Learning in a Network of Cournot Markets

Sebastian Kreuzmair

CeNDEF, Amsterdam School of Economics University of Amsterdam

> EEA 2024 August 23, 2024

Quick Setup

- ▶ Single good, multiple markets Cournot economy with linear inverse demand
- ▶ Firms and Consumers connected by bipartite graph
- ▶ Assumed Information: known slope of demand and price-quantity history
- ▶ Market size (intercepts) unknown \rightarrow least-squares learning

Quick Setup

Motivation

▶ Rational expectations require:

- \blacktriangleright a lot of information
- \blacktriangleright high computational ability

 \blacktriangleright How do agents learn equilibrium?

 \blacktriangleright eductive

\blacktriangleright evolutive

- ▶ If there are shocks or structural changes, agents need to learn fast!
- ▶ Not all firms and consumers interact with each other
- \blacktriangleright Is there convergence to an equilibrium? Which?
- ▶ How fast?
- ▶ How does network affect convergence speeds?

Summary of findings

▶ Convergence to full information Cournot-Nash equilibrium

- ▶ Network has no effect on stability but affects convergence speed
- ▶ Individual quantities converge polynomially at a constant rate ▶ independent of network structure
- \triangleright Aggregate (market and firm) quantities converge faster than individual quantities
	- ▶ speed dependent on network structure

Model - Notation

 \blacktriangleright markets: $\mathcal{M} = \{1, \ldots, M\},\$ indexed by m

$$
\triangleright \text{ firms: } \mathcal{J} = \{1, \ldots, J\},
$$

indexed by j

- \blacktriangleright price in market *m* in period t: p_t^m
- \blacktriangleright quantity produced by firm *j* for market m in period t : $q_t^{m,j}$
- \blacktriangleright True parameters: α and β
- \blacktriangleright Estimates by firm *i* for market m at time t : $a_t^{m,j}$
- \blacktriangleright \mathcal{J}_m : firms connected to market m
- $\blacktriangleright \mathcal{M}_j$: markets that firm j is connected to
- \blacktriangleright demand shock: ε_t^m

Model – Network

- \blacktriangleright Network: bipartite graph $\mathcal{G} = (\mathcal{M}, \mathcal{J}, E)$
- \blacktriangleright biadjacency matrix G with elements g_{ij}
- ▶ Example graph:

$$
G = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}
$$

Inverse demand function:

$$
p_t^m = \alpha - \beta \left(\sum_{j \in \mathcal{J}_m} q_t^{m,j} \right) + \varepsilon_t^m
$$

Perceived inverse demand:

$$
p^{m,j} = a^{m,j} - \beta q^{m,j} + v^{m,j}
$$

Parameters are unknown \rightarrow firm estimates:

$$
\hat{p}_t^{m,j}(q_t^{m,j})=a_{t-1}^{m,j}-\beta q^{m,j}
$$

Objective:

$$
\mathbf{q}_t^j = \underset{\{q^{m,j}\}_{m \in \mathcal{M}_j}}{\arg \max} \left[\left(\sum_{m \in \mathcal{M}_j} \hat{p}_t^{m,j} (q^{m,j}) q^{m,j} \right) - \frac{c}{2} \left(Q^j \right)^2 \right]
$$

Yields:

$$
q_t^{m,j} = \frac{2}{\beta} \left(\frac{1}{2} a_{t-1}^{m,j} - \frac{1}{2 \left(M_j + \beta \right)} \sum_{i \in \mathcal{M}} g_{ij} a_{t-1}^{i,j} \right)
$$

Vectorize:

$$
q_t^{m,j} = \frac{2}{\beta} g_{mj} \left(\text{diag } G_j \left(\frac{1}{2} \mathbf{e}_m + t_j \mathbf{1} \right) \right)^{\top} a_{t-1}^j,
$$

where $t_j = \frac{1}{2(M_i)}$ $\frac{1}{2(M_j+\beta)}$, ${\bf e}_m$ is the *m*-th unit vector, ${\bf 1}$ a vector of ones, and diag G_j is the diagonal matrix with the j -th column of $\mathsf G$ as its diagonal.

Vectorize more:

$$
q_t^j = \frac{2}{\beta} L_j a_{t-1}^j,
$$

where

$$
L_j = \text{diag } G_j \left(t_j \mathbb{1} + \frac{1}{2} I \right) \text{diag } G_j \,,
$$

and 1 is a matrix of ones.

Model – Learning

Recursive updating:

$$
a_t^{m,j} = a_{t-1}^{m,j} + \frac{1}{t} \left(\underbrace{p_t^m + \frac{\beta}{2} q_t^{m,j}}_{\text{Inferred }\alpha} - \underbrace{a_{t-1}^{m,j}}_{\text{Current belief about }\alpha} \right)
$$

=
$$
a_{t-1}^{m,j} + \frac{1}{t} \left(\alpha - \frac{\beta}{2} \left(\sum_{i \in \mathcal{J}_m \backslash j} q_t^{m,i} \right) - a_{t-1}^{m,j} + \varepsilon_t^m \right).
$$

Model – Learning

By stacking the difference equations for all firms we can write the learning process in matrix form as

$$
a_t = a_{t-1} + \frac{1}{t} \left(\alpha \text{ vec } G - A a_{t-1} + \mathcal{E}_t \right).
$$

Proposition 1

Steady-state beliefs \bar{a} induce the Cournot-Nash equilibrium quantities.

[Matrix form](#page-24-0)

Stochastic approximation

In deviations from the steady state, $\hat{a}_t = a_t - \bar{a}$:

$$
\hat{a}_t = \hat{a}_{t-1} - \frac{1}{t} (A\hat{a}_{t-1} - \mathcal{E}_t).
$$

Approximation:

$$
\frac{\hat{a}_t - \hat{a}_{t-1}}{\frac{1}{t}} \approx \dot{a} = -A\hat{a} + \mathcal{E}_t.
$$

Stochastic approximation

Proposition 2

Discrete learning dynamics are approximated by ODE

$$
\dot{a}=-Aa.
$$

In particular, if $a(\tau)$ is a solution to the ODE, then

 $a_t \approx a(\tau)$,

with $\tau \approx$ log t.

Dynamics of discrete system can be analyzed using the eigenvalues and eigenvectors of A.

Stochastic approximation

ODE solution:

$$
a(\tau)=\sum_{i=1}^{JM}c_i e^{-\lambda_i\tau}v_i\,,
$$

where λ_i are the eigenvalues of A and v_i the corresponding eigenvectors.

Results

Theorem 1 (Individual Learning)

For any strongly connected network, quantities converge polynomially at a rate of $-\frac{1}{2}$ $\frac{1}{2}$ to the steady state values.

Theorem 2 (Informational Efficiency)

Aggregate production converges at a faster rate than individual production both within markets and within firms. Prices are determined by aggregate production and are thus also learned at the faster rate.

[Connectivity](#page-17-0)

Proof sketch

- 1. Show that smallest eigenvalue of A is $\lambda_{\sf min} = \frac{1}{2}$ 2
- 2. Characterize the eigenspace of λ_{\min} , $E_{\lambda_{\min}}(A)$
- 3. Construct a mapping u^m that aggregates individual beliefs to aggregate (market) quantities
- 4. Show that $u^m \in \ker E_{\lambda_{\min}}(A)$

Network comparison

S. Kreuzmair (UvA) 20/24

Erdős-Rényi random graph

Learning time series – Complete network

Learning time series – Tree network

Conclusion

 \blacktriangleright Firms are able to learn the Cournot-Nash equilibrium

- ▶ Individual quantities converge polynomially at a constant rate independent of network structure
- ▶ Aggregate (market and firm) quantities converge faster than individual quantities
- ▶ The convergence speed depends on the network structure

Thank you!

Model – Learning in matrix form

Where

$$
A = \text{diag } G (L + I) \in \mathbb{R}^{JM \times JM}, \qquad (1)
$$

$$
L = \begin{pmatrix} 0 & L_2 & \dots & L_J \\ L_1 & 0 & \dots & L_J \\ \vdots & \vdots & \ddots & \vdots \\ L_1 & L_2 & \dots & 0 \end{pmatrix} \in \mathbb{R}^{J \times J},
$$
 (2)

and,

$$
\mathcal{E}_t = (1 \otimes \varepsilon_t) \circ \text{vec } G \,.
$$
 (3)

[Back](#page-13-0)

Definitions

Definition 1 (Weak connectivity)

A network is weakly connected if the number of connections $D = |E|$ satisfies

$$
D>M+J-1.
$$

Definition 2 (Strong connectivity)

A network is strongly connected if

$$
M_j \ge 2 \quad \forall j \in \mathcal{J} \text{ and } J_m \ge 2 \quad \forall m \in \mathcal{M}.
$$

