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Abstract

Research on cartel inspection has focused on the dynamic behaviors of firms but not so much

on the dynamic behavior of the regulator. This paper allows the antitrust authority to choose

the level of cartel monitoring intensity and its varying patterns. Specifically, we compare

constant monitoring policies with “stochastic” policies that randomize monitoring intensities

over time. Under a simplified Bertrand competition, (i) without leniency, both policies have

the same effect on cartel deterrence, and (ii) with leniency, for each constant policy, there

are stochastic policies with the same mean probability of cartel detection that can prevent

collusion strictly more effectively. Thus, (iii) stochastic policies can use lower amnesty rates

(reduction of the fine) without compromising the effectiveness of cartel deterrence. The

synergy between randomizing monitoring intensity and leniency arises because a deviating

firm can use leniency to increase the deviation value only in high-intensity periods, which

makes collusion more difficult.
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1 Introduction

Research on cartel inspection has focused on the dynamic behaviors of firms but not so much

on the dynamic behavior of the regulator (e.g., see surveys by Ivaldi et al. (2003), Marshall

and Marx (2012), and Marvão and Spagnolo (2013)). It is often assumed that the detection

probability is the same over time.1 In this paper, we allow the antitrust authority (AA hereafter)

to choose not only the monitoring intensity but also whether to keep the intensity constant or

to randomize it over time.2 The monitoring intensity determines the detection probability of

firms’ collusion3, and if collusion is detected, both firms must pay a (prespecified amount of)

fine. When the AA varies the monitoring intensities, firms can also choose whether to collude

depending on the realized monitoring intensity of that period.

In the repeated game framework, it is often claimed (e.g., Rotemberg and Saloner (1986)

and Dal Bó (2007)) that fluctuations in the environment make collusion more difficult. Thus,

one may expect that, by creating a fluctuation of the probability of cartel detection (or market-

monitoring intensities), the AA can deter collusion more effectively. The intuition is that firms

give up colluding in high monitoring-intensity periods, which reduces the continuation value

and incentives to collude even in low-intensity periods.

It turns out that this intuition may not be correct in a simple Bertrand competition model

based on Chen and Rey (2013). Specifically, by comparing a constant monitoring policy with

“stochastic” policies that have the same mean probability of cartel detection as the constant

policy, we show that both policies have identical effects on cartel deterrence. The reason is that,

even though firms learn whether the current period has a high probability of cartel detection,

the continuation value of future collusion is based only on the expected detection probability.

That is, the fluctuation of detecting probabilities does not affect the deviation incentives if firms

1Exceptions include Frezal (2006), Harrington (2008a), and Gärtner (2022). Frezal (2006) advocates rotation
policies to investigate industries over time but does not consider leniency programs. Gärtner (2022) analyzes
how firms utilize leniency in a dynamic setting where detection probability stochastically evolves over time.

2Another interpretation of our model is that the AA continuously varies the monitoring intensities, but it can
choose whether to commit to keeping the actual intensity secret (so that firms only know the mean probability)
or to announce the intensity to the firms before each period.

3As Harrington (2008b) points out, there are multiple ways that collusion is detected. In this paper, we
focus on tacit collusion, and thus detection means that some firm’s collusive action H is discovered. Even if the
authority inspects, whether they can discover the collusion is not certain, which is reflected in the model.

2



choose to collude every period (which we call full collusion).4 A possible drawback of stochastic

policies is that firms may engage in cartels only in some states of monitoring intensities (which

we call partial collusion). However, we also show that, for each constant policy, there is a class of

stochastic policies with the same mean cartel-detection probability (i.e., the same effectiveness

to prevent full collusion) such that any kind of partial collusion is deterred for the same range of

market parameters. Therefore, both constant policies and some of its mean-preserving stochastic

policies are equally effective.

In the same model with a leniency program installed, the effect of the two kinds of policies can

differ. The leniency program is a system to incentivize members of a cartel to report to the AA

to reduce the fine and terminate collusion.5 The key insight is that a deviating firm can choose

when to denounce the cartel to benefit from leniency. Under stochastic policies, a deviating

firm is willing to use the leniency program only in periods of a high detection probability to

improve the deviation payoff, and the reduction of the expected fine is greater than that under

the constant policy with the “average” detection probability. Consequently, under stochastic

policies, deviation is more attractive. Thus stochastic policies are more effective to prevent

full collusion than the mean-probability, constant policy. We also show that the same class of

stochastic policies continues to prevent any kind of partial collusion under a leniency program.

Our findings suggest that leniency programs and fluctuations of the intensities in cartel

investigations complement each other. To our knowledge, literature has yet to address this type

of synergy.

Harrington (2008a) addresses a complementary policy issue: given the detection probability

structure and assuming that firms always engage in partial collusion, he characterizes the op-

timal amnesty rate. By contrast, we fix the amnesty rate and compare constant or stochastic

detection policies that deter both full and partial collusion.

We organize the paper as follows. Section 2 analyzes the base model without leniency

4Still, varying the AA’s monitoring intensity may be helpful for at least two cases. First, if the AA’s monitoring
cost is an inverted-S shape function of the intensity, making a very low probability state may reduce the expected
cost of monitoring. Second, if the firms are global entities and the inspection requires international coordination,
it may be challenging for the countries involved to coordinate on a constant inspection policy.

5For a survey of the leniency programs, see Marvão and Spagnolo (2013). Since we have only two firms, we
focus on the most straightforward leniency program in which only the first informant gets amnesty. Landeo and
Spier (2020) investigate the optimal design of a leniency program of multiple firms, which chooses the number of
firms to get the amnesty and the amnesty rate.
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and shows the equal effectiveness result. Section 3 compares constant policies with the mean-

preserving stochastic policies under leniency programs. Section 4 concludes.

2 Base Model without Leniency

Our model is based on Chen and Rey (2013). Consider a duopoly market in which firms 1 and

2 operate over the discrete time horizon t = 1, 2, . . .. They have the common discount factor

δ ∈ (0, 1). The one-shot profit of each firm is 0 if both firms compete, B (> 0) if they collude,

and 2B for a firm that deviates from the collusion, in which case the other firm gets 0. Such a

situation can be formulated by a reduced Bertrand game whose payoff matrix is described by

Table 1. Note that actionsH and L correspond to collusive and defective behaviors, respectively.

We regard (H,H) as a successful cartel and (L,L) as competition. The asymmetric case (H,L)

corresponds to the situation where firms once entered into a cartel agreement, but firm 2 alone

deviates to a slightly lower price. The other asymmetric case (L,H) means that firm 1 alone

deviates from the cartel.6

H L

H B, B 0, 2B

L 2B, 0 0, 0

Table 1: Reduced Bertrand Game

As in Chen and Rey (2013), collusion (i.e., any action combination other than (L,L)) leaves

some evidence that might be found by the AA. A monitoring policy of the AA in a period is

represented by a probability p with which the cartel is detected if firms collude.7 The evidence

of collusion lasts only for one period. Hence, even if a cartel is detected, each firm must pay

a fine F (constant across periods) only for that period and can restart collusion in the next

period. Unlike Chen and Rey (2013), we assume that the detection probability sequence {pt}
6In this reduced Bertrand game, (L,H) and (H,L) are also one-shot Nash equilibria. However, our intention

is that the situations in which one firm slightly undercuts the other are not the focus of “collusion” because these
are not a Nash equilibrium of the ordinary Bertrand game. In the name of “L”, we have two meanings in the
reduced game.

7To be more precise, p is the probability such that the AA investigates this market and succeeds in uncovering
cartels. Chen and Rey (2013) distinguish these two events and denote the probability of investigating the market
by α and the (conditional) probability of uncovering the cartel by p. Therefore, our p is equivalent to their αp.
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may depend on the investigation strategy chosen by the AA.8

We compare the following two types of dynamic investigation policies. A constant policy

implements the same detection probability over time, i.e., pt = p ∈ (0, 1) for all t. In contrast,

a (stationary) stochastic policy randomizes over multiple detection probabilities, keeping the

distribution over the possible detection probabilities stationary. For example, the AA can switch

between an “intensive monitoring” period and a “normal monitoring” period, as sometimes done

by the traffic police9, and the probability that the intensive monitoring period will be realized

is the same over time.

There are two interpretations of our stochastic policies. One is that the AA literally ran-

domizes how intensively it monitors a market. Another is that the AA rotates inspections over

many markets so that from each market point of view, the detection probability varies over

time.

2.1 Effectiveness threshold under constant policies

We first derive the sufficient condition for cartel deterrence for each constant policy with pt =

p ∈ (0, 1), for all t = 1, 2, . . .. We interpret that p is the status quo policy, fixed by the

institutional constraints. Suppose that firms engage in a cartel, i.e., play (H,H), for every

period, which we call full collusion. Taking into account the possible fines, the expected profit

for each firm, denoted by V , is formulated as follows.

V := B − pF + δ(B − pF ) + δ2(B − pF ) + · · · = B − pF

1− δ

Note that in our model, firms can restart collusion after paying the fine. The full collusion

is sustainable in a subgame perfect equilibrium if and only if the following trigger strategy

combination is a subgame perfect equilibrium (Abreu (1988)): firms play (H,H) as long as no

firm deviates from it and will play (L,L) forever10 once some firm deviates. The trigger strategy

8In related research, Gärtner (2022) analyzes a model where detection probability stochastically evolves over
time. However, this fluctuation process is exogeneously given, hence the AA cannot choose its policy.

9In some countries (e.g., Japan and Finland), the traffic police announces “intensive control pe-
riods” during which the traffic violations are monitored with high intensity. (See for example,
https://poliisi.fi/en/-/intensive-speed-control-campaign-by-the-police-next-weekend.)

10Since (L,L) is a Nash equilibrium of our reduced Bertrand game, playing (L,L) in every period (irrespective
of the history) is a subgame perfect equilibrium. This equilibrium would generate 0 profit, which clearly serves
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combination is a subgame perfect equilibrium if any one-step deviation is not beneficial. Given

the above trigger strategy, the expected total payoff from a deviation to (L,H) in one period is

2B − pF + 0.

This is because the deviating firm earns 2B in that period but may need to pay the fine F

with probability p because choosing L when the other firm is playing H is not considered a

competitive behavior. Note that the detection probabilities at (H,H) and (L,H) are assumed

to be the same. For relaxing this assumption, see Appendix.

Thus, full collusion is sustainable under a constant policy p if and only if the following

incentive condition is satisfied.

V =
B − pF

1− δ
≧ 2B − pF ⇐⇒ δ ≧

B

2B − pF
. (1)

When either p or F is 0, (1) reduces to δ ≧ 1
2 . Throughout the paper, we assume that the

following condition holds so that the firms have a strict incentive to sustain collusion if there is

no antitrust enforcement.

δ >
1

2
. (2)

Given (2), the condition (1) can be rewritten as follows.

B ≧ B :=
δpF

2δ − 1
(3)

The condition (3) means that only markets that generate sufficient collusive payoff B can

sustain the full collusion. Therefore, B can be interpreted as the effectiveness of the (constant)

antitrust policy p.

2.2 Effectiveness threshold under binary stochastic policies

When the AA chooses a stochastic policy, it sets up a distribution function G over various

investigation intensities, corresponding to various detection probabilities (the possible “states”

as the severest punishment for both firms.
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from the viewpoint of the firms) and uses G every period. We focus on binary stochastic policies,

i.e., supp(G) = {p1, p2}, where p1 < p2 and pk ∈ (0, p̂] for k = 1, 2. The probability that the

“state” pk realizes is denoted by xk := G(pk) > 0. We assume that p ≦ p̂: the temporarily

highest detection probability for the AA may be higher than the status quo constant probability.

If firms cannot know the realized pk before choosing their actions, the game is essentially

the same as the one under the constant policy with the mean probability x1p1 + x2p2. Thus,

an underlying assumption of stochastic policy implementation is that the AA announces the

realized detecting intensity in each period, before the firms choose the stage-game actions.

There are at least two reasons that the AA may want to use a stochastic policy. One is

the implementation cost of the policies. If the cost of monitoring is a function of the detection

probability p and follows the standard inverted-S shape, it is possible that mixing different

probabilities is cheaper than monitoring with the mean probability for sure. The other is the

case that the AA is facing multiple markets to monitor. Then the AA may want to rotate the

monitoring activities across markets instead of monitoring all markets every period. The latter

benefit is advocated by Frezal (2006).

Under a binary stochastic policy, firms can try to collude for all realizations of pk (essentially

the same phenomenon as full collusion under a constant policy) or only in one state (which we

call partial collusion). First, consider full collusion. For each k = 1, 2, let Vk be the total

expected payoff of a firm that colludes in any state, starting in a period when pk is realized. It

is recursively formulated as follows:

Vk := B − pkF + δ{x1V1 + x2V2}, ∀k = 1, 2. (4)

To explain, a firm earns B by (H,H) but may pay the fine F if the cartel is detected in that

period, which occurs with probability pk. In the next period, the firm may start in the state

p1 (with probability x1) or p2 (with probability x2). In either case, the firms choose (H,H) by

the full collusion agreement, so that the continuation value is Vk for k = 1, 2.

In order to sustain (H,H) in all states, the following incentive conditions must be simulta-
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neously satisfied.

V1 = B − p1F + δ{x1V1 + x2V2} ≧ 2B − p1F (5)

V2 = B − p2F + δ{x1V1 + x2V2} ≧ 2B − p2F (6)

To compare the performance with a constant policy p, we should focus on the stochastic

policies with the mean p:

x1p2 + x2p2 = p. (7)

This is not only for mathematical comparison, but also by the underlying assumption that the

AA can distribute its regulatory resources (e.g., labor forces and the budget) over various states.

However, the allocation of resources must be constrained by the original constant investigation

activities, i.e., x1p2 + x2p2 ≦ p, and the optimal allocation of the tasks results in (7).

Proposition 1 [Equal Effect without Leniency] Assume there is no leniency program. Then,

full collusion is sustained in a subgame perfect equilibrium under some constant policy if and only

if full collusion is sustained in a subgame perfect equilibrium under any of its mean-preserving,

binary stochastic policies.

Proof. We prove the following: for a given p and any binary G such that (7) holds11, the

conditions (5) and (6) are both equivalent to (3). Recall also that x1 + x2 = 1.

Multiplying both sides of (4) by xk for each k = 1, 2, adding up and using the mean-

preservation (7), we have

x1V1 + x2V2 = B − pF + δ{x1V1 + x2V2}

⇐⇒ x1V1 + x2V2 =
B − pF

1− δ
.

11Note that if p = p̂, then there is no non-degenerate, mean-preserving stochastic policy. However, the propo-
sition still holds trivially.
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Hence (5) becomes

V1 = B − p1F + δ
B − pF

1− δ
≧ 2B − p1F

⇐⇒ B − δ
B − pF

1− δ
≧ 2B ⇐⇒ B ≧

δpF

2δ − 1
(= B(p)).

(6) also becomes

V2 = B − p2F + δ
B − pF

1− δ
≧ 2B − p2F

⇐⇒ B − δ
B − pF

1− δ
≧ 2B ⇐⇒ B ≧

δpF

2δ − 1
(= B).

Thus, the incentive conditions under a binary stochastic policy (5) and (6) are both equivalent

to the incentive condition under the corresponding constant policy (3).

Proposition 1 illustrates that, in the absence of a leniency program, a constant policy and

any mean-preserving binary stochastic policy are identically effective for full collusion deter-

rence.12 This is because the continuation payoff of collusion δ{x1V1 + x2V2} depends only on

the mean detection probability p and not on the realized pk.

Under a stochastic policy, firms may engage in partial collusion such that they choose (H,H)

in some states but (L,L) in other states. This is a possible drawback of a stochastic policy that

allows firms to collude in various ways. Nonetheless, we can show that, for each stationary policy,

there is a class of mean-preserving binary stochastic policies under which no partial collusion is

sustainable. Then, stochastic policies in that class are as effective as the corresponding constant

policy in cartel deterrence.

As preparation, we formulate the long-run payoff structure of partial collusion. For any

k = 1, 2, suppose that firms choose (H,H) only when pk is realized. The total expected

payoff of a firm starting in state k and j(̸= k) are recursively formulated as follows, where the

12This result can be generalized for non-binary stochastic policies.
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superscript stands for the partial collusion state and the subscripts stand for the starting state.

W k
k := B − pkF + δ{xkW k

k + xjW
k
j };

W k
j := 0 + δ{xkW k

k + xjW
k
j }.

(Note that firms compete when pj realizes and thus each firm earns 0 in that period.)

Multiplying both sides of the above equations by xk and xj respectively and adding them

up, we have

xkW
k
k + xjW

k
j = xk(B − pkF ) + δ{xkW k

k + xjW
k
j };

⇐⇒ xkW
k
k + xjW

k
j =

xk(B − pkF )

1− δ
.

Thus partial collusion only in state k is sustained if and only if

W k
k = B − pkF + δ

xk(B − pkF )

1− δ
≧ 2B − pkF. (8)

Lemma 1 Assume that there is no leniency program. If full collusion is deterred under a binary

stochastic policy, then partial collusion in which the firms collude only in state 2 is deterred.

Proof. The incentive condition (8) for k = 2 is equivalent to

B + δ
x2(B − p2F )

1− δ
≧ 2B, (8’)

while the incentive condition of full collusion is

B + δ
(B − pF )

1− δ
≧ 2B.

Without loss of generality, assume a non-trivial binary policy such that x1, x2 > 0. Since

p1 < p2, the mean-preservation (7) implies that p < p2. Hence the LHS of (8’) is strictly smaller

than the LHS of the full collusion condition. This means that, if full collusion is deterred, the

partial collusion in state 2 must also be deterred.
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Lemma 2 Assume that there is no leniency program. The partial collusion only in state 1 is

deterred for any B if and only if

x1 <
1− δ

δ
. (9)

Proof. By rearrangements, the incentive condition (8) for k = 1 becomes

δ
x1(B − p1F )

1− δ
≧ B ⇐⇒ (x1 −

1− δ

δ
)B ≧ x1p1F.

Since x1p1F ≧ 0 (p1 can be 0), if x1 <
1−δ
δ , then the above inequality is violated for any B(> 0),

i.e., partial collusion in state 1 is not sustainable.

Proposition 2 [Equal Effect Class for All Possible Collusion, without Leniency] Assume there

is no leniency program. For any constant policy p, any of its mean-preserving binary stochastic

policy with x1 <
1−δ
δ prevents any type of collusion for the same range of B (i.e., (0, B(p))).

Therefore, the AA can use any of the binary stochastic policies satisfying (9) without com-

promising the effectiveness of cartel deterrence. When the AA uses a stochastic policy such

that x1 > 1−δ
δ , still firms cannot conduct partial collusion in p1 if B is less than some bound.

However, this will not expand the range of B that deters all kinds of collusion. Hence such

stochastic policies are not more effective than those satisfying (9). See Figure 1 for intuition.

Let us call a policy optimal when it maximizes the lower bound to B at which the incentive

condition holds. This reduces the set of markets that sustain collusion as much as possible.

Without leniency, the optimal constant policy is p = p. If p = p̂, there is no better binary

stochastic policy than this. When p < p̂, there are more effective binary stochastic policies: set

p2 = p̂ and (x1, p1) to satisfy x1p1 + (1 − x1)p̂ > p and x1 < 1−δ
δ . This is because the average

detection probability increases and not because of fluctuations. In other words, without leniency,

the only case that a stochastic policy outperforms constant policies is when the mean detection

probability is higher than the best constant policy’s.
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- B
Constant policy p

Mean-preserving
binary policy G no full collusion

without (9) extra bound ? to prevent partial collusion

with (9) no partial collusion

�

B(p)no (full) collusion

Figure 1: Effectiveness comparison without a leniency program

3 Policy comparison under a leniency program

Let us introduce a leniency program that allows the first (and only first) informant to benefit

from a reduced fine qF where 1 − q > 0 is the amnesty rate. Following Chen and Rey (2013),

We assume that, in each period, firms simultaneously choose a stage game action from {H,L}

as well as whether to report (action R) the evidence of collusion to the AA or not (action N).13

See Figure 2 for the outline of the new repeated game.

-
period t

firms choose from
{H,L} × {R,N} H

an
d (N

,N
)

�
�
�
�
��3

-
H & R

Reporter pays qF -

The other pays F

nN �
���*

HHH
Hj

detected
w. pt

undetected
w. 1− pt

@
@
@ -

(L,L)

Both firms
pay F

A
A
A
A
AU

No fine
HHj

No fine
������1

period t+ 1

firms choose from
{H,L} × {R,N}

Figure 2: Timeline of the game with a leniency program

3.1 Constant policy with leniency

To sustain (full) collusion under a constant detection probability pt = p for all t = 1, 2, . . ., it is

necessary and sufficient that the following trigger strategy played by both firms is a subgame

13If (L,L) is chosen and a firm chooses to report the evidence of collusion, then nothing is reported since there
is no evidence of collusion.
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perfect equilibrium: Choose H and do not report to the AA as long as no firm deviates, but

choose L forever after if a firm deviates from this path.

A deviating firm can choose between not reporting to the AA and using the leniency program,

whichever gives a lower (expected) fine. Hence, the following incentive condition must be

satisfied to sustain full collusion.

V =
B − pF

1− δ
≧ 2B −min{pF, qF} (10)

Leniency programs are relevant only if it is used in the optimal deviation, i.e.,

p > q. (11)

In what follows, we assume (11). Then, condition (10) can be rewritten as follows.

B − pF

1− δ
≧ 2B − qF ⇐⇒ B ≧

{pF − (1− δ)qF}
2δ − 1

=: BC(p; q), (10’)

where the superscript C stands for a “Constant” policy. Note that

BC(p; q) =
δpF

2δ − 1
+

(1− δ)(p− q)F

2δ − 1
= B(p) +

(1− δ)

2δ − 1
(p− q)F,

which implies that BC(p; q) > B(p) for any (p, q) as long as (11) holds. As Chen and Rey

(2013) pointed out, it is always desirable to offer some leniency, since that would tighten the

incentive condition and make collusion harder to sustain. The extra part (1−δ)
2δ−1 (p− q)F can be

interpreted as the advantage of using the leniency program for a deviating firm. This raises the

minimum benefit from collusion to sustain it. It is increasing in the amnesty rate 1− q.

3.2 Binary stochastic policy under leniency

Consider full collusion deterrence when the AA uses a binary stochastic policy with the support

{p1, p2} such that p1 < p2. By the mean-preservation (7) and the relevance assumption (11),

we must have p2 > p > q. That is, a deviating firm in state p2 always uses the leniency program

to pay qF instead of taking chances to pay the expected fine of p2F . Thus full collusion is
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sustainable if and only if the following two conditions are simultaneously satisfied:

V1 = B − p1F + δ
B − pF

1− δ
≧ 2B −min{p1F, qF} (12)

V2 = B − p2F + δ
B − pF

1− δ
≧ 2B − qF. (13)

We now show that, if (13) holds, then the condition (12) also holds. Hence the necessary and

sufficient condition for full collusion is (13).

Lemma 3 Under a binary stochastic policy, full collusion is sustainable if and only if the

incentive condition (13) of the more risky state p2 is satisfied.

Proof. By rearrangements, (13) is equivalent to

δ
B − pF

1− δ
≧ B + (p2 − q)F, (13’)

while (12) is equivalent to

δ
B − pF

1− δ
≧ B +max{0, (p1 − q)F}. (12’)

Since p2 > p1, the RHS of (13’) is strictly greater than the RHS of (12’).

From (13) or (13’) and p2 > p, we have the following conclusion.

Corollary 1 The bound to B that sustains full collusion under a binary stochastic policy is

B ≧
δpF + (1− δ)(p2 − q)F

2δ − 1
= B(p) +

(1− δ)

2δ − 1
(p2 − q)F =: BF (p2; p, q),

where the superscript F stands for full collusion deterrence. For any (p, q) such that q < p and

any mean-preserving binary stochastic policy G,

BF (p2; p, q) > BC(p; q).

Hence, with a leniency program installed, the class of markets where full collusion is sustain-

able becomes strictly smaller under binary stochastic policies than under a constant policy with
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the same mean detection probability. This is because the advantage of the reduced fine is larger

in the “risky state” of p2 than the “average” state p, which makes full collusion more difficult.

Since BF (p2; p, q) is increasing in p2, by increasing only the higher detection probability makes

full collusion more difficult.

Next, consider partial collusion deterrence. By a similar logic to the derivation of (8), partial

collusion only in state pk is sustained if and only if

W k
k = B − pkF + δ

xk(B − pkF )

1− δ
≧ 2B −min{pkF, qF} (14)

⇐⇒ δ
xk(B − pkF )

1− δ
≧ B +max{0, (pk − q)F} (15)

We have an analogous result to Lemma 1.

Lemma 4 Assume that there is a leniency program with q < p. If full collusion is deterred

under a binary stochastic policy, then partial collusion in which the firms collude only in state

2 is deterred.

Proof. The incentive condition (14) for k = 2 simplifies to

W 2
2 = B − p2F + δ

x2(B − p2F )

1− δ
≧ 2B − qF,

while the necessary and sufficient condition for full collusion under leniency was

V2 = B − p2F + δ
B − pF

1− δ
≧ 2B − qF. (13)

Since x2 < 1 and p < p2, the continuation value of collusion satisfies

δ
B − pF

1− δ
> δ

x2(B − p2F )

1− δ
.

That is, V2 > W 2
2 and the deviation value is the same. Therefore, if full collusion is deterred,

the partial collusion only in state 2 is deterred.
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Lemma 5 Assume that there is a leniency program with q < p. The partial collusion only in

state 1 is deterred for any B if and only if

x1 <
1− δ

δ
. (9)

Proof. By rearrangements, the incentive condition (15) for k = 1 becomes

(x1 −
1− δ

δ
)B ≧ x1p1F +

1− δ

δ
max{0, (p1 − q)F}.

Since the RHS is non-negative, if x1 <
1−δ
δ , then the above inequality is violated for any B(> 0),

i.e., partial collusion in state 1 is not sustainable.

We summarize the above analysis as follows.

Proposition 3 [Superiority of Stochastic Policies with Leniency] Fix a constant policy with p

and a leniency program with q < p.

1. Any mean-preserving binary stochastic policy makes full collusion strictly more diffi-

cult than the constant policy. Moreover, sustaining full collusion becomes strictly more

difficult as the highest detection probability p2 is increased.

2. Whenever the constant policy with some amnesty deters a cartel, there always exists its

mean-preserving stochastic policy that can also deter the same cartel with strictly smaller

amnesty rates.

3. Any mean-preserving binary stochastic policy such that

x1 <
1− δ

δ
(9)

makes any type of collusion strictly more difficult than the constant policy.

Proof. 1 and 2 follow from Lemma 3 and Corollary 1. 3 follows from Lemmas 4 and 5.

Therefore, by implementing stochastic policies, the AA can reduce the amnesty rate without

compromising the effectiveness of cartel deterrence. In this way, leniency programs and non-
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constant cartel investigations complement each other. By an analogous argument, we can extend

the superiority result to arbitrary finite-support stochastic policies.

4 Conclusion

In this paper, we study how cartel behaviors are affected by dynamic antitrust enforcement

by the regulator. Our focus is to compare the (often-assumed) constant investigation policy

with the mean-preserving stochastic policies that randomize cartel-detecting probabilities for

each period. We illustrate that, in the simple Bertrand-type competition model and without a

leniency program, the two types of policies are identically effective. Whereas, in the presence

of leniency programs, some stochastic policies can outperform the constant policy in deterring

collusion and reducing the amnesty rate. These findings suggest that leniency programs and

fluctuations in cartel investigation complement each other. We expect this would provide a new

scope for the competition policy.

To derive the above results in the simplest possible setting, the current model assumes that

firms have only two actions and there are only two firms. Allowing continuous prices instead of

binary actions would be straightforward. We also expect that considering more than two firms

does not give qualitatively new insight as long as only the first informant gets the amnesty.

However, a model with more than two firms involves more policy choice variables: how many

firms can get the amnesty and how the amnesty rates should differ in the order of report. Landeo

and Spier (2020) have already investigated this type of design problem of the optimal ordered

leniency program. It would be an important future research topic to analyze how non-constant

detection probabilities affect the optimal ordered-leniency policy.

Another simplifying assumption is that the cartel-detection probability and the level of fine

are the same for (H,H) and (L,H) and is independent of B. In Appendix, we generalize these

assumptions a little. In Section A.1 we show that as long as the difference of cartel-detecting

probabilities between (H,H) and (L,H) is constant, the qualitative results are the same. In

Section A.2., we allow that the fine level F also depends on whether the action combination

was symmetric ((H,H)) or asymmetric ((L,H)/(H,L)), and is increasing in the profits earned.

There, we show that in this case, it is optimal for the AA to charge the same fine level across
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action combinations and the profits earned. While a much more general structure of the cartel

detection process is important, we leave it for future research.14
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A Appendix

Our qualitative result is robust to some changes in the model, in particular, even if the proba-

bility of getting fined at (L,H) is different from the one at (H,H), which can be more natural.

Moreover, there is a foundation that the AA wants to impose the same fine level for (L,H) and

(H,H), or different profits earned by a collusive firm.

A.1 Lower detection probability for a deviant

We continue to denote by p the probability of detection at (H,H) under a constant policy.

Take a constant γ such that 0 ≦ γ < p and let p− γ be the probability of detection at (L,H),

that is, the firm that slightly undercuts the collusive price is charged a fine with probability

p − γ under the constant policy, probably due to its lower price than the rival firm. Then the

incentive condition of (1) becomes

V =
B − pF

1− δ
≧ 2B − (p− γ)F. (16)

Take any binary stochastic policy that also differs in the probability of detection by the

same γ at (L,H), given a state. That is, if the AA’s realized cartel detection probability of

(H,H) is p2, the one at (L,H) is p2 − γ(> 0). If the detection probability at (H,H) is p1, then

the one at (L,H) is max{0, p1 − γ}. For simplicity, we focus on the binary stochastic policies

such that p1 > γ.

Without leniency, the modified incentive conditions (12) and (13) for full collusion become

as follows.

V1 = B − p1F + δ{x1V1 + x2V2} ≧ 2B − (p1 − γ)F (17)

V2 = B − p2F + δ{x1V1 + x2V2} ≧ 2B − (p2 − γ)F (18)

As in our analysis in Section 2.2, (16) is equivalent to the conditions (17) and (18). Therefore,

the two types of policies are identically effective in the absence of a leniency program.

Lemma 1 continues to hold in this model because the modified incentive condition of partial
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collusion in only state 2 is

W 2
2 = B − p2F + δ

x2(B − p2F )

1− δ
≧ 2B − (p2 − γ)F,

and this is violated if V2 < 2B − (p2 − γ)F , i.e., if full collusion is deterred by the binary

stochastic policy.

Lemma 2 also holds. To see this, the modified incentive condition of partial collusion in

only state 1 is

W 1
1 = B − p1F + δ

x1(B − p1F )

1− δ
≧ 2B − (p1 − γ)F

⇐⇒ (x1 −
1− δ

δ
)B ≧ x1p1F +

1− δ

δ
γF.

Hence the same class of binary stochastic policies prevent all kinds of collusion for the same

range of B as the constant policy with p.

Next, assume that there is a leniency program. The incentive condition (10) under the

constant policy becomes

V =
B − pF

1− δ
≧ 2B −min{(p− γ)F, qF}. (19)

The RHS of (19) implies that a leniency program is relevant if and only if p−γ > q. If we replace

the relevance condition (11) (q < p) to q < p− γ, all analyses in Section 3.2 go through. Hence,

in the class of leniency programs such that q < p − γ, the superiority of (binary) stochastic

policies continues to hold.

A.2 Profit-dependent fine

In this section we show that even if the AA can set different F depending on the earned profit

of a collusive firm, it is better to choose the same level. Suppose that both the detection

probability and the fine level depend on whether collusion is symmetric (H,H) or asymmetric

(L,H)/(H,L). We keep using the same notations, p and F , for the values in the symmetric

action case. Let p̃ and F̃ be the corresponding values in the asymmetric case. Then, the incentive
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condition to sustain collusion under a non-stochastic but action-dependent policy becomes

V =
B − pF

1− δ
≧ 2B − p̃F̃ ⇐⇒ B ≧

pF − (1− δ)p̃F̃

2δ − 1
(20)

Let us denote the difference of the two fine levels by ∆F , that is,

F̃ = F +∆F. (21)

Since the amount of the fine is usually non-decreasing in the amount of the (excess) profits of

the colluding firms, we assume ∆F ≧ 0. Substituting (21) into (20), the incentive condition is

now expressed as

B ≧
pF − (1− δ)p̃(F +∆F )

2δ − 1
= B − 1− δ

2δ − 1
{F (p̃− p) + δp̃∆F} (22)

Note the RHS of (22) is decreasing in ∆F . This implies that collusion becomes easier as

the gap ∆F gets larger. Given that the amount of fine is non-decreasing, it is optimal to set

∆F = 0. That is, for constant policies (given p̃), the AA should charge the constant fine F = F̃

independent of whether collusion is symmetric or asymmetric.
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