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Abstract

Building on a recently developed methodology for sensitivity analysis that parametrizes omitted variable
bias in terms of partial R2 measures, I propose a simple statistic to capture the severity of omitted variable
bias in any observational study: the probability of omitted variable bias overturning the reported result. The
central element of my proposal is formal covariate benchmarking, whereby researchers choose an observed
regressor (or a group of observed regressors) to benchmark the relative strength of association of the omitted
regressor with the outcome variable and with the treatment variable. These relative strengths of association
function as the two sensitivity parameters of the analysis. By allowing these sensitivity parameters to take
all permissible values, we get the most conservative estimate of the probability that omitted variable bias
can overturn the reported results. By using absolute and relative limits on the maximum values of the
sensitivity parameters based on institutional knowledge or other details of the particular study, a researcher
can generate less conservative estimates of that probability. For empirical studies with relatively large number
of regressors and sample sizes, I suggest bounds for the sensitivity parameters based on simulation studies.
I illustrate the methodology using an empirical example that studies the effect of exposure to violence on
attitudes towards peace.
Keywords: omitted variable bias; sensitivity analysis.
JEL Codes: C20.

1 Introduction

In many disciplines, like economics, epidemiology, political science, public health, sociology, etc., it is of

utmost importance to estimate causal effects from observational data, e.g. the causal effect of years of

schooling on wages (Card, 2001), the causal effect of class size on student scores (Angrist and Lavy, 1999),

the causal effect of exposure to violence on attitudes towards peace (Cinelli and Hazlett, 2020), or the causal

effect of breastfeeding on child outcomes (VanderWeele and Ding, 2017; Oster, 2019). In each of these cases,

and in observational studies more generally, to distinguish between correlation and causation researchers

need to take account of unmeasured confounders (omitted variables), i.e. unobserved variables that are

correlated both with the treatment and outcome variables. When plausible instrumental variables are not

available for treatment assignment, as is often the case in observational studies, or natural experiments
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cannot be exploited to estimate causal effects, researchers can turn to sensitivity analysis to investigate the

robustness of their reported results to omitted variable bias.

There is a large literature on sensitivity analysis that goes back to at least Cornfield et al. (1959), and

has been continued in Rosenbaum and Rubin (1983); Rosenbaum (2002); Imbens (2003); Imai et al. (2010),

and others. Among more recent proposals for sensitivity analysis (Frank, 2000; Krauth, 2016; Ding and

VanderWeele, 2016; VanderWeele and Ding, 2017; Oster, 2019; Diegert et al., 2023), a most innovative and

promising approach has been presented by Cinelli and Hazlett (2020). The key novelty in this proposal

involved re-parametrizing the traditional omitted variable bias expression using partial R2 measures.1 This

re-parametrization has opened up a fruitful way to conduct sensitivity analysis about omitted variable bias.

The main contribution of this paper is to build on the methodology of Cinelli and Hazlett (2020) to develop

a simple and intuitive statistic that helps answer the following question: how likely is it that omitted variable

bias will overturn the baseline results reported for any observational study? Since a reported result for any

study will be overturned if, once omitted variable bias has been taken into account, either the bias-adjusted

estimate is statistically indistinguishable from zero or has reversed its sign (compared to the unadjusted

estimate), I provide an estimate of this occurring. That is, my proposed methodology provides an estimate

of the probability that omitted variable bias will overturn the baseline reported result.

In developing my methodology, I stress the importance of formal covariate benchmarking. In most

observational studies the true effect of a treatment variable on an outcome variable is sought to be estimated.

If the model has omitted variables, then the estimated (unadjusted) effect is different from the true effect—

due to omitted variable bias. In such a context, formal covariate benchmarking involves the researcher

choosing some observed regressor (or group of regressors) to use as a benchmark for the relative strength

of association of the residualized omitted variable with both the treatment and outcome variables, where

association is measured by total or partial R2 measures.

By a residualized omitted variable, I refer to the part of the omitted variable that is not explained by a

linear function of all the included regressors, i.e. it is the residual in a hypothetical regression of the omitted

variable on all the included regressors (including a constant). Since this entity can always be defined, the

method is very general. In the special case that the omitted variable is exogenous, it coincides with its

residualized version.2

1For a definition of the partial R2, see equation 1 below.
2In a recent contribution, Diegert et al. (2023) has highlighted some analytical problems of residualizing omitted variables

for sensitivity analysis. The argument in Diegert et al. (2023) applies only to the methodology of Oster (2019). It does not
apply to the methodology of Cinelli and Hazlett (2020) that I build on in this paper. The key difference between the approaches
of Cinelli and Hazlett (2020) and Diegert et al. (2023) is that the former defines the sensitivity parameters symmetrically and
the latter define it asymmetrically (Diegert et al., 2023, appendix F.3). There is no obvious reason to choose the former over
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Following Cinelli and Hazlett (2020), I use two parameters for sensitivity analysis that captures the

relative strength of association of the omitted variable. The first is kD, which measures the relative strength

of association of the residualized omitted variable, compared to the benchmark covariate, with the treatment

variable; the second is kY , which denotes the relative strength of association of the residualized omitted

variable, compared to the benchmark covariate, with the outcome variable.

My proposed methodology works as follows. For any empirical study, the researcher chooses a benchmark

covariate (or group of covariates) and a significance level, α, to test whether the true estimate is zero. Once

the benchmark covariate has been chosen, we can compute maximum permissible values of the two sensitivity

parameters, kD and kY , and denote them as kmax
D and kmax

Y , respectively. These maximum permissible values

are derived from the fact that some relevant R2 measures must be bounded above by 1.

Next we define a bounded box on the (kD, kY ) plane, B, given by the Cartesian product of 0 ≤ kD ≤ kmax
D

and 0 ≤ kY ≤ kmax
Y . At each point of B we compute the omitted variable bias and the standard error of

the true estimate. We use these to compute a 100(1 − α)% bias-adjusted confidence interval for the true

estimate.3

In the next step, we draw the following contour plots on the (kD, kY ) plane: (a) if the unadjusted estimate

is positive, we draw the contour plot of the lower boundary of the 100(1 − α)% bias-adjusted confidence

interval; (b) if the unadjusted estimate is negative, we draw the contour plot of the upper boundary of

the 100(1 − α)% bias-adjusted confidence interval. In each contour plot, the contour line for 0 divides the

contour plot area into two parts that are relevant for our analysis: one part of the contour plot area give

combinations of kD and kY where the lower boundary of the 100(1− α)% bias-adjusted confidence interval

is weakly negative, and another part where the lower boundary is strictly positive. If the lower boundary is

strictly positive this implies that the whole confidence interval lies strictly to the right of zero; on the other

hand, if the lower boundary is strictly negative this implies that the whole confidence interval lies strictly to

the left of zero.

Now consider two cases. For the case where the unadjusted estimate is positive, the fraction of the

contour plot area where the lower boundary is strictly positive represents the probability that the reported

result cannot be overturned (because the 100(1−α)% bias-adjusted confidence interval is wholly to the right

of zero). Thus, 1 minus the fraction of the area where the lower boundary is strictly positive gives us the

probability that omitted variable bias can overturn the reported result. For the case where the unadjusted

the latter.
3At any point kD, kY , we need to compute two partial R2 measures involving the omitted variable to compute the omitted

variable bias. If either of these partial R2 measures exceed 1, we discard that point as impermissible.
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estimate is negative, by the same reasoning, 1 minus the fraction of the area where the upper boundary is

strictly negative gives us the probability that omitted variable bias can overturn the reported result. When

these probabilities are small, then researchers can conclude that omitted variable bias is unlikely to overturn

reported results. If the probabilites are large, then researchers should draw the opposite conclusion.

In computing these probabilities, the upper bounds on kD and kY play very important roles. If a

researcher uses the full permissible range for kD and kY , she would get the most conservative estimate of

the probability that omitted variable bias can overturn reported results. In many cases, deeper knowledge

of the institutional set up or context of the study can allow researchers to put some bounds on how large

kD and kY can be that are significantly lower than kmax
D and kmax

Y . Using these bounds, she can compute

less conservative estimates of the probability that omitted variable bias will overturn reported results.

If the researcher has no basis to choose reasonable bounds on kD and kY , then she can use the following

simple rules of thumb (which I arrived at on the basis of simulation studies reported in section 6.5 below).

� For empirical studies with relatively large sample sizes (N > 300) and relatively large number of

regressors (k > 50), reasonable bounds to use are 0.1kmax
D and 0.1kmax

Y .

� For empirical studies with lower number of regressors, e.g. k < 25, the bounds depend on the relative

magnitude of the variance of the error terms in the outcome and treatment equations.

– If the variance of the error term in the treatment equation is significantly higher than the variance

of error term in the outcome equation, then 0.07kmax
D and 0.4kmax

Y can be used as reasonable

bounds.

– I the variance of the error term in the treatment equation is significantly lower than the variance

of error term in the outcome equation, then 0.4kmax
D and 0.07kmax

Y are reasonable bounds.

In implementing my methodology, I construct contour plots and compute the probability that omitted

variable bias will overturn reported results using all three covariate benchmarking approaches discussed in

the appendix of Cinelli and Hazlett (2020): total R2-based covariate benchmarking, and partial R2-based

covariate benchmarking (with and without conditioning on the treatment variable).4 I illustrate my proposed

methodology using the running example in Cinelli and Hazlett (2020) where exposure to violence is used to

explain attitudes towards peace in the context of the civil war in Darfur.5

4The details are explained in section 5 below.
5The details can be found in section 6 below.
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Some recent work on sensitivity analysis that are close to my paper are Krauth (2016), VanderWeele

and Ding (2017), Ding and VanderWeele (2016) and Oster (2019). In Krauth (2016), the key sensitivity

parameter, λ, does not have natural bounds. This is because λ is the ratio of two correlation coefficients,

and it is difficult to restrict this ratio to a finite interval on the real line, as Krauth (2016, assumption 2)

does, without additional assumptions. On the other hand, the methodology of Oster (2019) suffers from two

problems: (a) that one of the key sensitivity parameters, δ, cannot be interpreted in a way that is useful for

sensitivity analysis (Cinelli and Hazlett, 2020, section 6.3) and (b) that an untenable assumption is required

to construct the identified set (De Luca et al., 2019b, p. 219). On the other hand, Ding and VanderWeele

(2016) and VanderWeele and Ding (2017) do not use formal covariate benchmarking for sensitivity analysis.

The rest of the paper is organized as follows: in section 2, I present the basic set up and the key expression

for bias, and discuss the rationale for formal covariate benchmarking; in section 3, I present some results

about the total and partial R2 that will be useful later in the paper; in section 4, I discuss some theoretical

results about formal covariate benchmarking; in section 5, I discuss details of my proposal for sensitivity

analysis; in section 6, I illustrate the methodology proposed by working through an empirical example;

finally, I conclude in section 7. Proofs are collected in appendix A.

2 The Setup

2.1 What is partial R2?

The concept of partial R2 is not very widely used in econometrics.6 Since this concept is central to the

analysis in this paper, I begin by discussing it briefly. The partial R2 of the random variables Y and Z,

conditional on a set of covariates, X, can be computed as follows (Greene, 2012, section 3.4): (a) collect the

vector of residuals from a regression of Y on X; (b) collect the vector of residuals from a regression of Z on

X; (b) take the square of the correlation coefficient between the two vectors of residuals. This is the partial

R2 of the random variables Y and Z, conditional on a set of covariates, X. While this computation clarifies

the partialling out involved in defining the partial R2, there are two different, more useful, ways to define

it.7

The partial R2 between the random variables Y and Z, conditional on a set of covariates, X, denoted

by R2
Y∼Z|X , can also be defined in terms of the more familiar total R2 (the coefficient of determination in a

6I could not find this concept being discussed in any one of the popular graduate-level textbooks on econometrics. The
closest one comes is the discussion of the partial correlation coefficient in Greene (2012, section 3.4). The classic treatment of
partial R2 can be found in Yule (1911, chapter 12), or in later editions of the book, e.g. Yule and Kendall (1948, chapter 14).

7These definitions are given in Cinelli and Hazlett (2020, page 12).
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regression), as follows:

R2
Y∼Z|X =

R2
Y∼Z+X −R2

Y∼X

1−R2
Y∼X

, (1)

where R2
Y∼Z+X denote the total R2 in the regression of Y on Z and X, and R2

Y∼X denotes the total R2 in

a regression of Y on X. From this definition in (1) we get some more intuition about what the partial R2

measures: it is the ratio of (a) the increment in the total R2 when Z is added as a covariate to the regression

of Y on X, and (b) the difference of the total R2 of the regression of Y on X from 1. Since the total R2 can

be at most 1 and since the total R2 always increases weakly with the addition of a regressor, the numerator

can at most be as large as the denominator, with both the numerator and denominators being positive.

Hence, it is immediately clear that the partial R2, like the total R2, must lie between 0 and 1.

There is yet another definition of the partial R2 that is motivated by another consideration: to re-express

the partial R2 of two random variable by removing one random variable, or several random variables, from the

conditioning set. Suppose, for concreteness, that we wish to express the partial R2 of Y and Z, conditional

on X and D, in terms of partial R2 measures conditional only on X, i.e. we remove D from the conditioning

set. This can be accomplished with the recursive definition of partial R2:

RY∼Z|D,X =
RY∼Z|X −RY∼D|XRD∼Z|X√
1−R2

Y∼D|X

√
1−R2

D∼Z|X

. (2)

Both (1) and (2) are useful for parametrizing omitted variable bias in terms of partial R2 measures.

2.2 Omitted variable bias

Consider the linear regression of an outcome on a treatment, controlling for a set of covariates given by X

and Z,

Y = τ̂D +Xβ̂ + γ̂Z + ε̂full (3)

where Y is the n×1 vector of the outcome (dependent variable), X is the n×k matrix of observed covariates,

including a constant, Z is the n× 1 (unobserved) confounder vector, and all hat-quantities denote estimated

(sample, and not population) quantities. Since Z is unobserved, the researcher cannot estimate (3) but is

forced to estimate the following restricted regression

Y = τ̂resD +Xβ̂res + ε̂res (4)

6



Letting

b̂ias = τ̂res − τ̂ (5)

denote the bias of the treatment effect arising from the restricted model, Cinelli and Hazlett (2020, page 48)

show, by combining the Frisch-Waugh-Lovell theorem and definitions of partial R2, that

∣∣∣b̂ias∣∣∣ = ŝe (τ̂res)

√√√√df×R2
Y∼Z|D,X ×R2

D∼Z|X

1−R2
D∼Z|X

(6)

and the standard error of the true estimate, τ̂ , is given by

ŝe (τ̂) = ŝe (τ̂res)

√√√√1−R2
Y∼Z|D,X

1−R2
D∼Z|X

× df

df− 1
(7)

where ‘se’ denotes standard error, ‘df’ denotes the degrees of freedom of the restricted regression in (4),

ŝe (τ̂res) denotes the standard error of the treatment effect in the restricted regression, R2
Y∼D,X denotes the

total R2 from a regression of Y on D and X, R2
D∼Z|X refers to the partial R2 from a regression of D on

Z conditioning on X and we assume that 0 ≤ R2
D∼Z|X < 1 (to make sure we do not attempt to divide by

zero).

2.3 The rationale for formal covariate benchmarking

If a researcher knew the values of R2
Y∼Z|D,X and R2

D∼Z|X , then she could compute the bias and standard

error using (6) and (7). She could then construct confidence intervals for the true parameter estimate, τ ,

with the correct coverage. But she cannot do so directly because R2
Y∼Z|D,X and R2

D∼Z|X involve the omitted

(unobserved) regressor, Z. Hence, the researcher must compute these partial R2 measures indirectly by using

information about observed covariates. This is where formal covariate benchmarking comes in.

Let Z⊥X denote the part of the omitted variable that is not explained linearly by the set of included

regressors. Suppose the researcher has chosen a benchmark covariate (or set of covariates). Now, following

Cinelli and Hazlett (2020) let us introduce two sensitivity parameters, kD and kY . The first parameter, kD,

captures the relative strength, in terms of total or partial R2, of Z⊥X in explaining variation in the treatment

variable, as compared to the benchmark covariate (or set of covariates); the second parameter, kY , captures

the relative strength, in terms of total or partial R2, of Z⊥X in explaining variation in the outcome variable.

These two parameters, defined more precisely in section 4 below, capture the judgment of the researcher

7



based on her knowledge of the context of the research.

Before proceeding, let us note that omitted variable bias should be deemed problematic only when it

reduces the absolute magnitude of the unadjusted estimate, i.e. if the unadjusted estimate is positive, taking

account of the omitted variables reduces it, and if the unadjusted estimate is negative, taking account of the

omitted variables increases it. This has the potential to make the ‘true’ estimate statistically indistinguishable

from zero or even in reversing its sign. It is this situation that sensitivity analysis should be designed to

address.8

Under the assumption that omitted variable bias reduces the absolute magnitude of the parameter esti-

mate, once a benchmark covariate is chosen, we can compute the exact values of R2
Y∼Z|D,X and R2

D∼Z|X as

functions of kD and kY . Using these, we can then compute the omitted variable bias and standard error of

the true estimate given in (6) and in (7), respectively. These can, in turn, be used to compute bias-adjusted

confidence intervals for the ‘true’ estimate. Contour plots of the boundaries of the bias-adjusted confidence

intervals can be used, as I explain in section 5 below, to generate an estimate of the probability that omitted

variable bias can overturn reported results. Before presenting details of the computations of R2
D∼Z|X and

R2
Y∼Z|D,X in section 4, I need some initial results on total and partial R2.

3 A result about total and partial R2

For any n × r matrix, W , let PW = W (W ′W )
−1

W ′, denote the n × n projection matrix that projects

onto the column space of W ; let M0 denote the n × n matrix that generates deviations from means when

pre-multiplied to a n vector (Greene, 2012, page 978–79), i.e.,

M0 =

[
I − 1

n
ii′
]
,

where I is the identity matrix of dimension n and i denotes a column vector of 1s. Note that PW and M0

are symmetric and idempotent matrices (Greene, 2012, page 32, 979).

For a n× 1 vector, Z, and a n× k matrix X, let Z⊥X = Z −PXZ = (I − PX)Z denote the n× 1 vector

of ordinary least squares (OLS) residuals obtained from a regression of Z on X, and consider the following

8When omitted variable bias increases the absolute magnitude of the unadjusted estimate, then that estimate can be used
to bound the ‘true’ effect away from zero. In such cases, there is no need for any sensitivity analysis.
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four regressions estimated by OLS:

Y on X,Z (8)

Y on X (9)

Y on Z (10)

Y on Z⊥X (11)

Let R2
Y∼X+Z , R

2
Y∼X , R2

Y∼Z , and R2
Y∼Z⊥X , denote the total R-squared (coefficient of determination) for the

regressions in (8), (9), (10), and (11), respectively; and let W = (X : Z) denote the n× (k + 1) augmented

matrix obtained by appending Z as an additional column to the matrix X. Using the definition of the

R-squared (Greene, 2012, page 41), we have

R2
Y∼X+Z =

(PWY )
′
M0 (PWY )

Y ′M0Y
=

Y ′PWM0PWY

Y ′M0Y
(12)

R2
Y∼X =

(PXY )
′
M0 (PXY )

Y ′M0Y
=

Y ′PXM0PXY

Y ′M0Y
(13)

R2
Y∼Z =

(PZY )
′
M0 (PZY )

Y ′M0Y
=

Y ′PZM
0PZY

Y ′M0Y
(14)

R2
Y∼Z⊥X =

(
P⊥X
Z Y

)′
M0

(
P⊥X
Z Y

)
Y ′M0Y

=
Y ′P⊥X

Z M0P⊥X
Z Y

Y ′M0Y
(15)

where PW , PX , PZ , and PZ⊥X denote n × n projection matrices onto the column spaces of W,X,Z, and

Z⊥X respectively. I will need a result on the decomposition of projection matrices that is given in Rao et al.

(2008, page 323).

Lemma 1. The projection matrix of W can be decomposed into two orthogonal projection matrices as:

PW = PX + PZ⊥X , and PXPZ⊥X = 0. (16)

Using lemma 1, we can prove the following result about the decomposition of the total R2.

Theorem 1. For the regressions in (8), (9), (10), and (11), we have:

R2
Y∼X+Z = R2

Y∼X +R2
Y∼Z⊥X = R2

Y∼X+Z⊥X , (17)
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and

R2
Y∼X+Z −R2

Y∼X −R2
Y∼Z = ηY,Z,X , (18)

where

ηY,Z,X = R2
Y∼Z⊥X −R2

Y∼Z . (19)

Theorem 1 shows that the total R2 from a regression of Y on X and Z can be decomposed in two ways.

In (17), it is decomposed into the total R2 from a regression of Y on X, and the total R2 from a regression

of Y on Z⊥X (the part of Z that is orthogonal to X). In (18), it is decomposed into three terms: the total

R2 from a regression of Y on X, the total R2 from a regression of Y and Z, and a remainder, ηY,Z,X .

Corollary 1. For the regressions in (8), (9), and (11), we have

R2
Y∼Z|X =

R2
Y∼X+Z −R2

Y∼X

1−R2
Y∼X

=
R2

Y∼X+Z⊥X −R2
Y∼X

1−R2
Y∼X

= R2
Y∼Z⊥X |X (20)

Proof. From (17), we have R2
Y∼X+Z = R2

Y∼X +R2
Y∼Z⊥X . The right hand side is equal to the total R2 from

a regression of Y on X and Z⊥X because Z⊥X is orthogonal to X by construction. Hence, R2
Y∼X+Z =

R2
Y∼X+Z⊥X . Using the definition of partial R2 of Y and Z conditional on X, we have

R2
Y∼Z|X =

R2
Y∼X+Z −R2

Y∼X

1−R2
Y∼X

Now replacing R2
Y∼X+Z with R2

Y∼X+Z⊥X , we have the desired result.

4 Some theoretical results about formal covariate benchmarking

In this section, we see how to compute R2
D∼Z|X and R2

Y∼Z|D,X once a benchmark covariate and specific

values of the sensitivity parameters, kD and kY are chosen.

4.1 Total R2-based covariate benchmarking

Suppose there are j observed covariates, {X1, X2, . . . , Xj}, and the researcher wishes to use the j-th one,

Xj , for covariate benchmarking.

Proposition 1. Let

kD :=
R2

D∼Z⊥X

R2
D∼Xj

, kY :=
R2

Y∼Z⊥X

R2
Y∼Xj

; (21)
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then, we have

R2
D∼Z|X =

kDR2
D∼Xj

1−R2
D∼X

, R2
Y∼Z|X =

kY R
2
Y∼Xj

1−R2
Y∼X

. (22)

Proof. We first note, using corollary 1, that R2
D∼Z|X = R2

D∼Z⊥X |X . But

R2
D∼Z⊥X |X =

R2
D∼X+Z⊥X −R2

D∼X

1−R2
D∼X

=
R2

D∼Z⊥X

1−R2
D∼X

.

Now using kD defined in (21), we get the first part of (22). A similar argument establishes the second part

of (22).

Assuming that omitted variable bias reduces the absolute magnitude of the unadjusted estimate, Cinelli

and Hazlett (2020, appendix, page 34) show that

R2
Y∼Z|D,X =

(∣∣RY∼Z|X
∣∣− ∣∣RY∼D|X

∣∣ ∣∣RD∼Z|X
∣∣)2(

1−R2
Y∼D|X

)(
1−R2

D∼Z|X

) . (23)

4.2 Partial R2-based covariate benchmarking without conditioning on the treat-

ment variable

We would like, as in the total R2 case, to generate exact expressions (or upper bounds) for R2
D∼Z|X and

R2
Y∼Z|X . Suppose, like before, there are j covariates, {X1, X2, . . . , Xj}, and the researcher wishes to use the

j-th observed covariate, Xj , for benchmarking. Let X−j refer to the set of observed covariates that is not

used for benchmarking.

Proposition 2. Let

kD :=
R2

D∼Z⊥X |X−j

R2
D∼Xj |X−j

, kY :=
R2

Y∼Z⊥X |X−j

R2
Y∼Xj |X−j

; (24)

then, we have

R2
D∼Z|X =

kDR2
D∼Xj |X−j

1−R2
D∼Xj |X−j

, R2
Y∼Z|X =

kY R
2
Y∼Xj |X−j

1−R2
Y∼Xj |X−j

(25)

Proof. If we insert Z⊥X in place of Z in the argument in Cinelli and Hazlett (2020, appendix B.2, p. 35),

and use corollary 1, we get

R2
D∼Z|X = R2

D∼Z⊥X |X =
kDR2

D∼Xj |X−j

1−R2
D∼Xj |X−j

,

where kD is defined in (24). This establishes the first part of (25). A similar argument establishes the second

part.
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Just like in the case of total R2-based covariate benchmarking, if taking account of the omitted variables

reduces the absolute magnitude of the coefficient estimate, then we have

R2
Y∼Z|D,X =

(∣∣RY∼Z|X
∣∣− ∣∣RY∼D|X

∣∣ ∣∣RD∼Z|X
∣∣)2(

1−R2
Y∼D|X

)(
1−R2

D∼Z|X

) . (26)

4.3 Partial R2-based covariate benchmarking by conditioning on the treatment

variable

This variant of partial R2-based covariate benchmarking differs from the previous case only in how it defines

kY (the definition of kD remains unchanged).

Proposition 3. Let

kD :=
R2

D∼Z⊥X |X−j

R2
D∼Xj |X−j

, kY :=
R2

Y∼Z⊥X |X−j ,D

R2
Y∼Xj |X−j ,D

; (27)

then, we have

R2
D∼Z|X =

kDR2
D∼Xj |X−j

1−R2
D∼Xj |X−j

, R2
Y∼Z|D,X = η2f2

Y∼Xj |X−j ,D
(28)

where

η =

√
kY +

∣∣fkD
× fD∼Xj |X−j

∣∣√
1− f2

kD
× f2

D∼Xj |X−j

(29)

and

fkD
=

√
kDR2

D∼Xj |X−j√
1− kDR2

D∼Xj |X−j

(30)

Proof. The proof of the first part of (28) is the same as in proposition 2; for the second part, see Cinelli and

Hazlett (2020, appendix B.2, p. 37–38).

5 Main proposal for sensitivity analysis

After computing the crucial partial R2 measures, R2
D∼Z|X and R2

Y∼Z|D,X , researchers can use them to report

three sets of results about sensitivity analysis of omitted variable bias: (a) bias-adjusted confidence intervals

for specific values of the sensitivity parameters; (b) contour plot of the relevant boundary of bias-adjusted

confidence intervals in the whole permissible region of the kD and kY space; and (c) probability that reported

results will be overturned once omitted variable bias is taken into account.
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5.1 Bias-adjusted confidence interval for specific kD, kY values

The first set of results that researchers could report are bias-adjusted estimates and bias-adjusted confidence

intervals for some specific values of the sensitivity parameters, e.g. kD = kY = 1, kD = kY = 2, and

kD = kY = 3. These results would show whether a residualized omitted variable that is equally important

in determining variation in the outcome and treatment measured with total or partial R2 measures contains

zero if the strength of association between the residualized omitted variable and the outcome/treatment is

exactly 1, 2 or 3 times as high as the corresponding association between the benchmark covariate and the

outcome/treatment.

Bias-adjusted estimates of the true treatment effect and bias-adjusted confidence intervals for the true

treatment effect are easy to compute once a benchmark covariate and specific values of kD and kY are chosen.

For instance, for the case of total R2-based covariate benchmarking, specific values of kD and kY determine

magnitudes of R2
D∼Z|X and R2

Y∼Z|X according to (22) and these, in turn, are used to determine R2
Y∼Z|D,X

according to (23). These partial R2 measures can then be used to compute the absolute bias according to (6)

and the standard error of the true estimate according to (7). These quantities can be then used to construct

the bias-adjusted estimate of the treatment effect and the 100× (1− α)% bias-adjusted confidence interval

for the true estimate as follows:

� if the unadjusted estimate is positive, then an adverse omitted variable bias would reduce the unad-

justed estimate; hence, the bias-adjusted estimate of the treatment effect is given by τ̂res − |̂bias|, and

the 100× (1− α)% bias-adjusted confidence interval for the ‘true’ estimate is

(τ̂res − |̂bias| − |t∗α/2|ŝe (τ̂) , τ̂res − |̂bias|+ |t∗α/2|ŝe (τ̂)), (31)

� if the unadjusted estimate is negative, then an adverse omitted variable bias would increase the unad-

justed estimate; hence, the bias-adjusted estimate of the treatment effect is given by τ̂res + |̂bias|, and

the 100× (1− α)% bias-adjusted confidence interval for the ‘true’ estimate is

(τ̂res + |̂bias| − |t∗α/2|ŝe (τ̂) , τ̂res + |̂bias|+ |t∗α/2|ŝe (τ̂)), (32)

where |t∗α/2| is the absolute magnitude of the critical value. To see this note that since τ̂ /ŝe (τ̂) is distributed
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as a t random variable with df degrees of freedom,

P
(
τ̂ − |t∗α/2|ŝe (τ̂) , τ̂ + |t∗α/2|ŝe (τ̂)

)
= 1− α.

But τ̂ = τ̂res−b̂ias. Hence, under the assumption of adverse omitted variable bias, if τ̂res > 0, τ̂ = τ̂res−|̂bias|;

and if τ̂res < 0, τ̂ = τ̂res + |̂bias|. This delivers the above confidence intervals.9

Construction of bias-adjusted confidence intervals rely on researchers choosing exact values of the sen-

sitivity parameters kD and kY . It is unlikely that researchers will know these values exactly for a given

empirical study. Rather it might be more reasonable, and less demanding, for a researcher to be able to

know about ranges for kD and kY than for specific values. Moreover, using ranges rather than exact values

of the sensitivity parameters make the results more robust and reliable. The next two set of results work

with ranges of values for kD and kY .

5.2 Contour plots in (kD, kY ) space

One important limitation of computing bias-adjusted confidence intervals for a few specific values of kD and

kY is that this does not give us the complete picture. They do not tell us how the magnitude of omitted

variable bias varies for all possible values of the sensitivity parameters, kD and kY . One way to summarize

the relevant information for the full range of sensitivity parameters is to report contour plots of the relevant

boundary of bias-adjusted confidence intervals in kD and kY space.

By relevant, I mean the following: when the unadjusted estimate is positive, they should report a contour

plot of the lower boundary of the 95% confidence interval, i.e. a contour plots of τ̂res − |̂bias| − |t∗α/2|ŝeτ̂res ;

on the other hand, when the unadjusted estimate is negative, they should report a contour plot of the upper

boundary of the 95% confidence interval, i.e. a contour plot of τ̂res + |̂bias|+ |t∗α/2|ŝeτ̂res . The relevant level

to look at, in both cases, is the contour curve at zero. This gives us the combinations of the sensitivity

parameters kD and kY which entail zero being included in the confidence interval.

The construction of the contour plots in (kD, kY ) space is helped by the fact that we can put bounds on

both kD and kY . The results in section 4 allow us to derive such bounds. In each case, the contour plots

will be created on the bounded box created by the Cartesian product of 0 ≤ kD ≤ kmax
D and 0 ≤ kY ≤ kmax

Y .

9Similar arguments can be used to compute bias-adjusted confidence intervals for the two partial R2-based covariate bench-
marking approaches. For partial R2-based covariate benchmarking without conditioning on treatment, R2

D∼Z|X and R2
Y ∼Z|X

can be computed via proposition 2; for partial R2-based covariate benchmarking with conditioning on treatment, R2
D∼Z|X and

R2
Y ∼Z|X can be computed via proposition 3.
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For total R2-based covariate benchmarking,

kmax
D =

1−R2
D∼X

R2
D∼Xj

, kmax
Y =

1−R2
Y∼X

R2
Y∼Xj

. (33)

These bounds are arrived at from proposition 1 using the fact that 0 ≤ R2
D∼Z|X ≤ 1 and 0 ≤ R2

Y∼Z|X ≤ 1.

For partial R2-based covariate benchmarking without conditioning on the treatment variable,

kmax
D =

1−R2
D∼Xj |X−j

R2
D∼Xj |X−j

, kmax
Y =

1−R2
Y∼Xj |X−j

R2
Y∼Xj |X−j

. (34)

These bounds are arrived at from proposition 2 using the fact, once again, that 0 ≤ R2
D∼Z|X ≤ 1 and

0 ≤ R2
Y∼Z|X ≤ 1. For partial R2-based covariate benchmarking with conditioning on the treatment variable,

kmax
D =

1−R2
D∼Xj |X−j

R2
D∼Xj |X−j

(35)

and

kmax
Y =


√

1− f2
kD

× f2
D∼Xj |X−j

fY∼Xj |X−j ,D
−
∣∣fkD

× fD∼Xj |X−j

∣∣2

. (36)

These bounds are arrived at from proposition 3 and using the fact, once again, that 0 ≤ R2
D∼Z|X ≤ 1 and

0 ≤ R2
Y∼Z|D,X ≤ 1.

While the contour plots are useful in displaying how the lower (or upper) boundary of the bias-adjusted

confidence interval varies across the whole possible space of the sensitivity parameters, kD and kY , we can

use them, as I discuss next, to compute an extremely interesting statistic: the probability that omitted

variable bias can overturn the reported result in any specific study.

5.3 Probability of reported results being overturned

There are two cases to consider: (a) when the reported (or unadjusted) estimate is positive, and (b) when

the reported (or unadjusted) estimate is negative.

5.3.1 Unadjusted estimate is positive

When the unadjusted estimate is positive and the researcher is using a significance level of α (for implicit

hypothesis tests of the null hypothesis that the true estimate is zero), then omitted variable bias cannot

overturn the result as long as the 100*(1 − α)% bias-adjusted confidence interval is strictly to the right of
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zero. The 100*(1 − α)% bias-adjusted confidence interval being strictly to the right of zero is equivalent

to the lower boundary of the 100*(1 − α)% bias-adjusted confidence interval being strictly positive. The

probability of the lower boundary of the 100*(1−α)% bias-adjusted confidence interval being strictly positive

is the fraction of the area of the contour plot where the ‘level’ of the plot is strictly positive. This fraction

is the relevant probability in a straightforward frequentist sense because the numerator counts all possible

combinations of kD and kY where the lower boundary of the bias-adjusted confidence interval is strictly to

the right of zero and the denominator counts all possible combinations of kD and kY that are permissible.

Note that we can compute this fraction easily because the contour plot lies within the finite bounded box

given by the Cartesian product of 0 ≤ kD ≤ kmax
D and 0 ≤ kD ≤ kmax

Y . Hence the total area of the contour

plot is always positive and finite. Thus, once the contour plots are created, we can compute this probability,

and subtract it from 1 to get the probability of omitted variable bias overturning reported results, for the

full range of permissible variation in kD and kY or for subsets therein (as I do in the example in section 6

below; for instance, see Table 2).

The computation of the relevant fraction of the area of the contour plot is implemented by a grid search

method. I choose a value of N , e.g. N = 100. Then, I choose N equally-spaced points in the interval

0 ≤ kD ≤ kmax
D ; similarly, I choose N equally-spaced points in the interval 0 ≤ kY ≤ kmax

Y . For each of the

N2 points (kD, kY ) formed by combinations of points from these two intervals, I test whether: (a) the value

of R2
Y∼Z|D,X is weakly less than 1; and (b) the lower boundary of the 100*(1−α)% bias-adjusted confidence

interval is strictly positive. Suppose (a) is true at M1 points (these are all the valid points on the contour

plot) and (b) is true in M2 points (these are the points where omitted variable bias cannot overturn the

reported result). Then, the probability that omitted variable bias can overturn the reported results is given

by

1−
(
area where lower boundary of confidence interval is strictly positive

valid area of contour area

)
= 1−

(
M2

M1

)
.

5.3.2 Unadjusted estimate is negative

When the unadjusted estimate is negative and the researcher is using a significance level of α, then omitted

variable bias cannot overturn the reported result as long as the 100*(1−α)% bias-adjusted confidence interval

is strictly to the left of zero. This is equivalent to the upper boundary of the 100*(1 − α)% bias-adjusted

confidence interval being strictly negative.

By the same argument as above, the probability of the lower bound of the 100*(1 − α)% bias-adjusted

confidence interval being strictly negative is the fraction of the area of the contour plot of the lower boundary
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of 100*(1−α)% bias-adjusted confidence interval in kD and kY space where the level of the function is strictly

negative. Once the contour plots are created, we can compute this probability, and subtract it from 1 to

get the probability of omitted variable bias overturning reported results, for the full range of permissible

variation in kD and kY or for subsets therein. The computation of the relevant fraction of the contour plot

is implemented, as above, through a grid search method so that the probability that omitted variable bias

can overturn the reported results is given by

1−
(
area where lower boundary of confidence interval is strictly positive

valid area of contour area

)
= 1−

(
M2

M1

)
.

where, just like in the other case, on M1 points on the grid R2
Y∼Z|D,X ≤ 1, and on M2 points of the grid,

the upper boundary of confidence interval is strictly negative.

6 Empirical example

6.1 Set up

I take up the running empirical example discussed in Cinelli and Hazlett (2020), where the effect of exposure

to violence on attitudes towards peace is studied.10 To investigate this question, a researcher estimates the

following regression model with individual-level data:

PeaceIndexi = β0 + β1DirectHarmi +Controlsi + εi, (37)

where ‘PeaceIndex’ is an index to measure attitudes towards peace efforts, ‘DirectHarm’ measures the ex-

posure to violence. The control variables are: gender of the individual, age, whether the individual was a

farmer, herder, merchant or trader, household size, whether or not the individual voted in the past, and

village-level fixed effects.

It is suspected that there is at least one important unobserved confounder, Z, (e.g. wealth of the indi-

vidual) that is correlated both with exposure to violence (treatment) and attitude towards peace (outcome).

The researcher does not have data on wealth of individuals. Hence, the researcher wishes to conduct sensi-

tivity analysis regarding the possible effect of this omitted variable. Suppose, finally, the researcher knows,

on the bases of domain knowledge, that gender of the individual is one of the, if not the, most important

10For further details, see Cinelli and Hazlett (2020, section 2). I accessed the data set used for the analysis in the R package
sensemakr.
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variables determining treatment (exposure to violence measured by ‘DirectHarm’), and that gender is also

correlated with the outcome (attitude towards peace measured by ‘PeaceIndex’). Hence, she chooses to

use this variable for formal covariate benchmarking to conduct sensitivity analysis of her results to omitted

variable bias.

6.2 Bias-adjusted estimates and confidence intervals

In table 1, I report the estimate of β1 (the coefficient on ‘DirectHarm’ in equation 37), the bias-adjusted

estimate of β1, the bias-adjusted standard error of β1 and the lower and upper bounds of the bias-adjusted

95% confidence interval for β1 based on total R2-based benchmarking, partial R2-based benchmarking (with-

out conditioning on the treatment variable) and partial R2-based benchmarking (with conditioning on the

treatment variable). I present results for two combinations of the sensitivity parameters: panel A uses

kD = kY = 1, and panel B uses kD = kY = 3.

From Table 1, we see that the point estimate is 0.097. The bias adjusted estimate in panel A (kD =

kY = 1) is: 0.068, 0.059 and 0.058 for total R2-based benchmarking, partial R2-based benchmarking (with-

out conditioning on the treatment variable) and partial R2-based benchmarking (with conditioning on the

treatment variable), respectively. In each of these three cases, the 95% confidence interval does not contain

zero even though the lower and upper bounds of the confidence intervals are slightly different (the main

difference is between total and partial R2-based covariate benchmarking).

When we turn to panel B (kD = kY = 3), we see the same patten as in panel A though there are some

important differences as well. The magnitude of the bias-adjusted estimate reduces to 0.046, 0.030 and 0.030

respectively, for the three cases. The 95% confidence intervals are now qualitatively different between total

and partial R2-based covariate benchmarking (though there is not much difference between the two variants

of partial R2-based covariate benchmarking). For total R2-based benchmarking, the confidence interval

is (0.024, 0.067); for partial R2-based benchmarking (without conditioning on the treatment variable), the

confidence interval is (−0.007, 0.066); and for the other variants of partial R2-based covariate benchmarking,

the confidence interval is similar at (−0.006, 0.067). Thus, if a researcher used total R2-based benchmarking,

she would conclude that taking account of omitted variable bias and estimation uncertainty would still keep

the estimate away from zero; if she used either variant of partial R2-based benchmarking, she would reach

the opposite conclusion that taking account of omitted variable bias along with estimation uncertainty would

make the estimate statistically indistinguishable from zero.
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Table 1: Omitted variable bias-adjusted estimate, standard error and 95% confidence intervals

Panel A: kD = 1, kY = 1 Panel B: kD = 3, kY = 3

Total Partial 1 Partial 2 Total Partial 1 Partial 2

R2
Y∼D|X 0.022 0.022 0.022 0.022 0.022 0.022

R2
D∼Z|X 0.008 0.027 0.027 0.008 0.027 0.027

R2
Y∼Z|D,X 0.255 0.120 0.126 0.781 0.381 0.374

Estimate 0.097 0.097 0.097 0.097 0.097 0.097
Bias-Adjusted Estimate 0.068 0.059 0.058 0.046 0.030 0.030
Bias-Adjusted Standard Error 0.020 0.022 0.022 0.011 0.019 0.019
Bias-Adjusted Lower Boundary of Conf. Int. 0.028 0.016 0.015 0.024 -0.007 -0.006
Bias-Adjusted Upper Boundary of Conf. Int. 0.107 0.103 0.102 0.067 0.066 0.067

Notes: This table presents omitted variable bias-adjusted estimate, standard error and 95% confidence intervals
for two combinations of the sensitivity parameters: (a) panel A: kD = 1, kY = 1, and (b) panel B: kD = 3, kY =
3. Total: total R2-based benchmarking; Partial 1: partial R2-based benchmarking (without conditioning on
treatment); Partial 2: partial R2-based benchmarking (with conditioning on treatment).

6.3 Contour plots in (kD, kY ) space

Figure 1, 2 and 3 present contour plots based on total R2-based benchmarking, partial R2-based benchmark-

ing (without conditioning on the treatment variable) and partial R2-based benchmarking (with conditioning

on the treatment variable), respectively. In each figure, I present the contour plot of the lower boundary

of the 95% confidence interval (because the unadjusted parameter estimate is positive at 0.097). In these

contour plots, the most relevant level to look at is zero. Each contour plot is constructed in (kD, kY ) space

in the bounded box given by the Cartesian product of 0 ≤ kD ≤ kmax
D and 0 ≤ kD ≤ kmax

Y . Specific values

of kmax
D and kmax

Y can be found as memo items in Table 2.

Looking at Figure 1, 2 and 3, we should read the yellow region as showing all combinations of kD and

kY , where the 95% bias-adjusted confidence interval for the ‘true’ estimate would exclude zero (because the

lower boundary point of the interval is strictly positive). Thus, these are all the possible combinations of

kD and kY , i.e. all the possible strengths of the residualized omitted variable, that would still not make the

bias-adjusted estimate zero even after we account for estimation uncertainty.

Why are the contour plots cut-off towards the north-east region? This is because the combinations of kD

and kY in the north-east region lead to R2
Y∼Z|D,X > 1. Since R2 cannot exceed unity, these combinations

of kD and kY are impermissible. Hence, they are dropped from the contour plots—giving rise to the empty

north-east regions.
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Figure 1: Contour plot for the the omitted variable bias-adjusted estimate and the lower bound of the bias-
adjusted 95% confidence interval. Bounds have been estimated with total R2-based covariate benchmarking.
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Figure 2: Contour plot for the the omitted variable bias-adjusted estimate and the lower bound of the bias-
adjusted 95% confidence interval. Bounds have been estimated with partial R2-based covariate benchmarking
without conditioning on the treatment.
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Figure 3: Contour plot for the the omitted variable bias-adjusted estimate and the lower bound of the bias-
adjusted 95% confidence interval. Bounds have been estimated with partial R2-based covariate benchmarking
with conditioning on the treatment.

6.4 Probability that reported results can be overturned

In Table 2, I present results that is pertinent to answering the following question: what is the probability

that omitted variable bias can overturn the reported results of this study that the estimate of exposure to

violence on attitudes towards peace is positive (the coefficient estimate is 0.097)? The answer is found by

computing the fraction of the area of the contour plot where the lower boundary of the 95% confidence

interval is strictly positive. For total R2-based covariate benchmarking, the relevant contour plot is given in

Figure 1; for partial R2-based covariate benchmarking without conditioning on the treatment variable, the

relevant contour plot is given in Figure 2; and for partial R2-based covariate benchmarking with conditioning

on the treatment variable, the relevant contour plot is given in Figure 3.

To compute the probabilities reported in Table 2, I use a grid search procedure with N = 100. Thus,

in each case, I choose 100 equally-spaced points in the relevant intervals on the kD and kY axes. For each

different specification reported in Table 2, the relevant intervals are given in the first column of Table 2.

For instance, for the most conservative estimates (panel A), the relevant intervals are: 0 ≤ kD ≤ kmax
D and

0 ≤ kD ≤ kmax
D , with values of kmax

D and kmax
Y given as memo items in Table 2.

For each of the 10000 points (kD, kY ) on the grid, I test whether: (a) the value of R2
Y∼Z|D,X ≤ 1; and (b)
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the lower boundary of the 100*(1 − α)% bias-adjusted confidence interval is strictly positive. Suppose the

first condition is true at M1 points and the second is true at M2 points. Then, the probability that omitted

variable bias can overturn the reported results is given by 1− (M2/M1).

The results in panel panel A of Table 2 show that the probability of reported results being overturned

is high and lies between 0.93 and 0.96, varying by the type of covariate benchmarking that is used. This

means that if the researcher undertaking this study of the effect of violence on attitudes towards peace had

no information to limit the variation in the sensitivity parameters kD and kY , and had to perforce use the

full range of these sensitivity parameters for the analysis, then they would have to conclude that there is

very high chance that their reported result (that the estimate is 0.097) can be overturned by omitted variable

bias. This is the most conservative estimate of the probability that omitted variable bias can overturn their

result.

In many cases, researchers might be able, on the basis of detailed knowledge of the context of the study,

to limit the range of the sensitivity parameters kD and kY . There are at least two ways to do this using

either absolute bounds or relative bounds on the maximum value of the sensitivity parameters kD and kY .

When we use an absolute bound, we choose two positive real numbers, c1, c2, and work with the intervals

0 ≤ kD ≤ c1 and 0 ≤ kD ≤ d1; when we use a relative bound, we choose two positive fractions d1, d2, and

work with the intervals 0 ≤ kD ≤ d1k
max
D and 0 ≤ kD ≤ d2k

max
D . To compute the probability that omitted

variable bias can overturn reported results, I implement the same grid search method discussed above.

In panel B, I report results from using absolute bounds, i.e. using 1, 3 and 5 as the maximum values of the

sensitivity parameters kD and kY . For both 1 and 3, the probability of the reported result being overturned

is zero. For a value of 5, the corresponding probability is 0 for total R2-based covariate benchmarking, but

is about 0.34 for both variants of partial R2-based covariate benchmarking. These results can be interpreted

as follows: if the residualized omitted variable is up to 3 times as strongly associated with the outcome and

treatment variables as the benchmark covariate, the probability that omitted variable bias will overturn the

reported result is zero.11 If the relative strength of association of the residualized omitted variable increases

to 5, then there is about 0.3 chance (using partial R2-based covariate benchmarking) of the reported result

being overturned.

In panel C, I report results from using relative bounds, i.e. I use 0.1 and 0.25 of kmax
D and kmax

Y as the

upper bounds for kD and kY . This would be appropriate if a researcher were able to argue that kD and kY

11Here we can see an advantage of using ranges instead of specific values of sensitivity parameters. Even though the 95%
bias-adjusted confidence interval contains 0 for kD = kY = 3, as can be seen from Table 1, when we use the ranges 0 ≤ kD ≤ 3
and 0 ≤ kY ≤ 3, the contribution of that single point is negligible. Hence, we arrive at the estimate that the probability of
omitted variable bias overturning the results is zero.
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can only vary up to 10% or 25% of it technical maximums kmax
D and kmax

Y . When we use the 10% bound, the

probability of the reported result being overturned is small at about 0.04 for all the three types of covariate

benchmarking. For the 25% bound, the probability of the reported result being overturned increases to

about 0.7 for all the three types of covariate benchmarking.

Table 2: Probability that a 95% confidence interval for the true estimate includes zero.

Total R2-based Partial R2-based Partial R2-based
covariate

benchmarking
covariate

benchmarking
covariate

benchmarking
(w/o cond on
treatment)

(cond on
treatment)

Panel A: Full range:
0 ≤ kD ≤ kmax

D ; 0 ≤ kY ≤ kmax
Y 0.939 0.927 0.961

Panel B: Absolute upper bounds:
0 ≤ kD ≤ 1; 0 ≤ kY ≤ 1 0.000 0.000 0.000
0 ≤ kD ≤ 3; 0 ≤ kY ≤ 3 0.000 0.000 0.000
0 ≤ kD ≤ 5; 0 ≤ kY ≤ 5 0.000 0.342 0.338

Panel C: Relative upper bounds:
0 ≤ kD ≤ 0.1kmax

D ; 0 ≤ kY ≤ 0.1kmax
Y 0.037 0.033 0.100

0 ≤ kD ≤ 0.25kmax
D ; 0 ≤ kY ≤ 0.25kmax

Y 0.678 0.645 0.717

Memo:
kmax
D 373.13 109.12 109.12

kmax
Y 3.84 7.64 8.16

Notes: For total R2-based covariate benchmarking, kmax
D and kmax

Y are the upper bounds given in (33). For partial
R2-based covariate benchmarking (without conditioning on treatment), kmax

D and kmax
Y are the upper bounds given

in (34). For partial R2-based covariate benchmarking (with conditioning on treatment), kmax
D is the upper bound

in (35) and kmax
Y is the upper bound given in (36).

Table 2 has presented results for various limits on the ranges of kD and kY . But the following question

remains unanswered: Which of the bounds should a researcher use in her study? It is quite obvious that

using the full range of kD and kY gives very conservative estimates of the probability that omitted variable

bias can overturn reported results (panel A, Table 2). Thus, it seems preferable to put some upper bound

on the maximum possible values of kD and kY that are lower than kmax
D and kmax

Y . While the absolute

bounds used in panel B are low, nonetheless they are arbitrary. Because the value of kD and kY vary by

data sets and specifications of the empirical model, it is difficult to justify absolute bounds like 1, 3 or 5 used

in panel B of Table 2. Relative bounds seem more promising because, while they can potentially be low (and

therefore generate less conservative estimates), they are also benchmarked by kmax
D and kmax

Y —quantities

that are specific to each study. In the next sub-section, I use simulation studies to generate reasonable
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relative bounds that can be used across different studies.

6.5 Simulation evidence on kD/k
max
D and kY /k

max
Y

6.5.1 Simulated data set

I draw a sample of size N from a k-dimensional multivariate Gaussian distribution with mean zero (for each

of the k variables) and a covariance matrix given by A′A, where A is a k × k matrix formed by drawing k2

random numbers from a univariate Gaussian distribution with mean zero and variance 1. Let us call the

resultant N × k matrix as X and the ‘standardized’ version of this matrix as Xs.12

I generate the scalar treatment variable, D, as

D = a0 +Xs
1a1 +Xs

2a2 + · · ·+Xs
k−1ak−1 +Xs

kak + uD, (38)

where a is a (k+1)-vector formed by drawing k+1 random numbers from a uniform distribution over (−1, 1)

and uD is an N -vector formed by drawing N random numbers from an independent Gaussian distribution

with mean zero and variance σ2
uD

. I generate the scalar outcome variable, Y , as

Y = b0 +Xs
1b1 +Xs

2b2 + · · ·+Xs
k−1bk−1 +Xs

kbk + uY , (39)

where b is a (k+1)-vector formed by drawing k+1 random numbers from a uniform distribution over (−1, 1)

and uY is an N -vector formed by drawing N random numbers from an independent Gaussian distribution

with mean zero and variance σ2
uY

.

6.5.2 Estimated model and distribution of kD/kmax
D and kY /k

max
Y

Y,D,Xs comprise the simulated data set. Using this data set, I estimate the following model using ordinary

least squares (OLS),

Y = β0 +Dτ +Xs
1β1 +Xs

2β2 + · · ·+Xs
k−1βk−1 + ε, (40)

where I treat the k-th column of Xs as the unobserved confounder (the omitted variable) and leave it out of

the estimated model, i.e. Z = Xs
k. Note that the DGP for Y in (39) does not include D, which means that

the true value of τ in the estimated model (40) is zero. But since I have left out Xs
k from the estimated model

12Each column of Xs is the standardized version of the corresponding column of X, i.e. from each element I subtract the
column mean and divide the difference by the column standard deviation. Using standardized covariates in the simulation
study ensures that the results are not impacted by the scales of the variables.

24



Table 3: Quantiles of the empirical distribution of kD/kmax
D for simulated models with sample size N and

number of regressors k.

k = 10 k = 25 k = 50

p50 p75 p90 p50 p75 p90 p50 p75 p90
N=100 0.05 0.24 0.44 0.03 0.10 0.22 0.02 0.06 0.14
N=200 0.05 0.20 0.45 0.02 0.10 0.24 0.01 0.05 0.13
N=300 0.06 0.19 0.39 0.02 0.09 0.22 0.01 0.05 0.12
N=400 0.05 0.19 0.42 0.02 0.07 0.20 0.01 0.04 0.10
N=500 0.05 0.19 0.39 0.02 0.09 0.19 0.01 0.04 0.10
N=600 0.04 0.19 0.39 0.03 0.09 0.22 0.01 0.04 0.12
N=700 0.05 0.19 0.41 0.02 0.09 0.20 0.01 0.05 0.12
N=800 0.06 0.20 0.42 0.02 0.08 0.20 0.01 0.04 0.11
N=900 0.06 0.21 0.44 0.02 0.08 0.20 0.01 0.04 0.11
N=1000 0.05 0.20 0.43 0.02 0.08 0.21 0.01 0.05 0.12

Notes: For this simulation, we use σuD = σuY = 1 and T = 1000 (number of simulations). p50, p75 and p90 refer
to the 50-th, 75-th and 90-th percentiles of the empirical distribution of kD/kmax

D .

as the omitted variable, OLS will estimate τ with bias (because Xs
k is correlated with D by equation 38).

Moreover, since the true value of τ is zero, the estimated τ̂ will be the omitted variable bias.

To generate the empirical distribution of the ratios kD/kmax
D and kY /k

max
Y , I do the following:

� for total R2-based covariate benchmarking, I compute the true magnitude of kD and kY using (21),

and then I compute kmax
D and kmax

Y using (33);

� for partial R2-based covariate benchmarking without conditioning on the treatment variable, I compute

the true magnitude of kD and kY using (24) , and then I compute kmax
D and kmax

Y using (34);

� for partial R2-based covariate benchmarking with conditioning on the treatment variable, I compute

the true magnitude of kD and kY using (27) , and then I compute kmax
D and kmax

Y using (35) and (35),

respectively.

� Finally, in each case, I compute the ratio kD/kmax
D and kY /k

max
Y . I do this 1000 times and then report

the 50-th (p50), 75-th (p75) and 90-th (p90) quantiles of the empirical distribution of these two ratios

in Table 4 through 9.

For the results reported in Table 4 and 5, the error terms in the outcome and treatment equation have

equal variances; for those reported in Table 6 and 7, the variance of the error term in the treatment equation

is 9 times the variance of the error term in the outcome equation; finally, for the results in Table 6 and 7, the

variance of the error term in the outcome equation is 9 times the variance of the error term in the treatment

equation.
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Table 4: Quantiles of the empirical distribution of kY /k
max
Y for simulated models with sample size N and

number of regressors k.

k = 10 k = 25 k = 50

p50 p75 p90 p50 p75 p90 p50 p75 p90
N=100 0.06 0.21 0.41 0.03 0.10 0.23 0.02 0.06 0.14
N=200 0.05 0.19 0.40 0.03 0.09 0.21 0.01 0.04 0.11
N=300 0.05 0.20 0.42 0.02 0.09 0.22 0.01 0.04 0.12
N=400 0.06 0.19 0.41 0.02 0.09 0.22 0.01 0.05 0.12
N=500 0.05 0.19 0.39 0.02 0.08 0.20 0.01 0.05 0.13
N=600 0.05 0.20 0.43 0.02 0.08 0.20 0.01 0.04 0.11
N=700 0.05 0.20 0.43 0.02 0.08 0.17 0.01 0.04 0.10
N=800 0.05 0.20 0.45 0.02 0.09 0.22 0.01 0.04 0.12
N=900 0.05 0.18 0.40 0.02 0.08 0.21 0.01 0.04 0.11
N=1000 0.05 0.19 0.39 0.02 0.07 0.18 0.01 0.04 0.11

Notes: For this simulation, we use σuD = σuY = 1 and T = 1000 (number of simulations). p50, p75 and p90 refer
to the 50-th, 75-th and 90-th percentiles of the empirical distribution of kY /kmax

Y .

6.5.3 Results

The most striking result that emerges from Table 4 through Table 9 is that for empirical studies with

relatively large sample size, i.e. N ≥ 300, and with relatively large number of regressors, i.e. k = 50 or

more, the 90-th percentiles of both kD and kY are close to 0.1 This result holds irrespective of the relative

magnitudes of the variances of the error terms in the outcome and treatment equations (in fact, some times

it is lower) and can be seen by looking down the last column of Table 4 through 9. This means that in

studies with relatively large sample sizes and large number of regressors, 0.1kmax
D and 0.1kmax

Y are reasonable

upper bounds to use for kD and kY , respectively.

For empirical studies with relatively few regressors, e.g. k = 10 or k = 25, we see an interesting pattern.

For situations when the variance of uD (error term in the treatment equations) is higher than the variance

of uY (error term in the outcome equations), the 90-th percentile of the empirical distribution of kD is low

at around 0.07 but the 90-th 90-th percentile of the empirical distribution of kY is quite high at around 0.4.

For the case when the variance of uD (error term in the treatment equations) is lower than the variance of

uY (error term in the outcome equations), the empirical distributions are exactly reversed.

This means that if researchers have any basis to reason about the relative magnitudes of the variances

of the error terms in the treatment and outcome equations, they can use either of the following bounds:

(a) when the variance of the error term in the treatment equation is higher than the variance of error term

in the outcome equation, then 0.07kmax
D and 0.4kmax

Y are reasonable upper bounds to use for kD and kY ,

respectively; (b) when the variance of the error term in the treatment equation is lower than the variance of
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error term in the outcome equation, then 0.4kmax
D and 0.07kmax

Y are reasonable upper bounds to use for kD

and kY , respectively

Table 5: Quantiles of the empirical distribution of kD/kmax
D for simulated models with sample size N and

number of regressors k.

k = 10 k = 25 k = 50

p50 p75 p90 p50 p75 p90 p50 p75 p90
N=100 0.01 0.04 0.10 0.01 0.03 0.06 0.01 0.03 0.07
N=200 0.01 0.03 0.08 0.01 0.02 0.04 0.01 0.01 0.03
N=300 0.01 0.03 0.08 0.00 0.01 0.03 0.00 0.01 0.02
N=400 0.01 0.03 0.08 0.00 0.01 0.03 0.00 0.01 0.02
N=500 0.01 0.03 0.08 0.00 0.01 0.03 0.00 0.01 0.02
N=600 0.01 0.03 0.08 0.00 0.01 0.03 0.00 0.01 0.02
N=700 0.01 0.03 0.08 0.00 0.01 0.03 0.00 0.01 0.02
N=800 0.01 0.03 0.08 0.00 0.01 0.03 0.00 0.01 0.02
N=900 0.01 0.03 0.07 0.00 0.01 0.04 0.00 0.01 0.02
N=1000 0.01 0.03 0.08 0.00 0.01 0.03 0.00 0.01 0.01

Notes: For this simulation, we use σuD = 3 and σuD = 1 and T = 1000 (number of simulations). p50, p75 and
p90 refer to the 50-th, 75-th and 90-th percentiles of the empirical distribution of kD/kmax

D .

Table 6: Quantiles of the empirical distribution of kY /k
max
Y for simulated models with sample size N and

number of regressors k.

k = 10 k = 25 k = 50

p50 p75 p90 p50 p75 p90 p50 p75 p90
N=100 0.05 0.21 0.44 0.03 0.09 0.21 0.02 0.07 0.17
N=200 0.06 0.20 0.43 0.02 0.09 0.23 0.01 0.04 0.10
N=300 0.06 0.21 0.42 0.02 0.07 0.19 0.01 0.05 0.12
N=400 0.05 0.22 0.43 0.02 0.09 0.21 0.01 0.04 0.09
N=500 0.05 0.20 0.43 0.02 0.09 0.21 0.01 0.04 0.10
N=600 0.05 0.18 0.42 0.02 0.08 0.19 0.01 0.05 0.11
N=700 0.05 0.17 0.36 0.02 0.08 0.19 0.01 0.04 0.10
N=800 0.05 0.20 0.41 0.02 0.07 0.18 0.01 0.04 0.11
N=900 0.05 0.21 0.44 0.02 0.08 0.21 0.01 0.04 0.11
N=1000 0.05 0.19 0.40 0.02 0.08 0.21 0.01 0.04 0.11

Notes: For this simulation, we use σuD = 3 and σuD = 1 and T = 1000 (number of simulations). p50, p75 and
p90 refer to the 50-th, 75-th and 90-th percentiles of the empirical distribution of kY /kmax

Y .

6.6 Back to the empirical example

When we return to Table 2 with the insights gained from the simulation study, we see that the first row of

panel C gives us a reliable answer. This is because in the empirical example whose results are reported in

Table 2, N = 1276 and k = 493. Thus, we can safely use 0.1kmax
D and 0.1kmax

Y as reasonable upper bounds
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Table 7: Quantiles of the distribution of kD/kmax
D for simulated models with sample size N and number of

regressors k.

k = 10 k = 25 k = 50

p50 p75 p90 p50 p75 p90 p50 p75 p90
N=100 0.07 0.21 0.42 0.03 0.10 0.23 0.02 0.07 0.15
N=200 0.05 0.20 0.44 0.03 0.09 0.21 0.01 0.05 0.13
N=300 0.05 0.22 0.41 0.02 0.08 0.20 0.01 0.05 0.12
N=400 0.05 0.18 0.40 0.02 0.08 0.21 0.01 0.05 0.12
N=500 0.04 0.19 0.43 0.02 0.08 0.19 0.01 0.04 0.10
N=600 0.05 0.20 0.42 0.02 0.08 0.20 0.01 0.04 0.12
N=700 0.05 0.21 0.42 0.02 0.08 0.22 0.01 0.05 0.13
N=800 0.04 0.19 0.42 0.02 0.08 0.20 0.01 0.04 0.11
N=900 0.05 0.20 0.40 0.02 0.09 0.20 0.01 0.04 0.10
N=1000 0.05 0.21 0.42 0.02 0.08 0.20 0.01 0.04 0.11

Notes: For this simulation, we use σuD = 1 and σuY = 3 and T = 1000 (number of simulations). p50, p75 and
p90 refer to the 50-th, 75-th and 90-th percentiles of the empirical distribution of kD/kmax

D .

Table 8: Quantiles of the empirical distribution of kY /k
max
Y for simulated models with sample size N and

number of regressors k.

k = 10 k = 25 k = 50

p50 p75 p90 p50 p75 p90 p50 p75 p90
N=100 0.01 0.04 0.10 0.01 0.03 0.06 0.01 0.03 0.07
N=200 0.01 0.04 0.08 0.01 0.02 0.04 0.01 0.01 0.03
N=300 0.01 0.03 0.07 0.01 0.02 0.04 0.00 0.01 0.03
N=400 0.01 0.03 0.07 0.00 0.01 0.03 0.00 0.01 0.02
N=500 0.01 0.03 0.07 0.00 0.01 0.03 0.00 0.01 0.02
N=600 0.01 0.03 0.08 0.00 0.01 0.03 0.00 0.01 0.02
N=700 0.01 0.03 0.07 0.00 0.01 0.03 0.00 0.01 0.02
N=800 0.01 0.03 0.08 0.00 0.01 0.03 0.00 0.01 0.02
N=900 0.01 0.03 0.07 0.00 0.01 0.03 0.00 0.01 0.01
N=1000 0.01 0.03 0.07 0.00 0.01 0.03 0.00 0.01 0.02

Notes: For this simulation, we use σuD = 1 and σuY = 3 and T = 1000 (number of simulations). p50, p75 and
p90 refer to the 50-th, 75-th and 90-th percentiles of the empirical distribution of kY /kmax

Y .

for kD and kY , respectively. With these bounds, we see from panel C in Table 2 that the probability that

omitted variable bias can overturn the reported result lies between 0.03 and 0.1. Thus, there is no more

than a 10% chance that omitted variable bias will overturn the reported result of the study. This is strong

evidence of the robustness of the reported results.
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7 Conclusion

Sensitivity analysis offers a way to reason about omitted variable bias when alternative approaches, e.g.

instrumental variables or natural experiments, are not available. This can be extremely valuable in economics

and the social sciences more generally where observational studies are key components of empirical analysis.

In this paper, I have proposed some simple statistics to quantify the likelihood of omitted variable bias

overturning reported results. The methodology is intuitive and easy to implement.

In any study which is open to the problem of omitted variable bias, the researcher only needs to choose a

benchmark covariate (or a set of covariates) which is (are) included in the model and is (are) deemed to be

an important variable(s) in determining treatment assignment and the outcome. Then the researcher needs

to choose a significance level, e.g. α = 0.05, for constructing confidence intervals for the true estimate. The

methodology proposed in this paper will compute the probability that zero is contained in the 100 (1− α)%

bias-adjusted confidence interval, and therefore that the reported results can be nullified once omitted variable

bias is taken into account.

The analysis uses two sensitivity parameters: kD, which is the relative strength of association of the

residualized omitted variable, compared to the benchmark covariate, with the treatment variable; and kY ,

which is the relative strength of association of the residualized omitted variable, compared to the benchmark

covariate, with the outcome variable. These strengths of association can be conceptualized in terms of total

or partial R2 measures.

For any particular study, it is possible compute the maximum permissible values of kD and kY , which I

denote in this paper as kmax
D and kmax

Y , respectively. We can construct a bias-adjusted confidence interval for

each permissible combination of kD and kY , and test whether zero is contained in it. The fraction of points

where zero is contained in the bias-adjusted confidence interval gives us an estimate of the probability that

taking account of omitted variable bias can overturn reported results.

If kD and kY are allowed to take values over the full permissible, then we get the most conservative

estimate of the probability that omitted variable bias can overturn the reported results. If the researcher is

able to argue for some lower values to bound kD and kY , then that will generate less conservative estimates of

the same probability. Evidence from simulation studies reported in this paper suggest the following rules of

thumb: (a) for empirical studies with large sample sizes (N > 300) and relatively large number of regressors

(k > 50), then 0.1kmax
D and 0.1kmax

Y are reasonable bounds to use for computing the probability that omitted

variable bias can overturn the reported results; (b) for empirical studies with lower number of regressors,

0.07kmax
D and 0.4kmax

Y can be used as reasonable bounds if it can be argued that the variance of the error
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term in the treatment equation is higher than the variance of error term in the outcome equation; when the

variance of the error term in the treatment equation is suspected to be lower than the variance of error term

in the outcome equation, then 0.4kmax
D and 0.07kmax

Y can be used as reasonable bounds.
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Appendix A Proofs

A.1 Proof of Lemma 1

Proof. Using results on the inverse of partitioned matrices, it can be shown (Rao et al., 2008, page 323) that

PW = PX +
(I − PX)ZZ ′ (I − PX)

Z ′ (I − PX)Z
. (41)
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Using the definition of Z⊥X , we see that

(I − PX)ZZ ′ (I − PX)

Z ′ (I − PX) z
= PZ⊥X , (42)

where I use the fact that (I − PX) is also a projection matrix (onto the orthogonal complement of the column

space of X) and hence symmetric and idempotent. Note that PXPZ⊥X = 0 because

PXPZ⊥X = X (X ′X)
−1

X ′Z⊥X
[
(Z⊥X)′Z⊥X

]−1
(Z⊥X)′ = 0,

where I have used X ′Z⊥X = 0 (i.e. residuals are orthogonal to the regressors).

A.2 Proof of Theorem 1

Proof. Using lemma 1, we have

PWM0PW = PWM0M0PW =
(
M0PX +M0PZ⊥X

)′ (
M0PX +M0PZ⊥X

)
.

This becomes

PWM0PW = PXM0PX + PZ⊥XM0PZ⊥X (43)

because the cross product terms are zero,

PXM0M0PZ⊥X = PXM0PZ⊥X = PXPZ⊥X = 0,

by the orthogonality of PX and PZ⊥X and I have used

M0PZ⊥X = M0Z⊥X
[
(Z⊥X)′Z⊥X

]−1
(Z⊥X)′

= Z⊥X
[
(Z⊥X)′Z⊥X

]−1
(Z⊥X)′

= PZ⊥X

where, because Z⊥X is a regression residual vector, we have M0Z⊥X = Z⊥X (Greene, 2012, page 40).

I pre-multiply (43) by Y ′, then post-multiply the result by Y , and finally divide through by Y ′M0Y to

get

Y ′PWM0PWY

Y ′M0Y
=

Y ′PXM0PXY

Y ′M0Y
+

Y ′PZ⊥XM0PZ⊥XY

Y ′M0Y
.
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Using (12) and (13), we get

R2
Y∼X+Z −R2

Y∼X =
Y ′PZ⊥XM0PZ⊥XY

Y ′M0Y
.

Since the right hand side is R2
Y∼Z⊥X , we get (17).

We proceed by subtracting R2
Y∼Z from both sides of the above equality. Using (14), we get:

R2
Y∼X+Z −R2

Y∼X −R2
Y∼Z =

Y ′PZ⊥XM0PZ⊥XY − Y ′PZM
0PZY

Y ′M0Y
(44)

Now, using the definition of ηX,Y,Z in (19), we see that the RHS of (44) is ηX,Y,Z . Hence, we get (18):

R2
Y∼X+Z −R2

Y∼X −R2
Y∼Z = ηX,Y,Z .
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