Consumer Debt Moratoria

Bulent Guler Yasin Kürşat Önder
Indiana University Ghent University

Mauricio Villamizar
Central Bank of Colombia

Jose Villegas
Ghent University

June 29th 2024

EEA-ESEM 2024 Rotterdam

- · Debt moratorium: payment suspension of a debt instrument.
- · One of the oldest policy recommendations, references in Abrahamic religions.
 - "IF it is difficult for someone to repay a debt, postpone it until a time of ease." -Qur'an
 2:280
- Paradoxically no attention (Since the initial Bankruptcy Act of 1898, including major ones in 1938, 1978, 1984, 2005).
 - Exception in state legislation: Dates back to as early as 1820 for farm foreclosures in NY and MD, USA
- A world of record-high debt levels, both public and private
 - Navigating such world record of debt levels is now at the forefront of macroeconomic debates.
 - Debt moratorium plays a central role in these discussions

- · Debt moratorium: payment suspension of a debt instrument.
- One of the oldest policy recommendations, references in Abrahamic religions.
 - "IF it is difficult for someone to repay a debt, postpone it until a time of ease." -Qur'an
 2:280
- Paradoxically no attention (Since the initial Bankruptcy Act of 1898, including major ones in 1938, 1978, 1984, 2005).
 - Exception in state legislation: Dates back to as early as 1820 for farm foreclosures in NY and MD, USA
- A world of record-high debt levels, both public and private
 - Navigating such world record of debt levels is now at the forefront of macroeconomic debates.
 - Debt moratorium plays a central role in these discussions

- · Debt moratorium: payment suspension of a debt instrument.
- One of the oldest policy recommendations, references in Abrahamic religions.
 - "IF it is difficult for someone to repay a debt, postpone it until a time of ease." -Qur'an
 2:280
- Paradoxically no attention (Since the initial Bankruptcy Act of 1898, including major ones in 1938, 1978, 1984, 2005).
 - Exception in state legislation: Dates back to as early as 1820 for farm foreclosures in NY and MD, USA
- A world of record-high debt levels, both public and private
 - Navigating such world record of debt levels is now at the forefront of macroeconomic debates.
 - Debt moratorium plays a central role in these discussions

- · Debt moratorium: payment suspension of a debt instrument.
- One of the oldest policy recommendations, references in Abrahamic religions.
 - "IF it is difficult for someone to repay a debt, postpone it until a time of ease." -Qur'an
 2:280
- Paradoxically no attention (Since the initial Bankruptcy Act of 1898, including major ones in 1938, 1978, 1984, 2005).
 - Exception in state legislation: Dates back to as early as 1820 for farm foreclosures in NY and MD, USA
- · A world of record-high debt levels, both public and private
 - Navigating such world record of debt levels is now at the forefront of macroeconomic debates.
 - Debt moratorium plays a central role in these discussions.

Moratorium policies (Covid-19)

• Moratorium policies gained prominence in the wake of the 2020 pandemic.

What do we do? Related Literature

TWO MAIN CONTRIBUTIONS:

- 1. (Empirical) Estimate the causal impact of mortgage moratorium on households.
 - · We use administrative credit registry data from Colombia.
 - Exploit a eligibility discontinuity for households to receive a moratorium in mortgages during 2020.
 - Estimate the local causal effect on consumption, delinquency behavior and debt accumulation for stressed households.
- 2. (Quantitative) Study the aggregate implications of a debt moratorium policy
 - Use an heterogeneous agent life-cycle incomplete market model (Arslan, Guler, Kuruscu (2023)).
 - We use the model for long-run analysis and policy counterfactual comparisons.

What do we find?

- 1. Moratoria improved economic conditions stressed households
 - ↑ Consumption
 - ↓ Delinquency probability
- 2. Moratoria mitigates the negative response of the economy to an aggregate productivity shock.
 - Welfare improving for both households and banks.
 - Payment suspension with interest rates not accrued is a better alternative.

Empirical Strategy

Empirical Strategy

The Colombian Case

Data

- Colombian credit registry from Q1-2019 to Q4-2020.
 - · Quarterly loan level data.
 - Information on loans for all bank-individual pairs: issuance date, outstanding balance, interest rate, maturity, delinquency days, credit rating.
 - We can identify mortgages treated by moratoria in 2020.
- We employ 152,000 existent-mortgages (i.e. originated by 2019Q4) at the end of 2020:Q1
 - ⇒ 26 private banks & 149,000 individuals.
- Match treatment information to all household loans during 2020Q2-2021Q4:
 - 66,000 credit cards, 24,000 short term (personal) loans and 4,100 car loans.

The Debt Moratorium Policy

- Enacted in March 2020 ⇒ mitigate the effects of the COVID-19 Pandemic
- Treatment
 - 1. Duration \leq 120 days
 - 2. Grace periods on principal and interest payments
 - 3. Interest rate accrues \Longrightarrow we will have a policy suggestion on this
 - 4. Delinquency days reset
 - 5. Credit rating remain frozen
- Eligibility: all loans with \leq 60 days past due as of 29/02/2020
 - First covid case: March 6th NO ANTICIPATION!!!
- \cdot Existent Mortgage \Longrightarrow Eligible + apply for Debt Moratorium Policy \Longrightarrow Treated

Empirical Strategy

Identification

• Household "i" existent mortgage with bank "j" (i.e. originated by 2019Q4)

 \implies run_{ij} = 60 days – delinquency days_{ij}

 \cdot Stressed households \Longrightarrow at least one day of delinquency on existent mortgage

• Eligible and Ineligible households within 5 days of the threshold.

Identification (NElig-Elig,Distrib) (Pre-Treat.Distrib.) (Manipulation

• IDENTIFICATION ⇒ compare barely eligible and non-eligible households
 ⇒ Non-parametric Local Polynomial Approach (Calonico et al., 2014)

Empirical Strategy

RD Estimates: Household Consumption

· We proxy consumption by CC purchases.

 $CC purchases_{it} = \Delta CC debt_{it} + CC repayment_{it}$

· Upward jump CC purchases when moving along the eligibility cutoff

- Upward jump CC purchases when moving along the eligibility cutoff
 - ⇒ Explained by Eligible-Treated households

Moratoria and CC Expenditures (ET (ENT (NE) (Treat-RD) (Other Consumption)

• Effect of moratoria on CC at end of the quarter of treatment (2020-Q2).

	CC Expe	enditure	Mortgage Payment	
	(log)	(COP)	(COP)	
Fuzzy-RD	2.10**	2.39*	-3.09***	
	(1.06)	(1.30)	(0.27)	
	First Stage			
D_{ij}	0.27***	0.27***	0.18***	
	(0.041)	(0.035)	(0.010)	
Observations	16,504	16,504	149,867	
Bandwidth (in days)	19.2	28.5	22.3	
			<u> </u>	

- · Households receiving moratoria
 - increase CC expenditure by 2.10 %

	CC Expe	nditure	Mortgage Payment	
	(log)	(COP)	(COP)	
Fuzzy-RD	2.10** 2.39*		-3.09***	
	(1.06)	(1.30)	(0.27)	
	First Stage			
D_{ij}	0.27***	0.27***	0.18***	
	(0.041)	(0.035)	(0.010)	
Observations	16,504	16,504	149,867	
Bandwidth (in days)	19.2	28.5	22.3	

- · Households receiving moratoria
 - increase CC expenditure by 2.4 mill COP (\approx 625 USD)
 - Reduce mortgage payments by 3.1 mill COP (≈ 805 USD)

	CC Expe	nditure	Mortgage Payment		
	(log)	(COP)	(COP)		
Fuzzy-RD	2.10**	2.39*	-3.09***		
	(1.06)	(1.30)	(0.27)		
	First Stage				
D_{ij}	0.27***	0.27***	0.18***		
	(0.041)	(0.035)	(0.010)		
Observations	16,504	16,504	149,867		
Bandwidth (in days)	19.2	28.5	22.3		

Moratoria and CC Expenditures (ET (EnT NE) (Other Consumption

- Households receiving moratoria increase CC expenditure by
 - 0.77 cents (= 2.39/3.1) per dollar of mortgage payment reduction (semi-elasticity).
 - 0.12% (= 0.77 \times 0.16) if mortgage payment drop by 1% (elasticity).

	CC Expe	enditure	Mortgage Payment		
	(log)	(COP)	(COP)		
Fuzzy-RD	2.10**	2.39*	-3.09***		
	(1.06) (1.30)		(0.27)		
	First Stage				
D_{ij}	0.27***	0.27***	0.18***		
	(0.041)	(0.035)	(0.010)		
Observations	16,504	16,504	149,867		
Bandwidth (in days)	19.2	28.5	22.3		

 Dynamic effect ⇒ RD estimate cross-section CC purchases at each quarter before/after receiving moratoria.

	T-1	Т	T+1	T+2	T+3			
Fuzzy-RD	-1.07 (1.90)	2.10** (1.06)	4.24* (2.47)	0.66 (1.66)	-0.49 (2.63)			
	(1.90)							
		First Stage						
D_{ij}	0.26***	0.27***	0.29***	0.25***	0.28***			
	(0.029)	(0.041)	(0.042)	(0.037)	(0.033)			
All Observations	17,344	16,504	17,954	19,696	20,630			
Bandwidth (in days)	36.2	19.2	15.9	24.7	27.9			

- \cdot T \Longrightarrow contemporaneous effect.
- \cdot T + $\tau \Longrightarrow$ effect τ quarters after receiving debt moratoria.
- $\cdot T 1 \Longrightarrow \text{pre-policy differences}.$

	T-1	Т	T+1	T+2	T+3		
Fuzzy-RD	-1.07	2.10**	4.24*	0.66	-0.49		
	(1.90)	(1.06)	(2.47)	(1.66)	(2.63)		
	First Stage						
D_{ij}	0.26***	0.27***	0.29***	0.25***	0.28***		
	(0.029)	(0.041)	(0.042)	(0.037)	(0.033)		
All Observations	17,344	16,504	17,954	19,696	20,630		
Bandwidth (in days)	36.2	19.2	15.9	24.7	27.9		

• No differences in CC purchases before policy implementation.

	T-1	Т	T+1	T+2	T+3		
Fuzzy-RD	-1.07 (1.90)	2.10** (1.06)	4.24* (2.47)	0.66 (1.66)	-0.49 (2.63)		
	First Stage						
D _{ij}	0.26*** (0.029)	0.27*** (0.041)	0.29*** (0.042)	0.25*** (0.037)	0.28*** (0.033)		
All Observations	17,344	16,504	17,954	19,696	20,630		
Bandwidth (in days)	36.2	19.2	15.9	24.7	27.9		

- $\boldsymbol{\cdot}$ Effect of moratorium on consumption disappears after two quarters.
 - Treated households \(\tau \) CC purchases:
 - 2.10% in quarter moratoria started.
 - 4.24% one quarter after. ⇒ liquidity mitigation + treatment timming and duration.

	T-1	Т	T+1	T+2	T+3			
Fuzzy-RD	-1.07	2.10**	4.24*	0.66	-0.49			
	(1.90)	(1.06)	(2.47)	(1.66)	(2.63)			
		First Stage						
D _{ij}	0.26*** (0.029)	0.27*** (0.041)	0.29*** (0.042)	0.25*** (0.037)	0.28*** (0.033)			
All Observations	17,344	16,504	17,954	19,696	20,630			
Bandwidth (in days)	36.2	19.2	15.9	24.7	27.9			

Empirical Strategy

RD Estimates: Delinquency

• Effect of the moratoria on delinquency for existent mortgages, and other household debt (short term and car loans).

$$Delinquent_{ijt} = 1 \{ delinquency \ days_{ijt} \ge 30 \}$$

	T-1	Т	T+1	T+2	T+3
			Fuzzy-RD		
Mortgages	-0.05	-0.98***	-0.67***	-0.70***	-0.31***
	(0.08)	(0.07)	(0.1)	(0.04)	(0.05)
Short term loans	-0.02	-0.09**	-0.16***	-0.09	0.03
	(0.03)	(0.04)	(0.06)	(0.06)	(0.05)
Car Loans	-0.11	-0.36**	0.13	0.24	0.21
	(0.23)	(0.18)	(0.26)	(0.18)	(0.19)

• No differences in delinquency behaviour before policy implementation.

	T-1	Т	T+1	T+2	T+3
			Fuzzy-RD		
Mortgages	-0.05	-0.98***	-0.67***	-0.70***	-0.31***
	(0.08)	(0.07)	(0.1)	(0.04)	(0.05)
Short term loans	-0.02	-0.09**	-0.16***	-0.09	0.03
	(0.03)	(0.04)	(0.06)	(0.06)	(0.05)
Car Loans	-0.11	-0.36**	0.13	0.24	0.21
	(0.23)	(0.18)	(0.26)	(0.18)	(0.19)

- Existent mortgages ⇒ ↓ delinquency probability:
 - 0.98 pp. in quarter of treatment \Longrightarrow result of delinquency days reset.
 - 0.31-0.70 pp. over next three quarters after treatment ends.

	T-1	Т	T+1	T+2	T+3
			Fuzzy-RD		
Mortgages	-0.05	-0.98***	-0.67***	-0.70***	-0.31***
	(0.08)	(0.07)	(0.1)	(0.04)	(0.05)
Short term loans	-0.02	-0.09**	-0.16***	-0.09	0.03
	(0.03)	(0.04)	(0.06)	(0.06)	(0.05)
Car Loans	-0.11	-0.36**	0.13	0.24	0.21
	(0.23)	(0.18)	(0.26)	(0.18)	(0.19)

- Cross-loan effect of the policy on delinquency behaviour in the short run for other household debt
 - Moratoria mitigate households liquidity problems ⇒ repay debt (RD estimates)

	T-1	Т	T+1	T+2	T+3
			Fuzzy-RD		
Mortgages	-0.05 (0.08)	-0.98*** (0.07)	-0.67*** (0.1)	-0.70*** (0.04)	-0.31*** (0.05)
Short term loans	-0.02 (0.03)	-0.09** (0.04)	-0.16*** (0.06)	-0.09 (0.06)	0.03 (0.05)
Car Loans	-0.11 (0.23)	-0.36** (0.18)	0.13 (0.26)	0.24 (0.18)	0.21 (0.19)

Why do we need a model?

- Identification of causal effect with Fuzzy RD is plausible. Results show clear causal relationship.
 - Temporary debt payments suspension ⇒ improve economic conditions of households.
 - Moratorium could be beneficial for banks \bigoplus \downarrow delinquency probability.
- RD design generally pick up local effects (LATE)
 - RD estimates for consumption \Longrightarrow informative to validate a quantitative model.
- The quantitative model capture general equilibrium effects of moratoria on households.
 - Benefits/Costs for financial system.
 - Long run implications.
 - Welfare gains of alternative debt relief policies

Why do we need a model?

- Identification of causal effect with Fuzzy RD is plausible. Results show clear causal relationship.
 - Temporary debt payments suspension ⇒ improve economic conditions of households.
 - Moratorium could be beneficial for banks \bigoplus \downarrow delinquency probability.
- RD design generally pick up local effects (LATE).
 - RD estimates for consumption \Longrightarrow informative to validate a quantitative model.
- The quantitative model capture general equilibrium effects of moratoria on households.
 - Benefits/Costs for financial system.
 - Long run implications.
 - Welfare gains of alternative debt relief policies

Why do we need a model?

- Identification of causal effect with Fuzzy RD is plausible. Results show clear causal relationship.
 - Temporary debt payments suspension ⇒ improve economic conditions of households.
 - Moratorium could be beneficial for banks \bigoplus \downarrow delinquency probability.
- RD design generally pick up local effects (LATE).
 - RD estimates for consumption \Longrightarrow informative to validate a quantitative model.
- The quantitative model capture general equilibrium effects of moratoria on households.
 - Benefits/Costs for financial system.
 - Long run implications.
 - Welfare gains of alternative debt relief policies.

QUANTITATIVE MODEL

Quantitative Model

Model

Setup

- Benchmark model: Arslan, Guler, Kuruscu (2023)
- Five sectors: households (more), financial intermediaries (borrow internationally, lend mortgages), rental companies, firms, and the government (pay-as-you-go pension system).
- No aggregate uncertainty, individuals are subject to iid shocks. These shocks lead to heterogeneity in income, wealth, housing tenure and mortgage debt across households.
- We study the effects moratoria in response to unexpected and persistent shock, but perfect foresight is assumed along transition.

Heterogeneous Households

- All born as young individuals with endogenous inherited wealth, draw their initial labor productivity (z)
- Two types of idiosyncratic shocks: age and labor efficiency. Households go through three phases of life-cycle: (i) young (ii) middle (iii) old. Transition between age groups is governed by the transition matrix $\pi_z(j'|j)$.
- When old individuals receive age shock, they die, and all their net wealth are equally distributed among the newborns.
- Choices: housing tenure (homeowner, active renter, or inactive renter if defaults), saving and consumption.

Heterogeneous Households

- All born as young individuals with endogenous inherited wealth, draw their initial labor productivity (z)
- Two types of idiosyncratic shocks: age and labor efficiency. Households go through three phases of life-cycle: (i) young (ii) middle (iii) old. Transition between age groups is governed by the transition matrix $\pi_z(j'|j)$.
- When old individuals receive age shock, they die, and all their net wealth are equally distributed among the newborns.
- Choices: housing tenure (homeowner, active renter, or inactive renter if defaults), saving and consumption.

Heterogeneous Households

- All born as young individuals with endogenous inherited wealth, draw their initial labor productivity (z)
- Two types of idiosyncratic shocks: age and labor efficiency. Households go through three phases of life-cycle: (i) young (ii) middle (iii) old. Transition between age groups is governed by the transition matrix $\pi_z(j'|j)$.
- When old individuals receive age shock, they die, and all their net wealth are equally distributed among the newborns.
- Choices: housing tenure (homeowner, active renter, or inactive renter if defaults), saving and consumption.
 - Mortgages are long-term perpetuities with geometrical decreasing coupons.
 - If moratoria starts at t+1, unpaid coupon is paid (with interest) when payment suspension is over.

• State variables $\{a, z, j, d, h\}$, where a is the current financial wealth, z is the labor efficiency, j is the age, d is the mortgage debt, and h is the house size.

$$V^{rh}(a,z,j) = \max_{c,d,h,a' \geq 0} \left\{ u(c,h) + \beta EV^{h}(a',z',j',d,h) \right\}$$

$$c + p_h h + \delta_h p_h h + \varphi_f + a' = w(1 - \tau)y(j, z) + a(1 + r_k) + d(q^m(a', z, j, d, h) - \varphi_m)$$

• State variables $\{a, z, j, d, h\}$, where a is the current financial wealth, z is the labor efficiency, j is the age, d is the mortgage debt, and h is the house size.

$$V^{rh}(a,z,j) = \max_{c,d,h,a' \geq 0} \left\{ u(c,h) + \beta EV^{h}(a',z',j',d,h) \right\}$$

$$c + p_h h + \delta_h p_h h + \varphi_f + a' = w(1 - \tau) y(j, z) + a(1 + r_k) + d(q^m(a', z, j, d, h) - \varphi_m)$$

- · Only mortgage pricing is affected by individual default risk.
 - repayment: $m = d(r_l + \delta_m)$
 - debt next period: $d' = (d m)(1 + r_l)$

• State variables $\{a, z, j, d, h\}$, where a is the current financial wealth, z is the labor efficiency, j is the age, d is the mortgage debt, and h is the house size.

$$V^{\prime h}(a,z,j) = \max_{c,d,h,d' \geq 0} \left\{ u(c,h) + \beta E V^{h}(a',z',j',d,h) \right\}$$

$$c + p_h h + \delta_h p_h h + \varphi_f + a' = w(1 - \tau) y(j, z) + a(1 + r_k) + d(q^m(a', z, j, d, h) - \varphi_m)$$

$$d \leq p_h h(1 - \phi)$$

• State variables $\{a, z, j, d, h\}$, where a is the current financial wealth, z is the labor efficiency, j is the age, d is the mortgage debt, and h is the house size.

$$V^{rh}(a,z,j) = \max_{c,d,h,\alpha' \geq 0} \left\{ u(c,h) + \beta EV^{h}(\alpha',z',j',d,h) \right\}$$

$$c + p_h h + \delta_h p_h h + \varphi_f + a' = w(1 - \tau) y(j, z) + a(1 + r_k) + d(q^m(a', z, j, d, h) - \varphi_m)$$

$$d \leq p_h h(1 - \phi)$$

$$m \leq \varsigma w(1 - \tau) y(j, z).$$

Homeowner Choices

- · Once a households is a homeowner, then has four options
 - 1. Stays as a homeowner see
 - 2. Refinance mortgage (subject to mortgage origination cost) see
 - 3. Sell house (subject to transaction cost) see
 - 4. Defaults \Longrightarrow becomes inactive renter \Longrightarrow
- · Refinancing or selling the house requires full prepayment of mortgage

Firms

· Perfectly competitive firm produces final output

$$\max_{K_t, N_t, u_t} \mathbb{Z}_t K_t^{\alpha} \left(N_t u_t \right)^{1-\alpha} - \left(r_{k,t} + \delta_k \right) K_t - \left(1 + \zeta r_{l,t+1} \right) w_t N_t$$

• Wage per efficiency of labor (w_t) is defined as:

$$w_t = \underbrace{\bar{w}_t}_{\text{base rate}} + \underbrace{\vartheta \frac{u_t^{1+\psi}}{1+\psi}}_{\text{convex adjustment cost}}$$

Banks

• Perfectly competitive risk averse banks. They borrow from the international market (r_t) and lend to households (long-term mortgages) and firms (short-term working capital)

$$\max_{L_{t+1},B_{t+1}} \sum_{t=0}^{\infty} \beta_L^{t-1} \log \left(d_t^B \right)$$

subject to

$$d_t^B + L_{t+1} = \omega_t + B_{t+1}$$

$$\omega_{t+1} = L_{t+1} (1 + r_{\ell,t+1}) - B_{t+1} (1 + r_{t+1})$$

 L_t Total lending to firms and households \Longrightarrow Banks make same return on each loan

- Banks don't face aggregate risk
- Law of large numbers apply for households

Banks

Perfectly competitive risk averse banks.

$$\max_{L_{t+1},B_{t+1}} \sum_{t=0}^{\infty} \beta_L^{t-1} \log \left(d_t^B \right)$$

subject to

$$d_{t}^{B} + L_{t+1} = \omega_{t} + B_{t+1}$$

$$\omega_{t+1} = L_{t+1} (1 + r_{\ell,t+1}) - B_{t+1} (1 + r_{t+1})$$

$$(1 - \phi_{t+1}) (1 + r_{\ell,t+1}) L_{t+1} \geq (1 + r_{t+1}) B_{t+1}$$

Endogenous leverage constraint

Banks can default and steal fraction of assets (Gertler and Kiyotaki (2010))

$$\phi_t = \xi^{1-\beta_L} \left((1+r_{t+1})/(1+r_{\ell,t+1}) - (1-\phi_{t+1}) \right)^{\beta_L}$$

· Negative aggregate productivity shock.

 $\cdot\downarrow$ productivity $\Longrightarrow\downarrow$ labor income (\downarrow utilization rate).

 $\cdot \downarrow$ labor income $\Longrightarrow \downarrow$ consumption.

 $\cdot \downarrow$ labor income $\Longrightarrow \downarrow$ house prices (new housing demand).

 $\cdot\downarrow$ house prices $\Longrightarrow\downarrow$ household debt in short-run.

 $\cdot \uparrow$ house prices and income growth $\Longrightarrow \uparrow$ household debt in long-run.

 $\cdot\downarrow$ lending $\Longrightarrow\uparrow$ valuation of existing mortgages $\Longrightarrow\uparrow$ bank net worth in short-run.

 $\cdot\downarrow$ assets liquidation value (prepay mortgages) $\Longrightarrow\downarrow$ bank net worth in medium-run.

Quantitative Model

Model Results

Moment matching to Colombia's Data external param internal param

• Model is calibrated to Colombia targeting the averages of 2010 to 2019.

Statistic	Data	Model
Capital- quarterly GDP ratio	8	8
Homeownership rate–aggregate	43%	43%
Mortgage debt to quarterly GDP ratio	112%	112%
Share of housing services in GDP	15%	15%
House price- quarterly rental price ratio	30	30
Utilization rate	1	1
Bank leverage ratio	10	10
Lending premium	0.375%	0.375%

Linking the model to RDD

- We validate model by replicating the empirical estimates on consumption.
- · Fix wages, lending rate, house prices, rental prices
- We measure consumption response to a debt suspension in partial equilibrium setting:
 - 1. Aggregate productivity shock replicates output drop around COVID time in Colombia.
 - 2. No mortgage payments for 2 quarters $\Longrightarrow m=0$ but interest accrues $\Longrightarrow d'=d$ (1 + r_l).
 - 3. Compute consumption average elasticity for mortgage holders at the end of the second quarter relative to steady state.

Linking the model to RDD

- We validate model by replicating the empirical estimates on consumption.
- We need to consider that model provides average elasticity for all mortgage holders including ricardian households (non-stressed).
- Model matches the average consumption elasticity for stressed households and non-stressed households:
 - Model elasticity = 0.04

Aggregate effect of Debt Moratoria All Other Moratoria length

- Aggregate impact of debt moratoria we turn on GE effect.
- Incorporating GE effects to explore the long-run impacts.
 - 1. Aggregate productivity shock replicates output drop around COVID time in Colombia.
 - 2. No mortgage payments for 2 quarters $\Longrightarrow m=0$ but interest accrues $\Longrightarrow d'=d$ (1 + r_l).
 - 3. Compute aggregate response in percentage deviations from steady state.

Aggregate effect of Debt Moratoria All Other Moratoria length

• Moratoria lowers drop in consumption and welfare (\approx 7%).

Aggregate effect of Debt Moratoria (All Other Moratoria length

• Moratoria lowers drop in housing prices (18%) and increase mortgage debt.

Aggregate effect of Debt Moratoria (All Other Moratoria length

• Moratoria has positive impact on banks profitability specially in the long run.

Aggregate effect of Debt Moratoria All Other Moratoria length

- Decompose change in consumption after two quarters into components.
 - Indirect effect explains most of the consumption response
 - Direct effect is about 10%

Aggregate effect of Debt Moratoria All Other Moratoria length

- Decompose change in consumption after two quarters into components.
 - Indirect effect explains most of the consumption response.
 - Direct effect is about 10%

Policy Comparison <a>

· Compare alternative debt relief policies

Policy Comparison <a>

Moratoria + no interests accrued ⇒ welfare improving and beneficial for banks.

CONCLUSIONS

Conclusions

- This paper study implications of temporary payment debt suspension for households.
- Empirical strategy ⇒ LATE on stressed households
 - Exploit discontinuity in eligibility for Colombia debt moratoria policy.
 - Higher consumption ⇒ credit card purchases, household investment, and new car loans.
 - Drop in delinquency rates on existent mortgages, credit card debt and car loan debt.
- Quantative model ⇒ approximates RDD estimates when eliminating all price effects.
 - Moratoria mitigates the negative response of the economy to an aggregate productivity shock.
 - Long-term effects of the policy is beneficial for banks.
 - Larger welfare gains if policy stipulate debt forgiveness or moratoria with interest rate not accrued.

- · Impact of debt relief on financial distress on households
 - Dobbie and Song (2015) (consumer bankruptcy protection), Campbell et al.(2021) (mortgage design and maturity extension), Ganong and Noel (2020) (mortgage modifications), Dinerstein et al. (2024) (student loan moratoria)
- · Quantitative models with long-term debt and default
 - Hatchondo et al. (2022) (contingent convertible bonds and sovereign default), Önder et al. (2023) (corporate debt moratoria)

Testing Manipulation Dack

• Reject manipulation of the running variable (p-value=0.25)

Treated and non-Treated Mortgages (back)

Pre-treatment distribution of loans back

Enforcement of the policy back

Treatment Biting: Existing Mortgages 2020q2

	During qu	arter of trea	tment	One quar	One quarter after treatment		
	Log(payment)	Delinq. (days)	Maturity (months)	Log(payment)	Delinq. (days)	Maturity (months)	
Sharp-RD	-40.20*** (2.0)	-55.50*** (3.2)	0.76 (0.5)	6.69 (8.0)	-17.04*** (5.1)	1.51*** (0.3)	
Observations	138,150	109,445	122,786	108,446	108,446	108,446	
BW loc. poly.	9.5	17.0	30.0	21.9	24.2	46.4	

Moratoria and New Mortgages (back)

Log(new mortgage_{iit})

new mortgage_{ijt} = value of loan_{ij} at quarter of origination t_0

Moratoria and New Car Loans (back)

· Log(new car loan;it)

new car $loan_{ijt} = value$ of $loan_{ij}$ at quarter of origination t_0

Pre-existing differences in Household Consumption (back)

- What if we exploit the discontinuity before the implementation of the policy?
 ⇒ same measures of consumption for 2019Q4
- Observed jump in CC purchases around cutoff disappears

Moratoria and Durable Consumption (back)

· Durable Consumption: Log(new mortgage;it), Log(new car loan;it)

new mortgage_{ijt} (new car loan_{ijt}) = value of loan_{ij} at quarter of origination t_0

	New Cars	New Mortgages		
Fuzzy-RD	6.67**	3.78*		
	(0.6)	(2.2)		
	First Stage			
D_{ii}	0.14**	0.05**		
	(0.05)	(0.02)		
Observations	4,407	8,846		
Bandwidth (in days)	22.8	17.0		

Summary Statistics: Treated Households (back)

	Mean	SD	P25	P50	P75	N_{obs}
CC Purchases	2.0	4.1	0.2	0.7	2.0	10,379
CC purchases growth	4.8	101.2	-40.2	16.9	67.9	7,534
Existent Mortgages						
Delinquency probability	4.9	21.6	0.0	0.0	0.0	79,228
Outstanding debt	51.7	49.0	20.6	38.2	64.2	76,629
Interest rate	10.5	2.7	9.0	10.7	12.5	77,895
Maturity	10.7	5.9	6.1	10.2	14.7	79,158
LTV	37.2	18.1	22.8	37.1	51.4	79,228
Rating	4.9	0.4	5.0	5.0	5.0	79,183
Short Term Loans						
Delinquency probability	5.0	21.8	0.0	0.0	0.0	17,001
Outstanding debt	5.0	7.4	1.0	2.4	5.4	16,126
Interest rate	22.9	7.9	23.7	27.1	27.2	16,797
Maturity	7.2	8.9	2.9	4.3	5.0	16,853
Rating	4.7	0.9	5.0	5.0	5.0	17,001
Car Loans						
Delinquency probability	17.7	38.2	0.0	0.0	0.0	2,082
Outstanding debt	28.6	26.1	11.1	22.1	37.2	2,048
Repayment	1.6	3.6	0.0	0.8	2.1	2,082
Interest rate	12.3	6.4	10.3	13.0	15.9	1,990
Maturity	3.2	1.8	1.7	3.3	4.5	2,053
Rating	4.3	1.3	5.0	5.0	5.0	2,082

Summary Statistics: Eligible Non-Treated Households (back)

	Mean	SD	P25	P50	P75	N _{obs}
CC Purchases	2.3	4.3	0.2	0.8	2.4	4,035
CC purchases growth	-1.4	195.0	-36.1	26.1	77.3	3,043
Existent Mortgages						
Repayment	1.4	1.6	0.5	1.0	1.8	27,597
Delinquency probability	43.9	49.6	0.0	0.0	100.0	32,606
Outstanding debt	50.4	54.8	16.6	33.9	62.6	32,052
Interest rate	10.8	2.7	9.5	10.7	12.7	31,823
Maturity	9.3	5.7	4.8	8.7	13.1	32,334
LTV	32.5	18.5	17.5	31.9	46.5	32,605
Rating	4.4	0.9	4.0	5.0	5.0	32,536
Short Term Loans						
Delinquency probability	8.7	28.2	0.0	0.0	0.0	7,174
Outstanding debt	5.0	7.4	1.1	2.4	5.4	6,414
Interest rate	23.3	7.6	24.3	27.1	27.2	7,040
Maturity	7.1	9.1	2.7	4.2	5.0	7,097
Rating	4.6	1.1	5.0	5.0	5.0	7,174
Car Loans						
Delinquency probability	31.8	46.6	0.0	0.0	100.0	1,484
Outstanding debt	25.6	27.1	5.9	18.3	35.2	1,448
Interest rate	12.7	5.7	10.7	13.2	15.7	1,231
Maturity	2.7	1.8	1.0	2.6	4.2	1,447
_ Rating	3.6	1.8	2.0	5.0	5.0	1,484

Summary Statistics: Non-Eligible Households (back)

	Mean	SD	P25	P50	P75	N _{obs}
CC Purchases	1.3	3.1	0.1	0.4	1.2	1,992
CC purchases growth	-63.7	245.3	-96.3	-25.3	34.1	1,522
Existent Mortgages						
Repayment	1.6	2.4	0.3	0.9	1.9	19,982
Delinquency probability	94.8	22.2	100.0	100.0	100.0	41,045
Outstanding debt	53.1	58.0	18.3	35.2	64.1	40,702
Interest rate	11.1	3.1	9.5	11.1	13.0	40,831
Maturity	9.7	5.8	5.2	8.9	13.8	40,621
LTV	35.3	17.1	21.6	35.8	48.5	41,045
Rating	3.4	1.0	3.0	3.0	4.0	12,150
Short Term Loans						
Delinquency probability	27.9	44.9	0.0	0.0	100.0	3,983
Outstanding debt	4.7	7.0	1.1	2.3	5.0	3,766
Interest rate	24.7	6.4	25.9	27.2	27.2	3,870
Maturity	9.1	11.3	2.1	3.9	5.6	3,903
Rating	3.5	1.8	1.0	5.0	5.0	3,983
Car Loans						
Delinquency probability	81.6	38.7	100.0	100.0	100.0	621
Outstanding debt	22.5	24.2	4.3	16.0	30.4	609
Interest rate	15.1	6.1	11.8	14.6	18.1	459
Maturity	2.4	1.8	0.9	2.0	3.6	594
Rating	1.7	1.1	1.0	1.0	2.0	621

Testing Manipulation Dack

• Reject manipulation of the running variable (p-value=0.25)

Donut-hole sensitivity test back

- Test checks for additional "bunching" of observations around the cutoff
- Most estimates are robust to excluding 1, 2, and 3 days before/after the cutoff

Falsification - different cutoffs back

- What if move the cutoff for delinquency days?
- no effects on placebo cutoffs

Testing for pre-policy differences I back

Variable	.RD	Robu	st Inference	Bandwidth	Observations
variable	Estimator	p-value	95% Conf. Int.	(in days)	
Credit Cards Log(Expenditure) Delinquency Prob. Log(Outstanding Debt) Interest Rate	-0.68	0.71	[-3.70, 2.35]	49.56	17,252
	-0.05	0.11	[-0.11, 0.00]	20.71	58,303
	-0.14	0.68	[-0.67, 0.40]	32.91	53,469
	0.04	0.85	[-0.29, 0.37]	18.33	66,581
Existing Mortgages Repayment Delinquency Prob. Log(Outstanding Debt) Interest Rate Maturity LTV Rating	-0.06	0.71	[-0.32, 0.20]	30.84	149,556
	-0.05	0.52	[-0.19, 0.08]	14.81	119,817
	-0.17	0.28	[-0.44, 0.09]	24.57	152,734
	-0.30	0.52	[-1.07, 0.47]	48.99	155,970
	-0.98	0.29	[-2.49, 0.53]	52.19	155,551
	-1.45	0.64	[-6.52, 3.62]	24.28	155,985
	0.20	0.17	[-0.04, 0.44]	8.83	119,802

Testing for pre-policy differences II (back)

Variable	RD .	Rob	ust Inference	Bandwidth	Observations
variable	Estimator	p-value	95 % Conf. Int.	(in days)	
Short Term Loans					
Delinquency Prob.	-0.02	0.50	[-0.08, 0.03]	30.34	27,158
Log(Outstanding Debt)	0.05	0.83	[-0.36, 0.47]	27.87	24,971
Interest Rate	0.08	0.92	[-1.33, 1.49]	19.02	26,830
Maturity	-0.36	0.35	[-0.99, 0.27]	35.76	26,522
Rating	0.24	0.26	[-0.11, 0.59]	40.45	27,158
Car Loans					
Delinquency Prob.	-0.11	0.63	[-0.49, 0.27]	38.28	5,489
Log(Outstanding Debt)	-1.57	0.19	[-3.52,0.38]	27.07	5,362
Interest Rate	0.55	0.65	[-1.44, 2.53]	33.36	4,878
Maturity	-0.22	0.80	[-1.63, 1.20]	35.12	5,379
LTV	5.15	0.58	[-10.19, 20.49]	33.94	5,489
Rating	0.52	0.09	[0.02, 1.02]	30.50	5,489

(Un)-Predictability of Treatment (back)

- Check which mortgage characteristics explain treatment status
- · Only unning variable explain treatment choice consistently.

	Entire sample	BW=40	BW=30	BW=25	BW=15
Running	0.0021***	0.0090***	0.0087***	0.011***	0.012***
	(0.0001)	(0.00005)	(0.0001)	(0.0001)	(0.0004)
Oustanding Debt	0.41***	0.15***	0.21***	0.19	0.13
	(0.041)	(0.042)	(0.071)	(0.123)	(0.108)
Expected Payment	-1.14e-08***	0.0012***	0.00015	0.00023	0.00072
	(0.000)	(0.0002)	(0.0003)	(0.0003)	(0.0006)
Maturity	-0.0001	-0.00006	0.0004	0.0004	0.0004
	(0.0002)	(0.0003)	(0.0004)	(0.0005)	(0.0005)
LTV	-1.9e-12***	-8.83e-07	1.05e-06	4.2e-06	7.9e-06
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Observations	822,876	28,513	20,289	14,916	10,348
R-squared	0.21	0.38	0.26	0.29	0.34

Moratoria and Debt Accumulation (back)

· Household debt: Existent mortgages, short term loans, and car loans.

Log (Outstanding Balance_{iit})

	T-1	Т	T+1	T+2	T+3	T+4
			Fuzzy-RD			
Mortgages	-0.17 (0.16)	-0.16 (0.16)	-0.19 (0.16)	-0.17 (0.13)	-0.15 (0.14)	-0.22** (0.11)
Short Term Loans	0.06 (0.25)	-0.52* (0.29)	-0.58** (0.27)	-0.09 (0.34)	-0.06 (0.39)	-0.35 (0.31)
Car Loans	-1.60 (0.77)	-2.7** (1.22)	-2.4*** (0.91)	-0.77 (0.86)	0.94 (1.10)	0.92 (1.12)

Exposure to Debt Moratoria and Bank Response (back)

	ΔProfit	ΔEquity	Δ Assets	ΔLiab.		
Bartik-IV	0.46** (0.038)	0.21*** (0.18)	0.37*** (0.021)	0.06 (0.16)		
	First Stage					
B_{jt}	0.98*** (0.192)	0.98*** (0.192)	0.98*** (0.192)	0.98*** (0.192)		
F-first stage	26.06	26.06	26.06	26.06		
Observations	200	200	200	200		
Bank fixed effects Time-quarter fixed effects	√ ✓	√ ✓	√ ✓	√ ✓		

Mortgages with moratoria (back)

• Coupon structure of a **non-contingent bond** issued at *t*:

Homeowner Stayer (back)

If remains homeowner

$$V^{hh}(a, h, d, z, j) = \max_{c, a' \ge 0} \left\{ u(c, h) + \beta E V^{h}(a', z', j', h, d) \right\}$$

subject to

$$c + \delta_h p_h h + a' + m = w(1 - \tau) y(j, z) + a(1 + r_k)$$

 $d' = (d - m)(1 + r_l),$

Homeowner Refinancer (back)

 \cdot If decide to refinance \Longrightarrow pay balance and get a new mortgage

$$V^{hf}(a,h,d,z,j) = \max_{c,a' \geq 0} \left\{ u(c,h) + \beta EV^{h}(a',z',j',h,d) \right\}$$

subject to

$$c + p_h h + \delta_h p_h h + \varphi_f + a' = w(1 - \tau) y(j, z) + a(1 + r_k) + d(q^m(a', z, j, d, h) - \varphi_m)$$

$$d \leq p_h h (1 - \phi)$$

Homeowner Seller back

 \cdot If sell house (rent or buy new house) \Longrightarrow pay balance and get a new mortgage

$$V^{hr}(a, h, d, z, j) = V^{r}(a + p_h h(1 - \varphi_s) - d, z, j)$$

Homeowner Defaulter (back)

If default

$$V^{h}(a,d,z,j) = \max_{c,s,a' \geq 0} \left\{ u(c,s) + \beta_{i} E\left[\pi V^{r}(a',z',j') + (1-\pi) V^{i}(a',z',j')\right] \right\}$$
(1)

subject to

$$c + a' + p_r s = a(1 + r_h) + w(1 - \tau)y(j, z) + \max\{(1 - \varphi_e)p_h h - d, 0\}.$$

Inactive renter (back)

$$V_{j}^{e}(a,z) = \max_{c,s,a' \geq 0} \left\{ u(c,s) + \beta \left[\pi E V_{j+1}^{r}(a',z') + (1-\pi)E V_{j+1}^{i}(a',z') \right] \right\}$$

subject to

$$c + a' + p_r s = w(1 - \tau)y(j, z) + a((1 + r_k))$$

Externally Set Parameters (back)

Parameter	Explanation	Value
σ	risk aversion	2
α	capital share	0.4
$ ho_arepsilon$	annual persistence of income	0.96
$\sigma_arepsilon$	annual std of innovation to AR(1)	0.19
$arphi_h$	selling cost for a household	7%
$arphi_e$	selling cost for foreclosures	25%
$arphi_f$	fixed cost of mortgage origination	8%
$arphi_m$	variable cost of mortgage origination	0.75
δ_h	annual housing depreciation rate	2.5%
π	quarterly prob. of being an active renter	3.6%
Ħ	housing supply	1
ψ	wage curvature	3
ϕ	down payment requirement	0.3
ζ	share of wage bill financed	1%
δ_k	quarterly capital depreciation rate	2.5%
δ_m	quarterly mortgage depreciation rate	2.5%

Internally Calibrated Parameters (back)

Parameter	Explanation	Value
β	discount factor	0.96
<u>h</u>	minimum house size	0.89
r	bank borrowing rate	1.5%
γ	weight of housing services in utility	0.19
κ	rental maintenance cost	0.06
ϑ	wage parameter	2.36
ξ	bank seizure rate	0.2
eta_{L}	bank discount factor	0.95

Aggregate Effect: all aggregate variables (back)

Introducing Moratoria: Other Outcomes (back)

Policy Comparison back

Comparing Length of Moratoria (All back)

· Gains increase with length of payment suspension to households

Comparing Length of Moratoria back

