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Quick Setup

▶ Single good, multiple markets Cournot economy with linear
inverse demand

▶ Firms and Consumers connected by bipartite graph

▶ Assumed Information: known slope of demand and
price-quantity history

▶ Market size (intercepts) unknown → least-squares learning
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Quick Setup
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Motivation

▶ Rational expectations require:
▶ a lot of information

▶ high computational ability

▶ How do agents learn equilibrium?
▶ eductive

▶ evolutive

▶ If there are shocks or structural changes, agents need to learn
fast!

▶ Not all firms and consumers interact with each other
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Research Question

▶ Is there convergence to an equilibrium? Which?

▶ How fast?

▶ How does network affect convergence speeds?
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Summary of findings

▶ Convergence to full information Cournot-Nash equilibrium

▶ Network has no effect on stability but affects convergence
speed

▶ Individual quantities converge polynomially at a constant rate
▶ independent of network structure

▶ Aggregate (market and firm) quantities converge faster than
individual quantities
▶ speed dependent on network structure
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Model - Notation

▶ markets: M = {1, . . . ,M},
indexed by m

▶ firms: J = {1, . . . , J},
indexed by j

▶ price in market m in period
t: pmt

▶ quantity produced by firm j
for market m in period t:
qm,j
t

▶ True parameters: α and β

▶ Estimates by firm j for
market m at time t: am,j

t

▶ Jm: firms connected to
market m

▶ Mj : markets that firm j is
connected to

▶ demand shock: εmt
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Model – Network

▶ Network: bipartite graph G = (M,J ,E )

▶ biadjacency matrix G with elements gij

▶ Example graph:

G =

(
1 1 0
0 1 1

)
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Model – Firm

Inverse demand function:

pmt = α− β

∑
j∈Jm

qm,j
t

+ εmt

Perceived inverse demand:

pm,j = am,j − βqm,j + υm,j

Parameters are unknown → firm estimates:

p̂m,j
t (qm,j

t ) = am,j
t−1 − βqm,j
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Model – Firm

Objective:

qjt = argmax
{qm,j}m∈Mj

 ∑
m∈Mj

p̂m,j
t (qm,j)qm,j

− c

2

(
Q j
)2

Yields:

qm,j
t =

2

β

(
1

2
am,j
t−1 −

1

2 (Mj + β)

∑
i∈M

gija
i ,j
t−1

)
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Model – Firm

Vectorize:

qm,j
t =

2

β
gmj

(
diagGj

(
1

2
em + tj1

))⊤
ajt−1 ,

where tj =
1

2(Mj+β)
, em is the m-th unit vector, 1 a vector of ones,

and diagGj is the diagonal matrix with the j-th column of G as its
diagonal.
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Model – Firm

Vectorize more:

qjt =
2

β
Lja

j
t−1 ,

where

Lj = diagGj

(
tj1+

1

2
I

)
diagGj ,

and 1 is a matrix of ones.
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Model – Learning

Recursive updating:

am,j
t = am,j

t−1 +
1

t

pmt +
β

2
qm,j
t︸ ︷︷ ︸

Inferred α

− am,j
t−1︸︷︷︸

Current belief about α


= am,j

t−1 +
1

t

α− β

2

 ∑
i∈Jm\j

qm,i
t

− am,j
t−1 + εmt

 .
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Model – Learning

By stacking the difference equations for all firms we can write the
learning process in matrix form as

at = at−1 +
1

t
(α vecG − Aat−1 + Et) .

Proposition 1

Steady-state beliefs ā induce the Cournot-Nash equilibrium
quantities.

Matrix form
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Stochastic approximation

In deviations from the steady state, ât = at − ā:

ât = ât−1 −
1

t
(Aât−1 − Et) .

Approximation:

ât − ât−1
1
t

≈ ȧ = −Aâ+ Et .
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Stochastic approximation

Proposition 2

Discrete learning dynamics are approximated by ODE

ȧ = −Aa .

In particular, if a (τ) is a solution to the ODE, then

at ≈ a (τ) ,

with τ ≈ log t.

Dynamics of discrete system can be analyzed using the
eigenvalues and eigenvectors of A.
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Stochastic approximation

ODE solution:

a (τ) =
JM∑
i=1

cie
−λiτvi ,

where λi are the eigenvalues of A and vi the corresponding
eigenvectors.
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Results

Theorem 1 (Individual Learning)

For any strongly connected network, quantities converge
polynomially at a rate of −1

2 to the steady state values.

Theorem 2 (Informational Efficiency )

Aggregate production converges at a faster rate than individual
production both within markets and within firms. Prices are
determined by aggregate production and are thus also learned at
the faster rate.

Connectivity
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Proof sketch

1. Show that smallest eigenvalue of A is λmin = 1
2

2. Characterize the eigenspace of λmin, Eλmin
(A)

3. Construct a mapping um that aggregates individual beliefs to
aggregate (market) quantities

4. Show that um ∈ ker Eλmin
(A)
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Network comparison
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Erdős-Rényi random graph

S. Kreuzmair (UvA) 21/24



Learning time series – Complete network
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Learning time series – Tree network
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Conclusion

▶ Firms are able to learn the Cournot-Nash equilibrium

▶ Individual quantities converge polynomially at a constant rate
independent of network structure

▶ Aggregate (market and firm) quantities converge faster than
individual quantities

▶ The convergence speed depends on the network structure

Thank you!

S. Kreuzmair (UvA) 24/24



Model – Learning in matrix form

Where

A = diagG (L+ I ) ∈ RJM×JM , (1)

L =


0 L2 . . . LJ
L1 0 . . . LJ
...

...
. . .

...
L1 L2 . . . 0

 ∈ RJ×J , (2)

and,

Et = (1⊗ εt) ◦ vecG . (3)

Back
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Definitions

Definition 1 (Weak connectivity)

A network is weakly connected if the number of connections
D = |E | satisfies

D > M + J − 1 .

Definition 2 (Strong connectivity)

A network is strongly connected if

Mj ≥ 2 ∀j ∈ J and Jm ≥ 2 ∀m ∈ M .

Back
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