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Quick Setup

» Single good, multiple markets Cournot economy with linear
inverse demand

» Firms and Consumers connected by bipartite graph

» Assumed Information: known slope of demand and
price-quantity history

» Market size (intercepts) unknown — least-squares learning
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Quick Setup

S. Kreuzmair (UvA) 3/24



Motivation

» Rational expectations require:
» a lot of information

» high computational ability

» How do agents learn equilibrium?
P> eductive

> evolutive

» If there are shocks or structural changes, agents need to learn
fast!

» Not all firms and consumers interact with each other
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Research Question

P Is there convergence to an equilibrium? Which?
> How fast?

» How does network affect convergence speeds?
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Summary of findings

» Convergence to full information Cournot-Nash equilibrium

» Network has no effect on stability but affects convergence
speed

» Individual quantities converge polynomially at a constant rate
» independent of network structure

> Aggregate (market and firm) quantities converge faster than

individual quantities
» speed dependent on network structure
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Model - Notation

» markets: M = {1,..., M},
indexed by m

» firms: J ={1,...,J},
indexed by j

» price in market m in period
t: p’

» quantity produced by firm j
for market m in period t:

m,j
q:
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True parameters: « and 3

Estimates by firm j for
market m at time t: a;"’

JIm: firms connected to
market m

M;: markets that firm j is
connected to

demand shock: &f"
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Model — Network

» Network: bipartite graph G = (M, J, E)
» biadjacency matrix G with elements gj;

» Example graph:
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Model — Firm

Inverse demand function:
pr=a—-B(> a™|+er
JETm
Perceived inverse demand:
pm,j — am,j _ ﬁqm,j +Um,j
Parameters are unknown — firm estimates:

(e = a4 — ™
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Model — Firm

Objective:

q. = argmax 3 (g™ | - < (@)

C
{qm’j}meMj meM; 2

Yields:

2 (1 1 y
my _ Z [ Z M E ald
qt 5 <2at—1 2 (MJ n B) =~ gl_]at_]_)
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Model — Firm

Vectorize:

mj 2 _ 1 T J
q;” = Bgmj dlag GJ Eem + t'J]. —1

L 1 . - .

where t; = 72(/\/Ij+/3)’ e, is the m-th unit vector, 1 a vector of ones,
and diag G; is the diagonal matrix with the j-th column of G as its
diagonal.
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Model — Firm

Vectorize more:
) .
th = ELjajtfl )

where .
L; = diag G; (tj]l + 2I> diag G;,

and 1 is a matrix of ones.
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Model — Learning

Recursive updating:

my _ m, m,j m,j
a T =a, "+ T Pt + 5 qt a;
%/—’ Y
Inferred o Current belief about «
:a;n_ul_F? a3 g | —aiy +ef
i€Tm\Jj
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Model — Learning

By stacking the difference equations for all firms we can write the
learning process in matrix form as

1
ar = aj_1 + " (avec G — Aar_1 + &) .

Proposition 1
Steady-state beliefs 3 induce the Cournot-Nash equilibrium
quantities.
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Stochastic approximation

In deviations from the steady state, 4; = a; — &

~ | =

(Aé\t_]_ - gt) .

dt = dt—1 —

Approximation:
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Stochastic approximation

Proposition 2
Discrete learning dynamics are approximated by ODE

a=—Aa.
In particular, if a(7) is a solution to the ODE, then
ar~a(r),

with 7 = log t.
Dynamics of discrete system can be analyzed using the
eigenvalues and eigenvectors of A.
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Stochastic approximation

ODE solution:
JM
a(r) = Z cie Ny,
i=1

where A; are the eigenvalues of A and v; the corresponding
eigenvectors.
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Results

Theorem 1 (Individual Learning)

For any strongly connected network, quantities converge
polynomially at a rate of —% to the steady state values.

Theorem 2 (Informational Efficiency )

Aggregate production converges at a faster rate than individual
production both within markets and within firms. Prices are
determined by aggregate production and are thus also learned at
the faster rate.
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Proof sketch

1. Show that smallest eigenvalue of A is Apin = %

2. Characterize the eigenspace of Amin, E,,, (A)

3. Construct a mapping u™ that aggregates individual beliefs to
aggregate (market) quantities

4. Show that u™ € ker Ey_, (A)
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Network comparison
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Erdds-Rényi random graph
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Learning time series — Complete network
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Learning time series — Tree network
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Conclusion

» Firms are able to learn the Cournot-Nash equilibrium

» Individual quantities converge polynomially at a constant rate
independent of network structure

> Aggregate (market and firm) quantities converge faster than
individual quantities

» The convergence speed depends on the network structure

Thank youl!
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Model — Learning in matrix form

Where
A=diag G (L+ 1) € RIM*IM
0 L ... Ly
Lo o
and,

Er=(1®et)ovecG.
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Definitions

Definition 1 (Weak connectivity)

A network is weakly connected if the number of connections
D = |E| satisfies
D>M+J—-1.

Definition 2 (Strong connectivity)
A network is strongly connected if

M;>2 VjeJand J, >2 Vme M.
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