1−α

+
αzs

(rf + psd)2−α

1
1−α

]
> 0
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