Learning in a Network of Cournot Markets

Sebastian Kreuzmair

CeNDEF, Amsterdam School of Economics University of Amsterdam

> EEA 2024 August 23, 2024

Quick Setup

- Single good, multiple markets Cournot economy with linear inverse demand
- Firms and Consumers connected by bipartite graph
- Assumed Information: known slope of demand and price-quantity history
- ▶ Market size (intercepts) unknown → least-squares learning

Quick Setup

Motivation

- Rational expectations require:
 - a lot of information
 - high computational ability
- How do agents learn equilibrium?
 - eductive

evolutive

- If there are shocks or structural changes, agents need to learn fast!
- Not all firms and consumers interact with each other

- Is there convergence to an equilibrium? Which?
- How fast?
- How does network affect convergence speeds?

Summary of findings

Convergence to full information Cournot-Nash equilibrium

- Network has no effect on stability but affects convergence speed
- Individual quantities converge polynomially at a constant rate
 independent of network structure
- Aggregate (market and firm) quantities converge faster than individual quantities
 - speed dependent on network structure

Model - Notation

• markets: $\mathcal{M} = \{1, \dots, M\}$, indexed by m

• firms:
$$\mathcal{J} = \{1, \dots, J\}$$
,
indexed by j

- price in market *m* in period *t*: p_t^m
- quantity produced by firm j for market m in period t: q_t^{m,j}

- True parameters: α and β
- Estimates by firm j for market m at time t: a_t^{m,j}
- ► *J_m*: firms connected to market *m*
- *M_j*: markets that firm *j* is connected to
- demand shock: ε_t^m

Model – Network

- Network: bipartite graph $\mathcal{G} = (\mathcal{M}, \mathcal{J}, E)$
- biadjacency matrix G with elements g_{ij}
- Example graph:

$$G = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Inverse demand function:

$$\boldsymbol{p}_t^{\boldsymbol{m}} = \alpha - \beta \left(\sum_{j \in \mathcal{J}_{\boldsymbol{m}}} \boldsymbol{q}_t^{\boldsymbol{m}j} \right) + \varepsilon_t^{\boldsymbol{m}}$$

Perceived inverse demand:

$$p^{m,j} = a^{m,j} - \beta q^{m,j} + v^{m,j}$$

Parameters are unknown \rightarrow firm estimates:

$$\hat{p}_t^{m,j}(q_t^{m,j}) = a_{t-1}^{m,j} - \beta q^{m,j}$$

Objective:

$$\mathbf{q}_{t}^{j} = \operatorname*{arg\,max}_{\{q^{m,j}\}_{m \in \mathcal{M}_{j}}} \left[\left(\sum_{m \in \mathcal{M}_{j}} \hat{p}_{t}^{m,j}(q^{m,j})q^{m,j} \right) - \frac{c}{2} \left(Q^{j} \right)^{2} \right]$$

Yields:

$$q_t^{m,j} = \frac{2}{\beta} \left(\frac{1}{2} a_{t-1}^{m,j} - \frac{1}{2(M_j + \beta)} \sum_{i \in \mathcal{M}} g_{ij} a_{t-1}^{i,j} \right)$$

Vectorize:

$$q_t^{m,j} = \frac{2}{\beta} g_{mj} \left(\operatorname{diag} G_j \left(\frac{1}{2} \mathbf{e}_m + t_j \mathbf{l} \right) \right)^\top a_{t-1}^j,$$

where $t_j = \frac{1}{2(M_j + \beta)}$, \mathbf{e}_m is the *m*-th unit vector, $\mathbf{1}$ a vector of ones, and diag G_j is the diagonal matrix with the *j*-th column of *G* as its diagonal.

Vectorize more:

$$q_t^j = \frac{2}{\beta} L_j a_{t-1}^j \,,$$

where

$$L_j = \operatorname{diag} G_j\left(t_j\mathbb{1} + \frac{1}{2}I\right)\operatorname{diag} G_j$$
,

and $\mathbbm{1}$ is a matrix of ones.

Model – Learning

Recursive updating:

$$\begin{split} \mathbf{a}_{t}^{m,j} &= \mathbf{a}_{t-1}^{m,j} + \frac{1}{t} \left(\underbrace{\mathbf{p}_{t}^{m} + \frac{\beta}{2} q_{t}^{m,j}}_{\text{Inferred } \alpha} - \underbrace{\mathbf{a}_{t-1}^{m,j}}_{\text{Current belief about } \alpha} \right) \\ &= \mathbf{a}_{t-1}^{m,j} + \frac{1}{t} \left(\alpha - \frac{\beta}{2} \left(\sum_{i \in \mathcal{J}_{m} \setminus j} q_{t}^{m,i} \right) - \mathbf{a}_{t-1}^{m,j} + \varepsilon_{t}^{m} \right) \,. \end{split}$$

Model – Learning

By stacking the difference equations for all firms we can write the learning process in matrix form as

$$a_t = a_{t-1} + \frac{1}{t} \left(\alpha \operatorname{vec} G - A a_{t-1} + \mathcal{E}_t \right).$$

Proposition 1

Steady-state beliefs \bar{a} induce the Cournot-Nash equilibrium quantities.

Matrix form

Stochastic approximation

In deviations from the steady state, $\hat{a}_t = a_t - \bar{a}$:

$$\hat{a}_t = \hat{a}_{t-1} - rac{1}{t} \left(A \hat{a}_{t-1} - \mathcal{E}_t
ight) \,.$$

Approximation:

$$rac{\hat{a}_t - \hat{a}_{t-1}}{rac{1}{t}} pprox \dot{a} = -A\hat{a} + \mathcal{E}_t \,.$$

Stochastic approximation

Proposition 2

Discrete learning dynamics are approximated by ODE

$$\dot{a} = -Aa$$
 .

In particular, if $a(\tau)$ is a solution to the ODE, then

 $a_t \approx a(\tau)$,

with $\tau \approx \log t$.

Dynamics of discrete system can be analyzed using the eigenvalues and eigenvectors of *A*.

Stochastic approximation

ODE solution:

$$a(\tau) = \sum_{i=1}^{JM} c_i e^{-\lambda_i \tau} v_i ,$$

where λ_i are the eigenvalues of A and v_i the corresponding eigenvectors.

Results

Theorem 1 (Individual Learning)

For any strongly connected network, quantities converge polynomially at a rate of $-\frac{1}{2}$ to the steady state values.

Theorem 2 (Informational Efficiency)

Aggregate production converges at a faster rate than individual production both within markets and within firms. Prices are determined by aggregate production and are thus also learned at the faster rate.

Connectivity

Proof sketch

- 1. Show that smallest eigenvalue of A is $\lambda_{\min} = \frac{1}{2}$
- 2. Characterize the eigenspace of λ_{\min} , $E_{\lambda_{\min}}(A)$
- 3. Construct a mapping u^m that aggregates individual beliefs to aggregate (market) quantities
- 4. Show that $u^m \in \ker E_{\lambda_{\min}}(A)$

Network comparison

S. Kreuzmair (UvA)

Erdős-Rényi random graph

Learning time series - Complete network

S. Kreuzmair (UvA)

Learning time series - Tree network

Conclusion

Firms are able to learn the Cournot-Nash equilibrium

- Individual quantities converge polynomially at a constant rate independent of network structure
- Aggregate (market and firm) quantities converge faster than individual quantities
- ► The convergence speed depends on the network structure

Thank you!

Model – Learning in matrix form

Where

$$A = \operatorname{diag} G \left(L + I \right) \in \mathbb{R}^{JM \times JM}, \qquad (1)$$

$$L = \begin{pmatrix} 0 & L_2 & \dots & L_J \\ L_1 & 0 & \dots & L_J \\ \vdots & \vdots & \ddots & \vdots \\ L_1 & L_2 & \dots & 0 \end{pmatrix} \in \mathbb{R}^{J \times J},$$
(2)

and,

$$\mathcal{E}_t = (\mathbf{1} \otimes \varepsilon_t) \circ \operatorname{vec} G \,. \tag{3}$$

▶ Back

Definitions

Definition 1 (Weak connectivity)

A network is weakly connected if the number of connections D = |E| satisfies

$$D > M + J - 1$$
.

Definition 2 (Strong connectivity)

A network is strongly connected if

$$M_j \geq 2 \quad \forall j \in \mathcal{J} \text{ and } J_m \geq 2 \quad \forall m \in \mathcal{M} \,.$$

