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Abstract

This paper proposes to explain the productivity growth slowdown

with firms consciously preventing disruptive innovation. I build an

endogenous growth model with incremental and disruptive inventions

and an inventor labor market where firms poach disruptive inventors

to protect established technologies. I calibrate this model to the global

patent landscape in 1990 and show that it predicts 52% of the decline

of disruptive innovation until 2010. I confirm critical assumptions

with an event study: Disruptions increase future research productiv-

ity, hurt incumbent inventors and raise the probability of future dis-

ruption. Without disruption, technology classes trend further towards

incrementalism.
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1 Introduction

The paper proposes an endogenous growth model where firms interfere with

other firms’ research via poaching their inventors which creates declining

growth. Established firms pursue incremental innovation and are invested in

specific technologies by holding a portfolio of specialized inventors. They mit-

igate the risk of a disruptive innovation making these technologies obsolete

by hiring and benching disruptive inventors. The lack of disruptive research

slows aggregate growth. This scenario is consistent with the observed data:

In aggregate, firms increasingly pursue incremental research in technologies

with declining returns. I perform simulation exercises to show that this effect

can explain 52% of the decline in disruptive innovation observed in global

patent data (PATSTAT) between 1990 and 2010.

To underpin my model, I gather stylized facts about the frequency of dis-

ruptive inventions and their repercussions. I perform a matching based event

study around disruptions and find that they increase citations, patenting and

the chance for a consecutive disruption, but that the effect is decaying over

time. To conduct this exercise, I build upon Park, Leahey and Funk (2023)

and Funk and Owen-Smith (2017) to measure patent disruptiveness via ci-

tation patterns. I construct an index of how old the patents are that citing

patents reference. I.e. if a patent’s citing patents do not reference older work,

I deem it a disruptive innovation that spawns a new literature unconnected

to the past. I apply this measure to the international patent data collected

by the European Patent Office (PATSTAT) between 1980 and 2010.

I construct an endogenous growth model that reproduces my empirical

findings. The actions of two types of firms drive the fate of the model econ-

omy: First, producing firms make incremental improvements of existing tech-

nologies in order to produce a product of higher quality. Second, disruptive

firms do not sell any products, but try to invent a fundamentally different

technology. Bill Gates and Paul Allen working in a garage to revolutionize

home computing were an archetypical disruptive firm. If disruptive inven-

tors are successful, they create a better production technology than that of

any currently existing firm, but also generate large externalities: Disruptive
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inventions increase the productivity of future inventors and future firms, but

make the current incremental inventors obsolete.

Steady technological progress requires a mixture of both types of inven-

tions: Disruptive inventions alone never create a consumer product, only ever

more advanced technologies. Incremental inventions lead to slowing technol-

ogy growth over time, as incremental inventors strain against the limits of

the underlying technology: Within each technology, ideas are getting harder

to find. This tension between disruption and incremental growth is the cen-

tral tradeoff in the model and how well the economy handles it determines

economic growth.

Neither disruptive nor producing firms can conduct research on their own:

Firms need inventors to make inventions for them. Firms of both types hire

incremental or disruptive inventors on a search and matching labor market.

Disruptive and incremental inventors enter the economy and match with

firms at fixed rates. The value of each firm is determined by the stock of

inventors it has hired. Incremental inventors are specialized in their current

technology and cannot contribute to other technologies. Thus, whenever a

firm switches the technology underlying its products, it effectively loses all

incremental inventors it has hired so far. Inserting this labor market into

an endogenous growth model enables the key findings with one assumption:

The search and matching labor market provides both an asset intrinsically

linked to technologies (incremental inventors) and a way to protect this asset

from being made obsolete (by poaching disruptive inventors and stopping

their work).

Successful producing firms can slow down technology disruption and over-

all technology growth by hiring the inventors that disruptive firms would

need to innovate. This is one interpretation of the finding that being hired

by large firms actually decreases inventor productivitiy (Akcigit and Gold-

schlag, 2023). Technological progress depends not only on investment in

R&D, but also on overcoming this resistance. This sets this paper apart

from the rest of the endogenous growth literature, which views innovation as

the result of investment only. The longer a technology field has not been dis-

rupted, the more of its disruptive inventors get poached, which decreases the
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chance for future disruption. To gauge this effect of the aging of technology

fields, I estimate the key parameters of this process with the 1980-1990 por-

tion of my data and then forecast the development of technology until 2010

using these parameters. I attribute 52% of the observed decline in disruptive

innovation to the ”aging” of technology fields without any model parameters

changing (like the difficulty of inventions).

This paper speaks to the discussion around slowing technology growth,

most notably by reconciling a set of seemingly contradictory findings: TFP

growth and scientific output per researcher seem to decline, while firms hire

an increasing number of researchers for non-decreasing wages (Gordon, 2016;

Cowen and Southwood, 2019; Bloom et al., 2020; De Ridder, 2024). Likewise,

the scientific content of patents is declining (Arora et al., 2020), despite

patents with more scientific content being more valuable (Poege et al., 2019).

Kalyani (2024) also argues that patents have become more derivative and

have a smaller effect on firm productivity using a text-based approach. These

findings are discussed as drivers of the observed slowdown in productivity

growth in the literature.

Papers discussing these potential causes of the productivity slowdown in

an endogenous growth setting are closest to this study. Among them, Akcigit

and Ates (2023) conduct a horse race and argue that slowing technology

diffusion is the most likely source of slowing technology growth, De Ridder

(2024) argues for the rise of ICT technology and the resulting change in

economies of scale and Olmstead-Rumsey (2019) conducts a horse race and

argues that instead of ideas becoming harder to find, declining average idea

quality specifically of laggards is the main driver of the decline in research

productivity and the growth slowdown.

My paper explains the declining average idea quality with the decline

in disruptive innovation found in publications and patents (Park, Leahey

and Funk, 2023; Funk and Owen-Smith, 2017), which is again driven by

the anti-competitive behavior of technology leaders. Measured idea qual-

ity decreases endogenously as firms dampen disruptive, radical innovation

to reduce their risk, not because the technology process determines it. In

this view, Olmstead-Rumsey (2019); Gordon (2016); Cowen and Southwood
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(2019); Bloom et al. (2020); De Ridder (2024) all report troublesome trends,

but these could be reversed with different policies and are not exogenously

given. The proposed mechanism is self-perpetuating: The fewer disruptive

inventions there are, the lower the risks for incrementally innovating firms,

making them more valuable and even larger.

A fictitious social planner has to choose between incremental innovation

and disruption. Which of the two he picks crucially depends on the weight

that he puts on future generations: A disruptive invention will increase eco-

nomic growth long-term, but the benefits will accrue to future inventors and

future firms. In contrast, the current incremental inventors and producing

firms unambiguously lose after a disruptive invention. If the current agents

die before the growth increase from a disruptive innovation creates value, the

social planner cannot compensate them and the low-growth equilibrium with

incremental innovations is Pareto-optimal, even though it does not maximize

GDP. If people in the model lived long enough and were patient enough, the

social planner could use the additional GDP to compensate the losers from

a disruptive innovation.

My model is built on the framework of Akcigit and Kerr (2018), who

assume that firms are proficient in specific technology clusters. I understand

technology clusters as more than just one new product, they denote dis-

tinct technologies behind multiple individual products, like ”telegraphy” or

”internal combustion engine”. Incremental inventions within these clusters

generate higher quality products. In departure from Akcigit and Kerr (2018),

firms cannot invent on their own and have to hire inventors specialized in a

technology cluster on a search and matching labor market. The labor mar-

ket for inventors in each cluster corresponds to the results presented in the

empirical chapter in Section 2.

My paper also speaks to a larger theoretical literature on market failures

that misdirect innovation. Firms under-invest in research that unlocks follow-

up inventions, because they cannot profit from the inventions other firms will

make, as in Hopenhayn, Llobet and Mitchell (2006); Denicolò (2000); Scotch-

mer (1991); Acemoglu (2023). In general, firms can only appropriate a share

of the overall welfare increases that result from their inventions. Since this
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share is not constant across inventions, firms over-invest in inventions where

they can appropriate a high share of the returns (Bryan and Lemus, 2017).

In the model presented here, producing firms can only fully appropriate the

returns from incremental innovation, which drives their behavior and aggre-

gate growth.

Beyond the theoretical literature, there is substantial empirical support

for the monopolization of research fields, which is conceptually adjacent to

the proposed model: Thompson and Kuhn (2020) use patent races between

firms to compare the first and second research team and thus patent holders

and followers. They find that patents preclude competitors from follow-up

innovation and make the winner of patent races more dominant in the as-

sociated technology field. In the semiconductor industry, increased patent

protection seems to have led to defensive patenting instead of innovation

(Hall and Ziedonis, 2001). Across industries, the correlation between patent

protection and innovation is negative, which Bessen and Maskin (2009) ex-

plain by the negative effect of patents on subsequent inventions. This study

extends the principal insights of this literature to a context of inventor-firm

labor market matching in an endogenous growth model.

This paper also links into the literature around the documented rise of

firm profits and markups (Barkai, 2020; De Loecker and Eeckhout, 2017).

The model predicts that firms with high market power engage in qualitatively

different R&D. Only small, competitive firms invest in disruptive technology

to – if successful – themselves become large firms linked to a technology.

After that, their research portfolio will become much more incremental.

In a larger context, the paper relates to literature on the efficacy of the

current system to reward innovative firms. The theoretical and experimental

literature suggests that patents are not able to optimally steer the direction

of innovation in general: If only a finite number of research direction is avail-

able, firms race each other to the most lucrative patents and incur wasteful

parallel investment (Zizzo, 2002; Silipo, 2005; Breitmoser, Tan and Zizzo,

2010). Both in the US (Jaffe, 2000) and Japan (Sakakibara and Branstetter,

2001), firms do not react conclusively to substantial changes in patenting

protection. Nevertheless, in my model, the market failure can be corrected
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by policy interventions. Since technology monopolists are misdirecting in-

novation, policy should break up existing monopolies and prevent mergers

and buy-outs of startups. Likewise, any policy that increases the transfer-

ability of inventor skills makes technology markets larger and thus harder to

monopolize.

The remainder of the paper is structured as follows: Section 2 documents

stylized facts about disruptive vs. incremental innovation. Section 3 lays

out the assumptions and mechanisms of the model. Section 4 simulates the

model using the 1990 data to determine the quantitative importance of the

model’s mechanism. Section 5 discusses the response of the model to various

policy interventions. Section 6 concludes the analysis.

2 Stylized Facts

2.1 Literature on Disruptive vs. Incremental Innova-

tion

There is an active literature using firm level data to discuss the growth slow-

down in developed economies. This research has generally concluded that

there is a real slowdown in productivity growth, not just a measurement issue

(Syverson, 2017; Reinsdorf, Byrne and Fernald, 2016; Antolin-Diaz, Drechsel

and Petrella, 2017). Gordon (2016) proposed that new (impactful) ideas are

getting harder and harder to find as more and more discoveries are made.

He demonstrates this by estimating the worldwide researcher productivity in

a series of tasks, e.g. doubling the number of transistors on a chip (Moore’s

Law) or crop yields per acre. Andrews, Criscuolo and Gal (2016) and Akcigit

and Ates (2023) show that firm productivity dispersion has increased at the

same time.

Park, Leahey and Funk (2023); Funk and Owen-Smith (2017) have doc-

umented a trend towards more incremental, less disruptive research both in

publications and patents. Poege et al. (2019) show that increased incremen-

talism decreases the economic value of patents: Patents connected to high

quality research through citations are roughly twice as valuable as other

7



patents.

There is also substantial evidence that large firms – in contrast to small

firms – lean more towards incremental improvements of existing technology

(Acemoglu et al., 2016; Kerr, Nanda and Rhodes-Kropf, 2014; Kueng, Yang

and Hong, 2014). The incentives that cause this behavior are also well un-

derstood theoretically (Akcigit and Kerr, 2018). When inventors get hired

by these firms, their output declines (Akcigit and Goldschlag, 2023).

From these results, I draw five stylized facts that the model has to repli-

cate:

1. Aggregate productivity growth is slowing down.

2. Researcher productivity measured for specific targets is declining.

3. Firms’ research is becoming more incremental.

4. Large firms’ research is more incremental than small firms’ research.

5. Inventors’ productivity declines when moving to large firms.

2.2 The PATSTAT data

Patent data from across the world gathered in the PATSTAT database forms

the basis of my empirical strategy. This data contains the filing date of any

patent application, a description of the technology and the names of firms

and inventors involved. The EPO mostly relies on partner patent offices for

digitization, so both coverage and the available variables vary by country.

For some participating countries, the data starts in 1850, however, coverage

pre-WW2 is generally low. Patents from some countries are only available

from a later date onwards: E.g., Japan enters the database in the mid-

seventies. Around the same time, coverage rates improve in general and

the data can give a reliable picture of worldwide patent activity. I start

my analysis in 1980, when the data from the major patent offices contains

citations and coverage is satisfactory. Figure 1 shows the number of patents

over time for selected countries. Note that the stable or shrinking number

8



of national patents for EU countries is offset by a large increase in EU-wide

EPO applications.

Figure 1: Overview over PATSTAT
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Notes : Number of patents in PATSTAT per region. The gray region marks
the time period of data used in the event study in Section 2.5.
Sources : PATSTAT (European Patent Office).

Importantly, PATSTAT does not contain unique firm or person identifiers.

Instead, it contains a character string written into the fields ”inventor” and

”applicant” on the patent. I create inventor IDs building on a large literature

on name spelling unification and name disambiguation (see Appendix A and

Magerman, Van Looy and Song (2006); Toole, Jones and Madhavan (2021);

Li et al. (2019) for a discussion of this issue).

PATSTAT contains detailed descriptions of patents’ content: Besides ti-

tles, abstracts and patent texts, the EPO assigns one or more harmonized

8 digit IPC classes to every patent. I use these IPC classes as analogues to

technology fields in the theoretical section of the paper. The EPO also groups

patents for the same inventions together as families and provides citations

between patent families. I use these patent family citations to determine how

incremental or disruptive any given patent is and aggregate these measures

to the IPC-class level.
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2.3 Measuring patent ”disruptiveness”

To determine how disruptive specific technologies are, I follow the general

strategy of Park, Leahey and Funk (2023) and Funk and Owen-Smith (2017)

and look at the citation patterns around patent p. Both papers use two in-

dices derived from the other citations of patents citing patent p: If patents

that cite p also cite the older literature that p is referencing, p did not dis-

rupt the technology. If however p starts a new literature that does not cite

pre-existing patents anymore, p is classified as disruptive. I simplify their

exact specification by not counting the citations between patent p, its cited

patents and patents citing p. Instead, I define the citation year gap CY G by

observing the average filing year of the other citations from patents citing p.

CY Gp =

∑C t̄o;c
Cp

− tp (1)

where p is the patent of interest, c indexes patents filed up to five years

after patent p and citing patent p and o indexes the other patents cited by

c. t̄o,c is the average year of the patents o cited by citing patent c and tp is

the filing year of the original patent. Thus, the citing year gap CY G is the

difference between the average year referenced by the patents cited by the

patent citing p. A positive number means that patents citing p on average

reference patents filed after the patent of interest p, i.e. they are referencing

new research instead of the old patents that p is based on. Thus, this measure

intuitively is very close to the original by Funk and Owen-Smith (2017).

However, because it is essentially continuous, it outperforms the original in

small samples, where the fact that most patents only have one or two citations

really matters: Indices based on referenced patent count only have a couple of

values in practice, making their movements quite jumpy. I prefer CY Gp as a

measure since I follow ”disruptiveness” within (sometimes) small technology

classes, not the entire patent sample, unlike Funk and Owen-Smith (2017).
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2.4 Aggregate Trends

To understand what drives the aggregate decline in disruptive research, I

split the data into different time consistent technology classes provided by

PATSTAT. I create a balanced panel of 75613 IPC classes from 1980 to

2010. Figure 2 reports the trend of CY G for all technology classes. Most

IPC classes mirror the aggregate downward trend: Patents filed in 1980

get cited by patents that reference work on average roughly 1 year older

than the original patent. In 2010, the number has increased to roughly 5.

Though most IPC classes experience a decline in the CY G, the difference

between the most disrupted and the most incremental technologies is rising,

with some IPC classes even exhibiting rising disruptiveness as measured by

the CY G during the 90s. A major factor in this is the revolution in ICT

technology: Of the 25 IPC classes with the highest CY G in 2010, 19 are

categorized as telecommunications and 9 among those as ”transmission of

digital information”, 3 more are in ”computing and image processing” and

another 2 are in ”games (including video)”. The measure thus produces

sensible results. Table 1 reports summary statistics for the IPC class panel.

2.5 Effects of Disruptive Innovations

In the baseline specification, I define a whole technology field as disrupted

using the share of citations of its disruptive patents: If patents with a positive

CY G gain 50% or more of all citations over the next 5 years, I mark the

technology class as disrupted. The frequency of such events declines from

12% (patent weighted avg.) in 1980 to 3% in 2010. However, concurrent with

the US technology and productivity boom at the end of the century (Fernald,

2015; Garcia-Macia, Hsieh and Klenow, 2019), the frequency of disruptions

increases between 1992 and 1998. The advantage of such a definition of

disruption – based on the share of disruptive patents in citations – is that it

does not presuppose anything about the future of the technology field: Both

declining and rising fields can in principle be disrupted.

To understand what happens after such a disruption event with the IPC

class, I perform an event study: I match disrupted IPC classes to never-
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Figure 2: Aggregate Evolution of Disruptive Innovation
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Notes : Average CY G per technology class over time. CY G measures how
disrupted a technology is and is defined in (1) and discussed subsequently.
In the aggregate over all IPC classes, the measure declines from -1 to almost
-5. IPC classes worth 50% of all patents move in the dark gray area, IPC
classes worth 90% move in the light gray area. The aggregate behavior is not
driven by outlier IPC classes, declining CY G is widespread. However, some
IPC classes increase their average disruptiveness, especially during the 90s.
These are almost exclusively ICT-related.
Sources : PATSTAT (European Patent Office).

disrupted IPC classes in the same year and compare their evolution around

the disruption event. Apart from exact matching on the year, I perform

Mahanalobis distance matching on the CY G of the four years prior to the

disruption, the number of new citations during the disruption year and the

two years prior and the number of citations gained one year before the dis-

ruption by the inventor cohort that entered the economy 5 years prior to the

disruption. Table 1 reports summary statistics for the two groups prior to

matching as well as a comparison of the control and treatment group together

with significance tests.

After the matching procedure, I obtain a sample of 1631 disrupted IPC

classes and their nearest neighbor as a control. This is a substantial reduction

from the 42283 IPC classes disrupted once and is mainly due to the difficulty
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Table 1: Summary Statistics on IPC classes before and after Matching

Panel 1: Before Matching Panel 2: After Matching

Controls Disrupted Difference Controls Disrupted Difference

CY GT−1 -5.585 -3.441 2.144 -4.031 -3.917 0.114
(4.231) (3.821) (0.044) (2.996) (3.205) (0.109)

CY GT−2 -5.485 -3.742 1.743 -3.907 -3.843 0.064
(4.148) (3.919) (0.048) (3.006) (3.230) (0.109)

CY GT−3 -5.386 -4.008 1.378 -3.813 -3.783 0.029
(4.067) (3.903) (0.052) (3.048) (3.266) (0.111)

CY GT−4 -5.278 -4.105 1.174 -3.752 -3.662 0.090
(3.976) (3.866) (0.057) (3.213) (3.368) (0.115)

nrcitations(T ) 4.820 5.322 0.502 24.855 22.311 -2.544
(65.112) (8.486) (0.317) (25.414) (27.623) (0.929)

nrcitations(T − 1) 4.820 3.186 -1.634 23.901 22.973 -0.928
(65.112) (7.374) (0.317) (22.709) (23.086) (0.802)

nrcitations(T − 2) 4.391 2.544 -1.847 21.021 20.265 -0.755
(59.560) (6.494) (0.290) (20.732) (20.128) (0.716)

cum.nrcohortT−5
citations (T − 1) 1.187 0.999 -0.188 7.306 7.484 0.178

(16.565) (2.975) (0.081) (8.650) (9.222) (0.313)

Observations 1,477,476 42,283 1,519,759 1,631 1,631 3,262

Notes: Unit of observation: harmonized IPC class first disrupted in year T . Standard errors in
parentheses. *** p<0.01, ** p<0.05, * p<0.1. CY G measures how disrupted a technology is and
is defined in (1) and discussed subsequently. nrcitations(T ) denotes the number of citations to the
technology class at time T . cum.nrcohortT−5

citations (T −1) refers to the total number of citations earned by
inventors that entered 5 years before the disruption up to year T −1. In the population, disruptions
happen in already less incremental IPC classes, measured by past CY G. Soon to be disrupted
IPC classes have slightly less citations ex ante, because very small IPC classes are often tagged as
disrupted with the definition used. After the matching procedure, the differences are controlled for.
It is worth noting that matching mainly works for larger, well cited IPC classes and the matched
sample reduces substantially.
Source: PATSTAT (European Patent Office).
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of finding matches for small, less cited and already less incremental IPC

classes. The difference in CY G between unmatched disrupted IPC classes

and their potential control is large and does not allow to find matches for all

disrupted IPC classes despite the large number of potential candidates.

The event study itself is estimated using OLS

ytr;i =
r=15∑
r=−5

βtrtri +Θi + utr;i (2)

where Θi is a matched pair fixed effect for pair i, tri is relative time since the

disruption and y stands for different outcome variables of interest. To capture

the effect of disruptions on future disruption, I use CY G and the disruption

dummy to capture the likelihood for consecutive disruptions. To study the

effect of disruption on future innovation, I use the number of citations to

patents in each field per year nrcitations(t). To study the effect of disruptions

on existing inventors, I follow the careers of the inventor cohort that entered

5 years before the disruption (minus the disrupting inventors). I track the

citations that these inventors gain every year nrcohortT−5
citations (t).

Figure 3 reports the results of these estimations. Both the probability of

a consecutive disruption (Panel 3a) and the CY G (Panel 3b) increase sharply

with a disruption. Both trend downwards after the disruption, as does the

CY G of undisrupted IPC classes. Disrupted IPC classes gain patent citations

after a disruption and receive roughly 1
3
more citations after 15 years (Panel

3c). Inventors who were not involved in disruptive innovation lose citations:

After 15 years, the inventor cohort that entered 5 years before the disruption

gets cited roughly 30% less every year than inventors in undisrupted IPC

classes.

Especially the effect on existing inventors is affected by substantial mea-

surement errors and should be treated as a lower bound estimate: The PAT-

STAT data does not come with inventor IDs (and neither do other patent

data sets). Instead, it contains the names as written into the fields ”inven-

tor” and ”applicant” on the patent. Thus, an important step whenever using

PATSTAT inventors is to identify spelling mistakes and variants for which I
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improve upon Peeters et al. (2010); Magerman, Van Looy and Song (2006)

and then disambiguate different inventors and firms with the same name, for

which I build upon Toole, Jones and Madhavan (2021); Li et al. (2014). I

detail these data treatments in Appendix A.

The results from this analysis present additional facts that the model

should be able to explain:

6. Technologies’ trend towards incrementalism is reversed by discrete,

high impact, disruptive inventions.

7. Disruptive inventions increase the likelihood for consecutive disruption.

8. Disruptive inventions increase the citations earned by consecutive in-

cremental research.

9. Existing inventors lose when others disrupt their field.

3 Model

This section develops a tractable endogenous growth model that captures the

stylized facts discussed in Section 2. I adapt a standard dynamic equilibrium

endogenous growth model, more specifically Akcigit and Kerr (2018), to add

an inventor labor market and link inventors to technology clusters. Inventors

and firms are also linked to the two types of innovation in the model: In-

cremental innovation adds product quality and disruptive innovation makes

incremental inventors obsolete but increases the invention step size for fu-

ture inventors. Firms cannot directly invest into either type of R&D, but

instead have to hire inventors. When firms hire them, their innovation is di-

rected towards these inventors’ technologies and this direction is observable

by all. Thus, firms interact strategically on the labor market for inventors

– poaching inventors that pursue threatening research and building up their

own inventor portfolio. The value function of firms pursuing incremental re-

search illustrates the poaching incentive and thus the central innovation of

the model:
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Figure 3: Effect of Disruption on IPC class
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f }

π(qf )+V patentλinc
f −w(λinc

f )∗λinc
f

−Λdis ∗∆Vf (qf , λ
inc
f , λdis

f ,Λdis)− wdis
f ∗ λdis

f (wdis
f )− c(λ̇inc

f ) (3)

Six terms define the value of an incremental firm: First, its patent portfo-

lio, which generates profits π(qf ). Second, the firm’s current inventor portfo-

lio creates new patents at rate λinc
f . In contrast to other endogenous growth

models, this rate is not a choice variable, but depends on past successes in in-

ventor recruitment. Third, these inventors demand wage w(λinc
f ). Fourth, at

rate Λdis, the current technology is disrupted and the firm loses a part of its

value ∆Vf (qf , λ
inc
f , λdis

f ,Λdis). I will make the most conservative assumptions

about this term and restrict losses to future inventions only, i.e. existing

patents remain unaffected. Fifth, the firm might pay a wage to disruptive

inventors wdis
f , even though they do not produce anything for the firm: A

high wage attracts disruptive inventors which decreases the rate of disrup-

tion Λdis. Sixth, the firm chooses c(λ̇inc
f ), i.e. the costs it wants to incur to

match with additional incremental inventors. Comparing eq. (3) to a more

standard model, the firms cannot choose the rate of inventions, since the

stock of inventors and their expected output is given at time t. Instead they

choose their recruitment effort for incremental inventors (which determines

λ̇inc
f ) and the wage they pay to disruptive inventors who stop disrupting wdis

f .

The next subsections will derive the parameters and functions that de-

termine the firm’s decision: the value of an incremental patent V patent (sec-

tion 3.1), the wage that incremental inventors can demand w(λinc
f ), the re-

lationship between poached disruptive inventors and the wages that firms

post for them (λdis
f (wdis

f )) which also affects the rate of disruption in the

technology field (Λdis) and the costs of hiring incremental inventors c(λ̇inc
f ).

Firm/inventor variables are lower case and technology field level aggregates

are capitalized.
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3.1 Demand and Value of Patents

Consumers are part of a representative household and derive logarithmic

utility from consuming a final good (Y ) in continuous time. This final good

is the numeraire good.

U =

∫ ∞

0

e−rt ln(Y (t))dt

Consumers discount the future with factor r. They neither face a tradeoff

between leisure and consumption, nor do they experience inequality. House-

holds evenly share income from all sources between their members.

The final goods industry produces the consumption good using unskilled

labor and a variety of intermediate inputs and sells it to consumers. The

industry produces according to

Y (t) =
1

1− β
Lβ
c (t)

∫ 1

0

qβj z
1−β
j dj (4)

where qj is the quality of good j, zj is its quantity and Lc(t) is the unskilled

labor expended in final goods production. If all product qualities are fixed,

the production function exhibits constant returns to scale in labor and in-

termediate inputs. When product quality qj also increases, the production

function exhibits increasing returns to scale. Each product j is produced by

intermediate firms, who improve its quality via research and are the primary

actors of the model.

The final goods industry is a price taker, consisting of a multitude of

small competing firms. Hence, its inverse demand for any one intermediate

good is pj = Lβ
c (t) ∗ q

β
j ∗ z

−β
j . A monopolist firm producing the intermediate

good j with production function zj = q̄lj (where q̄ is the average quality in

the economy) would generate profits of

π(qj) = π∗
mon ∗ qj = [Lc(t) ∗ (1− β) ∗ ββ(1− β)1−2β] ∗ qj (5)

Thus, a monopolist’s profits are a linear function of quality and (from the

viewpoint of the firm) an exogenous factor called π throughout the rest of
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the paper.

Each product corresponds to one technology field (like ”telecommunica-

tions” or ”electricity generation”). There are multiple firms in each technol-

ogy field, which cannot do research themselves and have to hire inventors

to increase product quality. Within each of these fields, there is a hierarchy

of technology clusters, which denote better and different ways of producing

the product in question. E.g. the clusters ”telegraphy” or ”satellite com-

munication” in the field ”telecommunications”. These clusters are areas of

expertise for individual inventors, who cannot be experts in whole fields or

even all sciences. Within each field, there are old, obsolete clusters (”teleg-

raphy”), a currently active cluster (”satellite communication”) and as of yet

still unknown future clusters. Firms are linked to a specific technology clus-

ter through the inventors they have hired. Inventions in higher clusters have

a bigger impact on product quality.

I depart from Akcigit and Kerr (2018) in how competition between firms

with the same product (i.e. within the same technology field) works: I assume

that patented inventions are additive in quality, that is each represents an

independent increase in quality of ωc. The quality of the produced good is the

sum of the quality improvements of the patents a firm either holds or licenses.

Production is still represented by a two stage game, during the first stage

of which firms license their patents to each other. In the second stage there

is only one actual producer, who licenses all existing patents and charges

the monopoly price. This variation on the two stage game makes finished

inventions themselves safe: Firms’ patents will retain value even after another

firm has made an additional invention. This assumption simplifies the value

function of firms in light of the two new assets I introduce (incremental

inventors and disruptive inventors).

With these assumptions, firm value Vf (q̃f , λ
inc
f , λdis

f ,Λdis) is additively sep-

arable into the value of the firm’s patent portfolio (which creates passive

rents, but does not affect any decision of the firm and is not at risk from

disruption) and the firm’s inventor portfolio, which is affected by the firm’s

decisions
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Vf (q̃f , λ
inc
f , λdis

f ,Λdis) = V patent ∗ q̃f + V inv
f (1, λdis

f ,Λdis)λinc
f (6)

where V patent∗q̃f denotes the value of the patents of the firm and V inv
f (1, λdis

f ,Λdis)

is the value of an inventor portfolio with a patent arrival rate of 1.

With these additions, the value of a patent is

V Patent(c) = ωc ∗ π

r
(7)

where ωc is the quality increase of an invention, dependent on its technology

cluster c. ω describes the growth in step size generated by disruptive inven-

tions and thus is the main driver of aggregate growth. Eq. 7 captures stylized

fact (8): Disruptions increase the value of future incremental research (by

factor ω).

Figure 4: Innovation Example

Notes : An example of the evolution of a technology field before (1),
during (2) and after (3) a disruptive invention. Firms A and B pursue
incremental innovation with a constant step size before the disrup-
tion. As a result, productivity growth declines as ideas are getting
harder to find. After the disruption, A and B’s inventors can no
longer contribute to the new cluster. New firms C and D start inno-
vating with increased step size.

This technology setup replicates key features of Cowen and Southwood

(2019) and Olmstead-Rumsey (2019) insofar as productivity growth is slow-
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ing down within specific technology clusters (or tasks) through the channel

of patent quality. However, for modeling convenience, patent quality is stag-

nant in undisrupted technology fields and increasing in technology fields with

regular disruption.

3.2 Incremental Inventors

Both incremental and disruptive inventors enter any technology field at an

exogenous rate H inc or Hdis. Inventors have a quality xi drawn randomly

from the uniform distribution between 0 and 1. The incremental inventor

labor market connects entering incremental inventors with the set of existing

firms. There exists a mass 1 of incremental firms which draw a research

quality yf , also from the uniform distribution between 0 and 1. After a firm

and an inventor meet, their types are revealed and they Nash bargain over

the inventor’s wage. The pair produces patents at rate yfxi if they match.

This supermodular production function means firms and inventors depend

on the quality of their counterpart. At any point, there is a risk δ that the

inventor exits the economy.

Wages in this market are determined by Nash bargaining within matches.

Since both can freely terminate and renegotiate the contract, they bargain

over the wage of the current period only. However, neither side has a credible

outside option. The inventor will not get additional matches and will thus be

stuck negotiating with the firm again. The firm’s matches are independent

from each other since the specific vacancy is destroyed after matching whether

the firm accepts or not. The match produces πωcyfxi at any time, where π

is the constant profits that can be expected from increasing productivity, ωc

is the productivity improvement of one incremental invention which depends

on the index of the current technology cluster c and yfxi is the rate at

which new inventions are generated, a function of firm quality and inventor

skill. Since both outside options are 0, the entire output of the match is the

surplus, which will be divided between firms and inventors according to the

bargaining parameter α. This yields the wage bill for incremental inventors
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for firm f as:

winc(λi) ∗ λi = (1− α)πωc ∗ λi = (1− α)πωc ∗ yf
∫

xi dxi (8)

In equilibrium, incremental firms and inventors will always work together to

produce patents, with the inventor i earning share (1 − α) of the expected

profits as wage and the firm f earning the remaining share of α.

To actually match with incremental inventors, firms create vacancies ξf at

cost yf ∗cξ. Firms of lower research quality thus have lower costs, which keeps

them in the market. Other setups are of course possible, but in the interest of

an analytic solution, I stick to the most simple version of the inventor labor

market. After firms have created their vacancies, entering inventors match

with a random vacancy. Inventors do not match again, even if they reject

this match and unmatched vacancies are destroyed. Appendix B discusses

the effect of these simplifications. Given these assumptions, any specific firm

matches with incremental inventors according to ηf = ξf ∗ ρf = ξf ∗ Hinc

Ξinc .

Using the separability of the value function and the linearity of non-patent

derived value with respect to λinc
f (eq. 6), maximizing with respect to λ̇f

yields

∂c(λ̇inc
f )

∂λ̇f

= yfcξ ∗
1

1
2
∗ yf

H inc

Ξinc

!
= V inv

f (1, λdis
f ,Λdis) (9)

where yfcξ is the cost of creating a vacancy and 2
yf

Hinc

Ξinc is the number of

vacancies needed to attract inventors with a total patent arrival rate of 1:

The expected skill of attracted inventors for any firm is 1
2
and is then mul-

tiplied with the firm’s research quality yf to yield the expected arrival rate

of patents. Hinc

Ξinc is the ratio of entering inventors to vacancies and thus the

success rate of any individual vacancy. Hinc

Ξinc thus captures the congestion ex-

ternality usually found in search and matching labor markets: By increasing

the number of vacancies, each firm increases the overall competition for inven-

tors and reduces the efficacy of each individual vacancy. Firms will increase

their vacancy creation until the (aggregate) success rate of any individual

vacancy is so low that eq. (9) holds. Note that eq. (9) implies that there
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is no value in being a ”new” incremental firm, i.e. one without researchers:

Incremental firms compete with each other for inventors by increasing the

number of vacancies so much that all gains from additional inventors are

expended in vacancy creation.

As a result of the cost function for vacancies, each firm creates the same

amount of vacancies and receives the same amount of inventors ηincf = Hinc

1
,

while all firms’ inventors exit at rate δ. The total skill of all accumulated

inventors is

xf =
1

2

H inc

δ
(1− e−δt) = X inc (10)

where xf denotes the total skill of the inventors of a firm and X inc those

in the technology field (identical since there is a mass 1 of firms of identical

size).

The assumptions made here follow the standard search and matching

labor market setup as surveyed e.g. in Rogerson, Shimer and Wright (2005),

with the possible exception of the simplified matching function, which serves

to keep the value functions analytically solveable.

3.3 Disruption and Disruptive Inventors

Like incremental inventors, disruptive inventors enter each field at rate Hdis

and draw a skill level xi from the uniform distribution between 0 and 1. They

also immediately draw a random incremental firm with which they are now

matched. However, they do not produce anything together. Instead, each

disruptive inventor produces a disruptive invention with rate xi as long as

his matched incremental firm does not offer a high enough wage to poach

him from this activity.

Disruptive inventions are meant to represent prototypes of future produc-

tion technologies. Whenever disruptive inventors are successful, a new tech-

nology cluster is born and the old cluster becomes obsolete. Old incremental

inventors can no longer contribute to product quality after a disruption, but

disruptive inventors can immediately work on disrupting the new technology

again. To represent the first mover advantage, the disrupting inventor also
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earns γ patents in the new cluster, which represent the private gains from

disruptive innovation. The higher this parameter, the higher the incentive

to keep making disruptive inventions.

Incremental firms view the rate of disruption as a risk to their stock

of incremental inventors. To avoid modeling a fully fledged secondary labor

market where disruptive inventors repeatedly bargain with incremental firms,

I assume that disruptive inventors hold all bargaining power and can extract

the full match surplus from the incremental firms they are negotiating with.

Effectively, they can make take-it-or-leave-it offers. An incremental firm’s

maximum willingness to pay off a disruptive inventor i is given by the value

of the firm’s portfolio of incremental inventors and has to exceed the value

of potential disruptive innovation, i.e.

V inv
f (1, λdis

f ,Λdis) ∗X inc ∗ yf ∗ xi ≥ γωV Patent(c) ∗ xi (11)

where V inv
f (1, λdis

f ,Λdis) ∗ X inc ∗ yf denotes the value of the incremental in-

ventors the firm holds (λinc
f = X ∗ yf ) and xi is the reduction in the rate

of disruption that the inventor represents (his patent arrival rate xi). The

right term represents the value of working on disruptive innovation, which is

more valuable than a current incremental patent by the factor of γω (the first

mover advantage and the step size gain from a disruptive innovation). Solv-

ing for yf gives the cutoff research quality below which firms will not poach

disruptive inventors. Over time, the number of incremental researchers per

firm (X inc) and thus the cutoff value y∗f falls. More and more firms will poach

their matched disruptive inventors. Additionally, the value of incremental in-

ventors is also rising as the risk of disruption becomes smaller, acerbating

the process.

The assumption that disruptive inventors gain all the surplus from bar-

gaining is less restrictive than it originally seems: Rogerson, Shimer and

Wright (2005) discusses why in matching labor markets, matching behavior

does not depend on the surplus negotiation. Thus, no matter the assumption

about the bargaining parameter, whether or not disruptive inventors accept

offers from incremental firms and vanish from the market depends on the

24



above inequality. The assumption is only relevant for the value functions of

incremental firms, which are kept tractable this way.

3.4 Main Theoretical Results – Equilibrium within Tech-

nology Field

The value maximization of incremental firms drives the evolution of indi-

vidual technology fields. Due to the assumptions made about demand and

the technology process in section 3.1, the income from patents has no effect

on the decision variables of the firm and firms actually maximize the value

of their inventor portfolio V inv
f (1, λdis

f ,Λdis) ∗ λinc
f . Sections 3.2 and 3.3 de-

scribed the labor markets for incremental and disruptive inventors that these

firms navigate. Inserting equations (7) to (11) into the value function of the

incremental firm (eq. 3) yields the value of a firm’s inventor portfolio as a

function of the aggregate stock of incremental inventors X. Firms with a re-

search quality below the cutoff y∗f do not participate in the labor market for

disruptive inventors. As such, an analytical solution for their value function

is not necessary. I instead derive the value of firms at or above the cutoff to

understand the behavior and prevalence of poaching firms:

rV inv
f (1, λdis

f , X inc) =
π

r
ωc ∗ α︸ ︷︷ ︸

new patents net of inv. wages

− δV inv
f (1, λdis

f , X inc)︸ ︷︷ ︸
inv. exit

−Λdis
max

γωπ ∗ V inv
f (1, λdis

f , X inc)

V inv
f (1, λdis

f , X) ∗X inc︸ ︷︷ ︸
disruption risk

−λdis
f V inv

f (1, λdis
f , X inc)︸ ︷︷ ︸

wages to poached inv.

+
∂V inv

f (1, λdis
f , X inc)

∂X inc
(H inc − δX inc)︸ ︷︷ ︸

increase in poaching by others

(12)

where the first term denotes the value from the invented patents minus the

wages paid to incremental inventors and the second term captures the losses

from incremental inventors exiting at rate δ. The risk of disruptive inventions
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declines with the share of non-poaching firms y∗f = γωπ
V inv
f (1,λdis

f ,Xinc)∗Xinc as

described in section 3.3. Since the firm is itself above the cutoff, it will have

to pay wages of λdis
f V inv

f (1, λdis
f , X inc) to the disruptive inventors it has itself

poached. The last term denotes the value change as all firms aquire more

inventors and the share of non-poaching firms declines.

Solving eq. (12) yields the value of poaching firms and their resulting

strategy. Since non-poaching firms by definition do not interfere with dis-

ruptive innovation and all firms have the same hiring behavior on the market

for incremental inventors, this characterizes the equilibrium within a tech-

nology field as

V inv
f (1, λdis

f , X inc) =
π

δ + r + λdis
f

[α− 2γω

X inc 2
F1

[
1 r+λdis

δ
+ 1

r+λdis

δ
+ 2

; 1− X inc

X inc
max

]
]

(13)

where 2F1

[
a b
c
; z

]
is the Gaussian hypergeometric function.

Λinc(X inc) = X inc ∗
∫ 1

0

yf dyf =
1

2

H inc

δ
(1− e−δ∗t)

1

2
(14)

Λdis(X inc) =

∫ y∗f

0

1

2

Hdis

δ
dyf =

1

2

Hdis

δ
y∗f = Λdis

max ∗
γωπ

V inv
f (1, λdis

f , X inc) ∗X inc

(15)

The value function of an incremental inventor has two components: The

value of an inventor if the rate of disruption were 0 ( απ
δ+r+λdis ) and a share

capturing the changing risk of disruption. An incremental inventor’s value

is lower if γ ∗ ω rises, i.e. if there is a larger first mover advantage for the

disrupting inventor or if disruptive inventions create larger step size increases.

Higher returns to disruptive innovation mean that fewer incremental firms

can pay sufficient wages to poach disruptive inventions. The faster the stock

of incremental inventors grows after a disruption, the faster the value of

inventors increases, too. The growth of this stock (and thus also Λinc) is

governed by the rate at which new inventors enter and the rate at which

26



inventors exit the economy again. Directly after the disruptive innovation,

at t = 0, all incremental inventors have been made obsolete and none are

active. The probability of a consecutive disruption Λdis moves in the opposite

direction and declines over time as the number of incremental inventors and

their value increases.

Figure 5 describes the equilibrium within one technology sector as a func-

tion of the time since the last disruption. Over time, the number of incre-

mental inventors increases, the share of non-poaching firms decreases and

the chance of disruption declines while the output of incremental innovation

increases.

3.5 Aggregate Growth and Steady State

The different technology fields and patents are linked by aggregate demand

as in section 3.1 and the labor market for unskilled labor. Apart from the

intermediate monopolists, unskilled labor is also demanded by the final goods

sector, which will optimize their labor and intermediate goods intake and

through this set the wage rate. Optimizing eq. (4) with respect to labor and

inserting the equilibrium on the intermediate goods market (eq. 5) gives the

optimal wage as

w = ββ(1− β)1−2β ∗ q̄ (16)

i.e. the final goods industry will adjust its labor demand to achieve a wage

rate as a multiple of the average quality q̄ in the economy. The precise

multiple is dictated by labor’s output elasticity β.

Aggregate growth is driven by technological progress via the two differ-

ent types of innovation: Incremental inventions improve the average quality

of the products in the economy and ultimatively increase the utility of con-

sumers. Disruptive progress increases the value of future incremental progress

and ensures long-term growth: Without disruptive innovation, the economy

still grows as new incremental inventions increase quality, but growth as a

percentage of GDP declines because incremental inventions can only create

linear growth.

On the steady state growth path, the number of technology fields with
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Figure 5: Equilibrium within a Technology Sector
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Notes : Description of the equilibrium path within a technology field. Panel
5a shows the evolution of the value of a single incremental inventor with
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poach disruptive inventors: It is declining over time as the inventor portfolios
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inventor skill and the rate of disruptive inventions.
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any specific rate of disruption Nfield(Λ
dis) is stable, which keeps both the

aggregate rate of disruptions and the rate of incremental inventions constant.

Note that Λdis
field fully characterizes a field, since it is monotonely dependent

on t (time since last disruption), as is Λinc
field. Λ

dis
field or t both define the type

of a field.

In the steady state, the inflows into any type must equal the outflows.

Fields that are disrupted move to Λdis
field(t = 0) and tfield increases linearly for

all other fields. This translates to the differential equation −Nfield(tfield) ∗
Λdis

field(tfield) = Ṅfield(tfield). Figure 6 compares the actual age distribution

in 1990 and the distribution after 20 years of simulation, which is extremely

close to the steady state.

4 Main Results – Explanatory Power of the

Model

Since aggregate growth is a function of disruptive inventions, Λdis
field(t) de-

termines aggregate growth, where t is ”age” of the technology field, i.e. the

time since the technology field was last disrupted. The model laid out above

argues that aggregate growth can decline as a result of technology fields ag-

ing in this way, since incremental firms grow large and attempt to hinder

disruptive innovation. To gauge the size of this effect, I calibrate the model

to the global patenting landscape in 1990 and simulate the next 20 years.

This yields the predicted evolution of Λdis
field(t) without any changes in the

underlying parameters.

Key parameters of the model can be observed in patenting data: The exit

rate of non-single-patent inventors δ is 0.15 in 1990. To set the average size

of a technology field X inc
m ax, I take the maximum number of patents per year

in each technology field and take the average. I measure the average number

of firms in a technology field as the firms with a patent both before and after

1990 (this mass of firms is set to 1 in the theoretical model). I take Λdis
max

from the event study performed in section 2.5. I set α to the labor share in

the overall economy, since I have no way to measure inventor wages. I set
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the real interest rate to 8%.

To gauge the age distribution t of the technology landscape in 1990, I use

the previous 10 years of my data (1980-1990) and the disruption measure de-

fined and discussed in section 2. Ages above 10 cannot be measured reliably,

since the data is only complete since 1980. However, the additional effects

of age above 10 are so small this does not affect the simulation.

Last, I estimate the only unconstrained parameter γ∗ω to fit the model to

the actual rate of disruption in 1990. Since only the γ ∗ω affect the evolution

of the economy, it is impossible to disentangle the first mover advantage from

the step size of the economy.

Figure 6 reports the results of the simulation and compares it to the actual

data. Panel 6a reports the age distribution in 1990, 2010 and the result of

the simulation in 2010. As predicted by the simulation, the age distribution

shifts substantially towards higher ages, especially 10+ years since the last

disruption. However, the change in the age profile is even more pronounced

in the data than in the simulation. A similar picture emerges from Panel

6b, which shows the evolution of the share of IPC classes with ages 1-5

and 6-10. Both shares are declining substantially, however, there is a noted

increase between 1992 and 1998, which coincides with the start of the tech

and productivity boom in the US (Fernald, 2015; Garcia-Macia, Hsieh and

Klenow, 2019). Figure 6d reports the result of the final exercise: Taking the

parameters summarized in Table 6c and calibrating γ ∗ ω to the disruption

rate in 1990 is all that is necessary to simulate the further evolution of the

economy. Comparing the simulated evolution of the rate of disruption with

the actual evolution, the simulation can explain 52% of the decline from 1990

to 2010. The actual patent data shows more disruption than expected during

the 90s and less during the 2000s.

The simulation can explain the majority of the observed decline with-

out any parameter changes. This is not a refutation of the hypothesis that

”ideas are getting harder to find”, but it offers an alternative explanation.

The stylized facts reported in section 2 also support the idea that firms and

inventors face substantial technology risks from other firms’ disruptions and

that disruptive innovations lead to higher productivity research. Finally, the
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Figure 6: Counterfactual Simulation
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Notes : Panel 6a reports the distribution of technology ages in 1990 and
2010, as well as the 2010 age distribution resulting from the counterfactual
simulation. Panel 6b shows the declining share of young technologies: While
25% of technologies were younger than 5 years in 1990, only 6% were so in
2010. Panel 6d compares the observed rate with the expected evolution of
disruptions, given the parameters estimated for 1990 (Panel 6c).
Sources : PATSTAT (European Patent Office).

model as presented can explain the trend towards incrementalism without

resorting to the assumption that it is exogenously given. There exists no

counterfactual world technology frontier with which to directly rule out one

of the explanations. However, it is consistent with the evidence that suc-

cessful firms inhibit disruptive innovation and pursue incremental strategies.

However, firms’ behavior can be affected with policy, in contrast to exoge-

nous technology trends. Section 5 discusses the impact of potential policy

interventions.
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5 Policy Implications

The economy presented in the baseline specification has several major de-

cision points, only some of which the market economy handles efficiently.

First, there is the demand of the final goods sector for intermediate products

to turn into the final consumer product. The economy has a fixed number

of products defined by how many technology fields there are and all of them

are produced in equilibrium. However, the quantity produced is smaller than

in the optimum because of the monopoly power of firms. This inefficiency

depresses output by a fixed share, but has no impact on equilibrium growth

rates. Second, firms have to hire incremental inventors to improve their prod-

uct. Producers hire all incremental inventors. So, there is no inefficiency in

this dimension. Third, disruptive inventors work on disrupting the econ-

omy and get poached by producing firms to prevent this. These poaching

firms only have to outbid the private benefits of disruptive innovation. These

do not include the productivity gains of future inventors. Currently exist-

ing incremental firms bear all costs from disruption and receive none of the

benefits, thus they have a strong incentive to prevent disruption. A social

planner that maximizes the utility of representative households makes a very

different calculation: He weighs the value of getting inventors empowered by

the disruptive invention in the future against the costs of losing all current

inventors. A social planner might still arrive at the same conclusion as the

market economy if consumers are sufficiently impatient: Empowering future

inventors takes longer to pay off than current incremental inventions.

This highlights an important point about the tradeoffs involved in the de-

cision about which type of research to pursue: Increasing long-run economic

growth in this model requires unambiguously hurting the current generation.

The currently living incremental inventors and firms have a vested interest in

slowing economic growth. Fast productivity growth through disruption does

not benefit them, but the inventors and firms who will enter the newly cre-

ated cluster. This cannot always be solved via transfers: The current stock of

incremental inventors is made obsolete, temporarily decreasing GDP growth.

While it will eventually be rebuilt and growth will increase, many incremen-
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tal inventors and firm owners that were hurt by the disruption will already

have left the economy. Effectively, the current generations prefer to increase

the level of economic activity through incremental inventions at the cost of

economic growth. Of course, the linear technological progress of incremen-

tal improvements is still progress, but it means that the growth rate of the

economy will decline.

The arrival rate of disruptive inventions in the economy is determined by

the value of the stock of incremental inventors (eq. 11) vs. the value of a

disruptive invention. Figure 7 reports the alternate equilibrium paths from

changing select parameters in 1990. Policies that affect growth thus have to

target four sets of parameters:

γ gives the first mover advantage of the disruptive inventor. This parame-

ter captures how much of the disruptive invention the original inventing firm

can appropriate (measured in ”free” patents). Increasing this value increases

the incentives for disruptive inventions and makes poaching more expensive.

Many countries support disruptive (and incremental) inventors in incubators

etc. to ensure that as many of these potential firms are as successful as

possible, both through cash injection but also through transferring business

knowledge and similar methods. If these activities increase the first mover

advantage or business success rate of disruptive inventors, they benefit long

run growth in the model.

r, δ, H inc and ymax determine the value of the incremental inventor port-

folio: A high r means firms discount the future profits from incremental

inventors less. Inventor exit rate δ and incremental inventor entry rate H inc

determine how many incremental inventors exist and thus how valuable the

firms’ incremental inventor portfolio is going to be. ymax is the highest firm

research quality in the economy and 1 by assumption in the above model.

The higher the maximum firm research quality, the higher the incentive for

these firms to poach disruptive inventors. Yet, high firm quality benefits

incremental innovation, so lowering this parameter incurs clear costs.

With the above assumptions, the share of poaching firms (1− y∗f ) solely

determines the share of poached inventors. However, a better working labor

market for disruptive inventors could allow firms to poach more than ”their”
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share of disruptive inventors and would cause aggregate growth to decline.

Likewise, if the labor market was worse and incremental firms could not

match with disruptive inventors at all, aggregate productivity would rise.

There is an active literature on the question of whether startup acquisitions

are welfare-enhancing (Cabral, 2018; Piazza and Zheng, 2019). My paper

offers an additional argument for prohibiting such acquisitions.

ω captures the gains from disruptive innovation and is conceptually mostly

a technology parameter. There are no downsides to having as high of an ω

as possible: It increases the rate of disruptive innovations and also the gains

from disruptions. However, it is unclear which policies can affect this pa-

rameter (and there is no reason why these policies should not already be

implemented).

Figure 7: Effect of Parameter Changes on Disruptive Innovation
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6 Conclusion

The main contribution of the paper is to build an endogenous growth model

around the difference between incremental and radical/disruptive innovation

in which firms prevent disruption by poaching inventors. This mechanism

jointly reproduces the decline in aggregate growth, the rise in incremental re-

search (Park, Leahey and Funk, 2023; Funk and Owen-Smith, 2017; Kalyani,

2024) and the decrease in research productivity for specific tasks (Cowen

and Southwood, 2019; Bloom et al., 2020). To achieve these results, I in-

sert an analytically tractable search and matching labor market for inventors

into an endogenous growth model and avoid the numerical solutions typ-

ically associated with these labor markets (Rogerson, Shimer and Wright,

2005; Hagedorn, Law and Manovskii, 2017). Firms hire specialist inventors

to incrementally improve their technologies. Disruptive inventors threaten

to make these technologies obsolete and devalue these inventor portfolios.

Firms thus poach disruptive inventors to protect their investment. As they

grow, incremental firms prevent an increasing share of technology disruption

and become even more valuable, which raises the costs of disruption further.

In aggregate, the economy stagnates due to a lack of technology disruptions.

To confirm the empirical relevance of the model’s main mechanism, I

perform an event study around disruptions in specific technology fields using

PATSTAT from 1980 to 2010. I show that disruptive innovation increases

subsequent patent citations in the field, but citations of already established

inventors decline (both by roughly 30%). Disruptive inventions also increase

the likelihood of subsequent disruptions, though the effect is decaying over

time. The model also predicts such a pattern: Disruption destroys incre-

mental firms and decreases poaching – at least until new incremental firms

rise. Technology fields without disruptive inventions continuously become

less relevant and less likely to be disrupted in the future.

To gauge the importance of the model’s mechanism, I calibrate the model

to the 1990 patent data and simulate the next 20 years of technology evo-

lution. The simulation explains 52% of the observed decline in the rate of

disruptive innovation and produces similar technology field age profiles. Be-
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tween 1992 and 1998, the patent data shows an acceleration of disruptive

innovation, which coincides with the IT boom and its resulting productiv-

ity and creative destruction in the US (Fernald, 2015; Garcia-Macia, Hsieh

and Klenow, 2019). In contrast, the simulation expects a continuous decline,

which describes the data after 1998 well.

The model implies several levers for policy. Interventions can make it

more costly for incrementally innovating firms to poach by increasing the

expected value of searching for disruptive inventions: Innovation prizes, sup-

port for innovative startups (through incubators etc.) or increasing the base

number of disruptive inventors through education all fall under this category.

Interventions can also target the poaching of disruptive inventors directly by

e.g. preventing established firms from buying startups. Both measures will

increase long-term growth. In my model, poaching or acquisitions change

what type of research is conducted, which cannot be counteracted by a po-

tential increase in research activity through acquisitions as controversially

discussed in Cabral (2018); Piazza and Zheng (2019); Naidu, Posner and

Weyl (2018).
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Appendices

A Identifying Inventors in PATSTAT

Since PATSTAT does not contain IDs, only string names, I consolidate

spelling mistakes and disambiguate entities with the same name before using

the data. This appendix describes the procedure.

First, Magerman, Van Looy and Song (2006) have already constructed

consolidated identifiers by correcting spelling mistakes, omitting titles and

reading out abbreviations like ”Ltd.”. They have also constructed a sector

variable, which assigns names in the database to categories like ”company”,

”individual”, ”university” etc. After fusing such different spellings of the

same name, they find an additional 30% of patents for the top 450 appli-

cants, compared to the raw HAN identifiers provided by PATSTAT.

Second, Peeters et al. (2010) have manually checked the record of the top

450 applicants and searched for additional possible variants in the data. They

can assign another 30% of patents to these applicants. However, since some

of these applicants have over 100.000 patents in different countries, different

spellings and mistakes play a much larger role than in the general population.

To disambiguate additional names both on the inventor and firm side, I

clean names similarly to Magerman, Van Looy and Song (2006) and then

sort all words alphabetically. This equates reversed spellings of names like

”Erik van Houten” and ”van Houten, Erik”. This reduces the number of

unique inventor identifiers by another 25%. I additionally clean firm names

of addresses that are sporadically entered in the field ”name”, e.g. ”Intel

Corporation, Santa Clara, CA”. This fuses around 3% of the remaining firm

identifiers.

To gauge the quality of the resulting ID, I draw a list of prominent in-

ventors from Wikipedia and link them to our data. Just as Peeters et al.

(2010) for the firm side, I find that these highly active individuals are split
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over multiple IDs due to spelling mistakes, different name formats etc. How-

ever, the automated correction of Magerman, Van Looy and Song (2006)

already does a decent job of aggregating them: After manual search, I e.g.

link 38 PATSTAT person IDs to the most prolific inventor in the world (Dr.

Shunpei Yamazaki). Magerman, Van Looy and Song (2006) already linked

the most important 30, so I can only marginally improve upon their results.

My 38 IDs participate in 5585 patent families across the world while the

30 IDs of Magerman, Van Looy and Song (2006) participate in 5581. The

newly discovered name variants are clearly errors that only show up once. In

addition, such spelling variants often show up within a patent family where

the inventor is also cited on other patents. The patent family is the relevant

unit of observation. Thus, even if undetected spelling variants exist, they are

largely irrelevant to my productivity measures. I thus have confidence that

the IDs provided by Magerman, Van Looy and Song (2006) capture the large

majority of an inventor’s patents.

However, this still leaves the problem that some names might belong to

more than one inventor. Combining such inventors into one person would

create the impression of a prolific inventor frequently moving between firms.

First, I collect the frequency with which words occur in the inventor names

submitted on patents in each country. I then eliminate inventor names that

do not contain two infrequent words: E.g., ”Erik van Houten” contains two

words common in Dutch names (”Erik” and ”van”) and only one uncommon

word ”Houten”. Thus, I will not consider this inventor in the sample.

Second, PATSTAT contains the IPC classes associated with each inven-

tor’s patents. Inventors will typically not master a variety of technical fields

and thus names with more diverse portfolios are more likely to stand for

more than one inventor. Specifically, I exclude workers whose most com-

mon IPC 4-digit category accounts for 20% or less of their patents, whose

top technology field accounts for 50% or less of their patents and whose top

two technology fields account for 80% or less of their patents. I check these
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numbers against the statistics for inventors crosschecked with Wikipedia to

guarantee that these criteria are not too strict.

Third, I exclude inventors from the sample who were active for more than

40 years, on the basis that these are likely overlapping inventors of the same

name.

The observed time span, the diversity of IPC classes and technology com-

munities and the number of distinct names are conceptually different criteria.

Nonetheless, they are reasonably correlated (0.15-0.6), which suggests that

the criteria identify suspect inventors reliably.

After these cleaning steps, I obtain inventor IDs that connect all patents

strings that could conceivably belong to the same inventor, but could also

belong to different persons. I feed the resulting IDs into the disambiguation

algorithm of Li et al. (2014). This algorithm constructs a similarity score

for different records belonging to the same last name and connects those

that are most likely from the same person, based on coauthors, coapplicants,

geographic proximity and the abstract of each patent.

B Model Extension: Vacancies and Unem-

ployment

New inventors search for firms’ open vacancies. In contrast to the standard

search and matching labor market model, I assume that new inventors enter

the labor market, immediately find a match among the available vacancies

and that unmatched inventors have to leave the economy because they lose

their connection to recent developments. The research avenues that are rep-

resented by vacancies also become superseded by new approaches if they do

not match. This reduces the complexity of the labor market, because the

mass of unemployed inventors does not matter for the equilibrium anymore,

since they cannot contribute to the economy. This simplifying assumption

eliminates two state variables from each field’s inventor labor market: the
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number of unmatched vacancies and the number of unmatched inventors.

This assumption leads to the same steady state outcome, but the path to-

wards that steady state is much more tractable. Figure (8) describes the

path towards labor market equilibrium after a disruptive innovation for both

specifications.

Figure 8: Simulated Example Labor Market with Vacancies

Notes : The graph shows the evolution of the number of incremental inven-
tors in a technology cluster after its foundation. Over time, more and more
inventors enter the cluster, until the steady state level is reached. The base-
line specification of the model is presented in black. The grey lines depict
the stock of employed and unemployed inventors in a more standard model
for comparison. Such a model has slightly less employed inventors early on,
because inventors enter into unemployment and leave it over time. However,
not only do both models give the same kind of path qualitatively, the two
paths are also quantitatively close. Assuming that inventors cannot be unem-
ployed increases tractability without greatly changing even the quantitative
results. Sources : Own simulations.

How many vacancies firms will create in this setting depends on the value

of obtaining an additional inventor. This value is determined by the number

of patents the new inventor will produce and by how much the firm has to

pay the inventor.
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