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ity, we find that 1°C warming reduces world GDP by 12%. Global temperature corre-

lates strongly with extreme climatic events unlike country-level temperature used in

previous work, explaining our larger estimate. We use this evidence to estimate dam-

age functions in a neoclassical growth model. Business-as-usual warming implies a

29% present welfare loss and a Social Cost of Carbon of $1,065 per ton. These impacts

suggest that unilateral decarbonization policy is cost-effective for large countries such

as the United States.
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1 Introduction

Climate change is frequently described as an existential threat. This view, however, stands

in stark contrast to empirical estimates of the impact of climate change on economic ac-

tivity: they imply that a 1°C rise in temperature reduces world output at most by 1-3%.

Under any conventional discounting, such effects seem hardly catastrophic. Why are per-

ceptions of climate change misaligned with empirical estimates? Do existing estimates

not account for the full impact of climate change, or are its costs truly small?

In this paper, we demonstrate that the macroeconomic impacts of climate change are

six times larger than previously documented. We rely on a time-series local projection ap-

proach to estimate the impact of global temperature shocks on Gross Domestic Product

(GDP). This approach exploits natural variability in global mean temperature—the source

of variation closest to climate change—which we show to predict damaging extreme cli-

matic events much more strongly than country-level temperature. We find that a 1°C rise

in global temperature lowers world GDP by 12% at peak. We then use our reduced-form

results to estimate structural damage functions in a simple neoclassical growth model.

Climate change leads to a present-value welfare loss of 29% and a Social Cost of Carbon

(SCC) of $1,065 per ton of carbon dioxide.

In the first part of the paper, we develop our time-series approach. We assemble a

new climate-economy dataset spanning the last 120 years from sources that are regularly

updated up to recent years. We construct global and country-level measures from high-

resolution gridded land and ocean surface air temperature data from Berkeley Earth. We

define physical granular reanalysis measures of extreme temperature, droughts, wind

speed and precipitation from the Inter-Sectoral Impact Model Intercomparison Project

(ISIMIP). We obtain economic data on GDP, population, consumption, investment and

productivity from the Penn World Tables spanning 173 countries from 1960 onwards, and

from the Jordà-Schularick-Taylor Macrohistory database for select countries since 1900.

Identification of the impact of temperature on GDP is complicated by their jointly

trending behavior. We thus construct global and local (country-level) temperature shocks:

innovations to the temperature process that are orthogonal to their long-run trends and

persist for two years using the approach in Hamilton (2018). Our choice of period is

motivated by the geoscience literature. Natural climate variability is driven by multiple

phenomena. External causes such as solar cycles and volcanic eruptions lead to medium-

and short-run fluctuations in the Earth’s mean temperature. Internal climate variability—
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interactions within the climatic system itself—lead to irregular fluctuations in tempera-

ture and weather extremes. For instance, the El Niño cycle varies unpredictably between

2 to 7 years.

We map out the dynamic causal effects of our global temperature shocks on world

GDP using local projections from 1960 onwards. A 1°C global temperature shock leads to

a gradual decline in world GDP that peaks at 12% after 6 years and does not fully mean-

revert even after 10 years. This impact partly reflects the accumulated effects of persis-

tently elevated global temperature itself, that remains above 0.5°C for multiple years after

the shock. These results remain unchanged for alternative de-trending approaches, such

as one-step ahead forecast errors or a one-sided Hodrick-Prescott filter.

Four identification concerns may challenge the causal interpretation of our headline

results. We address each of them in a series of robustness exercises. First, we account for

omitted variable bias: global temperature shocks may coincide with the global economic

and financial cycle. We control for rich measures of world economic performance: indica-

tors for global economic recessions and global macro-financial variables (past world real

GDP, commodity prices and interest rates). Our results remain unaffected by the specific

set of controls and are not driven by any particularly influential years, indicating that

temperature shocks are largely unrelated to economic shocks.

Second, we account for reverse causality: as output declines after a temperature shock,

energy consumption and greenhouse gas emissions fall, lowering temperatures and in-

creasing output going forward. Qualitatively, reverse causality thus leads us to underes-

timate the true impact of a global temperature shock. Quantitatively, it is likely negligible

because short-run fluctuations in emissions imply small temperature variations. We con-

firm these arguments by explicitly adjusting for the impact of past greenhouse gas and

aerosol emissions with a climate model and find virtually identical results.

Third, we verify that our estimates are likely externally valid and are stable across

time periods and causes of temperature variation. We find remarkably similar estimates

in three time periods (1900-2019, 1960-2019—our main sample—and 1985-2019) as well

as when we exclude El Niño and volcanic eruptions from our identifying variation.

Fourth, we account for regional omitted variable bias: global temperature may be par-

ticularly driven by some countries while they also experience unrelated GDP growth. We

obtain virtually identical results when we project country-level GDP—rather than global

GDP—on global temperature, controlling for country fixed effects and region-specific
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time trends. Collectively, our robustness exercises suggest that our specification captures

the causal effect of global temperature on economic activity.

Our estimated effect of temperature shocks on world GDP stands in stark contrast to

existing estimates of the cost of climate change. Nordhaus (1992), Dell et al. (2012), Burke

et al. (2015) and Nath et al. (2023) find that a 1°C temperature shock reduces GDP by at

most 1-3% in the medium run. Why do we find effects that are six times larger?

We focus on a different source of variation: changes in global mean temperature cap-

ture the comprehensive impact of climate change. By contrast, previous work exploits

changes in country-level, local temperature. When we estimate the impact of local tem-

perature on country-level GDP with the same empirical specification, we find similarly

small effects to previous studies: 1.5% per 1°C. Econometrically, panel analyses using lo-

cal temperature net out common impacts of global temperature through time fixed effects.

Instead, we focus on these common impacts.

Why, then, does global temperature depress economic activity so much more than

local temperature? We show that global temperature is fundamentally different from

local temperature. Global temperature shocks predict a large and persistent rise in the

frequency of extreme climatic events that cause economic damage: extreme tempera-

ture, droughts, extreme wind, and extreme precipitation. By contrast, local temperature

shocks predict a much weaker rise in these extremes. These conclusions are consistent

with the geoscience literature: extreme wind and precipitation are outcomes of the global

climate that depend on ocean temperatures and atmospheric humidity throughout the

globe, rather than outcomes of local temperature realizations (Seneviratne et al., 2016;

Wartenburger et al., 2017; Seneviratne et al., 2021; Domeisen et al., 2023).

Quantitatively, the four extreme events that we measure account for over two thirds

of our estimated global temperature impact. We reach this conclusion by estimating the

impact of extreme events on GDP, which we combine with the dynamic correlation be-

tween global temperature shocks and extreme events to construct a counterfactual impact

of global temperature on GDP. Of course, this exercise is unlikely to account for the full

effect of global temperature on GDP: we would need to specify and measure the universe

of channels whereby global temperature affects the economy. Using global temperature

directly bypasses this challenge.

Another possible explanation for the differential impacts of global and local temper-

ature shocks is that general equilibrium linkages together with spatially correlated local
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temperature lead panel analyses to underestimate the true impact of local temperature.

However, we find that general equilibrium linkages account for at most one fifth of our

global temperature estimates. To reach this conclusion, we construct an external tem-

perature measure by aggregating the local temperature shocks of all trade partners of a

given country, weighted by trade shares. External local temperature turns out to have

a similarly small impact on economic activity to the direct effect of local temperature:

given moderate levels of trade openness throughout the world, indirect effects cannot be

substantially larger than direct effects of local temperature.

How and where do the worldwide GDP impacts of global temperature materialize?

We document a significant fall in capital, investment and productivity after a global tem-

perature shock. Warm and low-income countries appear to be more severely affected than

cold and high-income countries, although these comparisons are noisy. Overall however,

global temperature has more uniformly detrimental effects than local temperature.

In the second part of the paper, we develop a simple neoclassical growth model to

translate our reduced-form estimates into welfare effects, similarly to Nordhaus (1992).

We introduce productivity and capital depreciation damages from temperature. Criti-

cally, we use our novel reduced-form effects to estimate structural damage functions.

We estimate productivity and capital depreciation shocks that correspond to a global

temperature shock by matching the estimated impulse response function of output and

capital. This mapping has a closed-form expression that guarantees identification. In

doing so, we account for the internal persistence of global mean temperature. We remain

conservative and impose persistent level effects rather than growth effects. We find that a

one-time transitory 1°C rise in global mean temperature leads to a 3% peak productivity

decline and a 1 percentage point (p.p.) peak rise in the capital depreciation rate.

Our main counterfactual is a gradual increase in global mean temperature that starts

in 2024 and reaches 3°C above pre-industrial levels by 2100, so 2°C above 2024 tempera-

tures, with a 2% rate of time preference. Climate change implies precipitous declines in

output, capital and consumption that reach 47% by 2100, leading to a 29% welfare loss

in permanent consumption equivalent in 2024. These magnitudes are comparable to the

economic damage caused by the 1929 Great Depression, but experienced permanently.

If the economic effects of climate change are so large, why were they not noticed after

nearly 1°C of global warming since 1960? Because climate change occurs in small incre-

ments, its effects are hidden behind background economic variability. We show that since

4



1960, climate change caused a gradual reduction in the annual world growth rate that

reaches one third of baseline by 2019. Because climate change is also persistent, its effects

keep accumulating over time. Ultimately, world GDP per capita would be 18% higher

today had no warming occurred between 1960 and 2019.

The estimated model lets us characterize the SCC using the global temperature re-

sponse to a CO2 pulse from Dietz et al. (2021) and Folini et al. (2024). We remain con-

servative and use the lower end of the range of temperature responses from Dietz et al.

(2021), which are also consistent with historical emissions and warming data.

We obtain a SCC of $1,065 per ton. This value is six times larger than the high end of

existing estimates ($185 per ton, Rennert et al., 2022). The 68% boostrapped confidence

interval for the SCC ranges from $690 per ton to $1,779 per ton. While this range is non-

trivial, even its lower bound is multiple times larger than conventional SCC values. Our

focus on global temperature shocks accounts for this substantial difference. When we

re-estimate our model based on the impact of local temperature shocks as in previous

research, the welfare cost of climate change is 4% and the SCC is $223 per ton.

How sensitive are these results to specification choices? Any plausible discount rate

and 2100 temperature results in welfare losses in excess of 20% and a SCC above $500

per ton. Discount rates below 1% imply a SCC exceeding $3,000 per ton. Scenarios with

2100 warming 5°C above pre-industrial levels lead to welfare losses larger than 50%. The

median climate sensitivity from Dietz et al. (2021) implies a SCC above $1,700 per ton.

We conclude by delineating the consequences of our results for decarbonization policy.

Decarbonization interventions cost $80 per ton of CO2 abated on average (Bistline et al.,

2023). A conventional SCC value based on local temperature of $223 per ton implies

that these policies are cost-effective only if governments internalize benefits to the entire

world, as captured by the SCC. However, a government that only internalizes domestic

benefits values decarbonization using a Domestic Cost of Carbon (DCC). The DCC is

always lower than the SCC because damages to a single country are lower than at a global

scale. Under conventional estimates, the DCC of the United States is $45 per ton, making

unilateral emissions reduction prohibitively expensive. Under our new estimates, the

DCC of the United States becomes $213 per ton and thus exceeds policy costs. In that

case, unilateral decarbonization policy is cost-effective for the United States.

Related literature. Our paper contributes to the vast body of work that measures eco-

nomic damages from climate change surveyed in Burke et al. (2023) and Moore et al.
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(2024). The canonical approach estimates the effect of local temperature fluctuations over

time within a spatial area on economic outcomes in a panel structure to achieve credible

identification (Dell et al., 2012; Dell et al., 2014; Burke et al., 2015; Newell et al., 2021; Kahn

et al., 2021). Nath et al. (2023) and Kotz et al. (2024) clarify the role of persistence in mea-

suring damages. Consistently across all these studies, medium-term effects range from

1% to 3% of GDP and rely exclusively on climatic variation within countries or smaller ge-

ographic units. Our paper takes a fundamentally different approach: we directly exploit

aggregate time-series variation in global mean temperature instead of relying on within-

country climatic variation that nets out common effects of global temperature.

Perhaps surprisingly, few studies have explored time-series variation in temperature.

Bansal and Ochoa (2011) find that a 1°C global temperature increase reduces GDP by

1% contemporaneously. We show that the persistence of the GDP response is crucial: the

peak effect occurs six years out and is twelve times larger than this contemporaneous im-

pact. Berg et al. (2023) analyze the effects of global and idiosyncratic temperature shocks

on GDP dispersion across countries. We directly estimate the aggregate impact of global

temperature, which is much more precisely estimated than individual country-level re-

sponses. In contemporary work, Neal (2023) and Zappalà (2023) suggest that correlated

local temperature and spillover effects across countries may lead to underestimate the

effect of local temperature. We show that spillovers cannot rationalize the gap between

global and local temperature impacts, while extreme climatic events do. Relative to these

papers, we also use our macroeconomic estimates in a structural model to evaluate wel-

fare and the SCC.

As such, our paper relates to the literature studying the economic impact of climatic

phenomena such as storms, heatwaves or El Niño (Barro, 2006; Deschênes and Green-

stone, 2011; Hsiang et al., 2011; Deryugina, 2013; Hsiang and Jina, 2014; Bilal and Rossi-

Hansberg, 2023; Phan and Schwartzman, 2023; Tran and Wilson, 2023; Callahan and

Mankin, 2023; Dingel et al., 2023). We evaluate the impact of global temperature directly

and provide new evidence on the relationship between global temperature and extreme

climatic events.

Our paper also connects to the literature using Integrated Assessment Models sur-

veyed in Nordhaus (2013). We take a “top-down” approach and directly estimate and

match the macroeconomic impact of global temperature. Our analysis suggests that Inte-

grated Assessment Models have historically delivered small costs of climate change not
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so much because they relied on incomplete foundations, but instead because they were

calibrated to economic damages that did not represent the full impact of climate change

(Nordhaus, 2013; Stern et al., 2022).

More recently, “bottom-up” models featuring rich regional heterogeneity, migration

(Desmet and Rossi-Hansberg, 2015; Desmet et al., 2021; Cruz and Rossi-Hansberg, 2023;

Rudik et al., 2022; Conte et al., 2022) and capital investment (Krusell and Smith, 2022; Bilal

and Rossi-Hansberg, 2023) match micro-level estimates and aggregate using the model.

Our “top-down” approach is more holistic in that we do not need to specify and estimate

all channels and general equilibrium effects mapping global temperature to damages, but

remains necessarily limited in assessing distributional and adaptation effects.

In fact, both our global temperature approach and the conventional local tempera-

ture approach rely on moderate short-run temperature variation for identification. To the

extent that adaptation may be more pronounced in response to large long-run tempera-

ture changes, our results represent an upper bound on realized economic damages from

slowly unfolding climate change. Although assessing the role of adaptation is beyond

the scope of this paper, existing evidence suggests a limited role for adaptation even for

the United States (Burke and Emerick, 2016; Moscona and Sastry, 2022; Bilal and Rossi-

Hansberg, 2023), in line with the stability of our estimates across time periods. Should

there be an unprecedented uptake in adaptation in the future, our numbers would still

represent society’s willingness to pay for such investments.

The rest of this paper is organized as follows. Section 2 describes the data and esti-

mates the macroeconomic effects of temperature shocks using our time-series approach.

Section 3 compares the effects of global and local temperature. Section 4 introduces our

dynamic model and describes our structural estimation approach. Section 5 evaluates the

welfare implications of climate change. Section 6 concludes.

2 Global Temperature and Economic Growth

2.1 A Novel Climate-Economy Dataset

Our starting point is to construct a dataset covering 173 countries over the last 120 years

to study the effects of temperature on the economy. We use world aggregates from this

dataset in this section, and country-level outcomes in Section 3 below.

We obtain temperature data from the Berkeley Earth Surface Temperature Database.

7



It provides temperature anomaly data at a spatial resolution of 1◦ × 1◦ of latitude and

longitude. Based on this gridded data, we construct population- and area-weighted tem-

perature measures at the country level. We complement these local temperature measures

with global mean temperature data from the National Oceanic and Atmospheric Admin-

istration (NOAA). As expected, global temperature aggregated from the Berkeley Earth

data correlates virtually perfectly with the NOAA data series.

We rely on data from ISIMIP for information on extreme weather events. ISIMIP pro-

vides global, high-frequency datasets that record multiple atmospheric variables over the

20th and early 21st centuries. We use ISIMIP’s observed climate dataset. It contains daily

reanalysis measures of temperature, wind speed and precipitation, spanning the period

1901-2019 at the 0.5◦ × 0.5◦ resolution. We compute exposure indices to extreme weather

by recording the fraction of days within a country and year that experience a weather re-

alization above or below a fixed percentile of the daily weather distribution in 1950-1980.

See Appendix A.1 for details.

We combine our climate dataset with economic information on GDP, population, con-

sumption, investment, and productivity. We obtain a high-quality dataset for a compre-

hensive selection of countries around the world from the Penn World Tables. We also rely

on data from the World Bank as an alternative. Given that both datasets only go back

to the 1950s or 1960s, we also include data from the Jordà-Schularick-Taylor Macrohis-

tory database, which features high-quality economic data for a selection of high-income

countries starting in the late 19th century.

2.2 Global Temperature Shocks

Figure 1 displays the evolution of global average temperature and world real GDP per

capita since the post-World War II era in our dataset. In the mid-1950s to the mid-1970s,

global average temperature remained relatively stable at around 14°C. However, from the

late 1970s onward, global average temperature began to steadily rise again. At the same

time, we observe relatively stable economic growth over the entire sample.

The trending behavior of the two series in Figure 1 complicates the identification of

the economic effects of temperature increases. A simple regression of global GDP on

temperature will yield a spuriously positive association between the two variables, as

economic growth is associated with higher greenhouse gas emissions which eventually

translate into higher temperature. Therefore, we do not focus on the level of temperature
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Figure 1: Global Average Temperature and Output Since 1950
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Notes: Evolution of global average temperature, computed based on global temperature anomaly data and
the corresponding climatology from NOAA, in the left panel, and the evolution of world real GDP per
capita (in 2017 USD) computed based on PWT data in the right panel.

as the treatment in our projections, but instead focus on so-called temperature shocks. We

define such shocks as possibly persistent deviations from the long-run trend in global

mean temperature.

What drives these variations in temperature around the trend? The geoscience litera-

ture indicates two types of causes. First, external causes such as solar cycles and volcanic

eruptions lead to short-run fluctuations in the Earth’s mean temperature. Solar cycles

have a typical period of 10 years and can warm the Earth by as much as 0.1°C (National

Oceanic and Atmospheric Administration, 2009). Volcanic eruptions have shorter-lived

cooling effects of up to 2 years due to sulphuric aerosols that increase albedo (National

Oceanic and Atmospheric Administration, 2005). Second, internal climate variability—

interactions within the climatic system itself that lead to irregularly recurring events—

also affects temperatures. For instance, the El Niño-La Niña cycle varies unpredictably

between 2 to 7 years and substantially affects global mean temperatures and weather ex-

tremes (Kaufmann et al., 2006; National Oceanic and Atmospheric Administration, 2023).

How to isolate the trend and transient components of temperature? To estimate the

effects of temperature on future economic outcomes, it is critical to preserve the causality

of the data in a time-series sense: we cannot rely on future values of temperature to iden-

tify the trend in the current period. In addition, the physical properties of natural climate

variability suggest to allow for somewhat persistent deviations from trend.

One approach that satisfies our needs along both these dimensions is the method pro-
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Figure 2: Global Temperature Shock
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posed by Hamilton (2018). The idea is to regress temperature h periods out on some

of its lags as of period t and construct the temperature shock as the innovation in this

regression:

T̂shock
t+h = Tt+h − (α̂ + β̂1Tt + . . . + β̂p+1Tt−p), (1)

where β̂i denotes the coefficient estimates of the regression of temperature on its lag i.

This exercise amounts to isolating shocks that persist typically for h periods. Selecting

the horizon h is of course an important choice. Motivated by the fact that the climatic

events that we consider can last for up to several years, we select a horizon of h = 2 and

set the number of lags to p = 2 in our main specification. As we show in Section 2.4 be-

low and in Appendix A.12, varying these values leaves our results essentially unchanged.

In particular, Appendix A.12.1 reproduces all our main analyses under a one-step ahead

forecast error h = 1 as commonly used in the literature and finds virtually identical re-

sults.

Figure 2 shows the resulting global temperature shocks over our sample of interest.

As expected, the temperature shocks fluctuate around zero with an almost equal num-

ber of positive and negative shocks. The largest temperature shocks in our sample are

around 0.3°C. Figure A.2 in Appendix A.2 indicates that the series is also weakly autocor-

related, because we allow for relatively persistent deviations from the long-run temper-

ature trend. In our empirical specification, we therefore control for lagged temperature
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shocks as well. Otherwise, serial correlation may bias the estimated impacts when not

properly accounted for (Nath et al., 2023).

2.3 The Effect of Temperature Shocks in the Time Series

The economic effects of temperature shocks may take time to materialize. Therefore, we

focus on the dynamic effects of temperature shocks up to 10 years out. We evaluate di-

rectly the long-run effects of temperature without extrapolating short-term temperature

impacts. Of course, we would ideally trace out even longer-run effects, but our limited

sample period prevents us from doing so consistently.

We estimate the dynamic causal effects to global temperature shocks using local pro-

jections à la Jordà (2005). This approach involves estimating the following series of re-

gressions, one for each horizon h = 0, . . . , 10:

yt+h − yt−1 = αh + θhTshock
t + x′tβh + εt+h, (2)

where yt is the outcome variable of interest, Tshock
t is the temperature shock and θh is the

dynamic causal effect of interest at horizon h. We refer to the dynamic causal effects up

to horizon h as the Impulse Response Function (IRF). xt is a vector of controls and εt

is a potentially serially correlated error term. Our main outcome variable of interest is

(log) world real GDP per capita. Because we are using the cumulative growth rate as the

dependent variable, we are estimating a level effect. The estimation sample is 1960-2019.1

We use local projections in our main analysis because they tend to be robust at long

horizons (Olea et al., 2024). Compared to Vector Autoregressions (VARs) or distributed

lag models, local projections directly estimate the effects of interest rather than extrapolat-

ing from the first few autocovariances and allow for more flexible controls. Nevertheless,

we obtain similar results under alternative estimation models in Appendix A.4.

To account for the serial correlation in GDP growth and temperature shocks, we in-

clude 2 lags of real GDP growth per capita and of the global temperature shock. We also

include additional controls for the performance of the global economy that we discuss

below in more detail. We compute the confidence bands using the lag-augmentation ap-

1Leveraging that temperature data is available for a longer period than GDP data, we estimate the
temperature shock based on this longer sample to mitigate the influence from observations at the beginning
and the end of the sample.
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Figure 3: The Effect of Global Temperature Shocks on World Output
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proach (Montiel Olea and Plagborg-Moller, 2021).2

Figure 3 shows the impulse responses of global temperature and world real GDP per

capita to a global temperature shock of 1°C. The solid black lines are the point estimates

and the shaded areas are 68 and 90% confidence bands, respectively. As shown in the

left panel, global temperature increases by 1°C on impact. The effect of a global temper-

ature shock on global temperature turns out to be highly persistent: after 10 years global

temperature is still elevated by about 0.5°C.

The persistent rise in global temperature leads to large economic effects. On impact,

world GDP falls by about 2%. However, the effect builds up over time. After 6 years,

world GDP falls by 12%, with effects that persists up to 10 years out. Our estimate is of

the same magnitude as the growth impacts that typically occur after severe banking or

financial crises (Cerra and Saxena, 2008; Reinhart and Rogoff, 2009).

The gradual decline in world GDP in panel (b) reflects not only the direct impact of the

initial temperature shock, but also the subsequent effects of persistently elevated temper-

ature from panel (a) that accumulate over time. Figure A.10 in Appendix A.10 reveals that

these accumulated effects of persistently elevated temperature account for a substantial

part of the peak effect and of its timing. We use the method in Sims (1986) to construct a

2As in Nath et al. (2023), we do not account for estimation uncertainty in the global temperature shock
in our baseline specification. However, we alternatively conduct inference using bootstrapping techniques,
and taking estimation uncertainty into account yields very similar inference. See Appendix A.3 for more
details.
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counterfactual path of output that would correspond to a one-time fully transitory global

temperature change. We find that the peak impact is then just under 5% instead of 12%,

and occurs four years after the shock instead of six. We also account for the internal

persistence of temperature when we construct our counterfactuals in Section 4.

Of course, a 1°C temperature shock is a large shock that does not occur directly in

our historical sample: we observe much smaller shocks in practice. Our estimate for a

1°C shock scales up the linear effect of these smaller shocks. In effect, we abstract from

potential non-linearities. However, in the presence of potential tipping points, one may

expect larger effects than predicted by our linear model.

2.4 Robustness

The time-series nature of our identifying variation requires care in interpreting these con-

clusions. We now demonstrate that our main estimate is robust to accounting for various

identification concerns.

Omitted variable bias. Global temperature innovations may happen to be correlated

with the global economic cycle over time. For instance, if a severe El Niño event increases

global temperature at the same time that a global recession occurs for unrelated reasons,

we may mistakenly attribute adverse economic impacts to climatic variations.

To account for this possibility, we already include rich controls of the world economic

performance in our main specification in equation (2). In addition to lagged GDP, we

control flexibly for global economic recessions, such as the large oil shocks in the 1970s or

the Great Recession, using a set of dummy variables.3

In fact, Figure 4(a) shows that our results hold regardless of the particular set of

macroeconomic controls. We compare our baseline estimates, a specification without any

macro-financial controls, and a specification with an expanded set of controls that include

global oil prices and the U.S. treasury yield. We obtain similar results in all specifications,

suggesting that global temperature shocks and economic shocks are largely unrelated. If

anything, we obtain somewhat larger effects when we control for recession periods.

We confirm that spuriously correlated economic shocks are unlikely to drive our re-

sults by examining how each year in the sample affects our estimates. For all years t,

3Our definition of global recession dates follows the World Bank (Kose et al., 2020). Specifically, we
focus on the following episodes: 1973-1975, 1979-1983, 1990-1992, and 2007-2009. To allow for potential
persistent effects of recessions, we also include 2 lags of the global recession indicator variable.
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Figure 4: Sensitivity of the Effect of Global Temperature Shocks in the Time Series

(a) Sensitivity with respect to controls
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(b) Scatter plot at h = 5
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(c) Accounting for reverse causality
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(d) Construction of temperature shock
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Notes: Impulse responses of world GDP per capita to a global temperature shock, estimated from (2). Panel
(a): sensitivity with respect to controls included: baseline; specification that also controls for two lags of oil
prices and the one-year US treasury yield; specification which only controls for two lags of the temperature
shock and GDP growth. Panel (b): scatter plot of temperature shocks against the cumulative change in real
GDP 5 years out, both after residualizing our set of controls. Panel (c): GDP response after adjusting for
reverse causality. Panel (d): sensitivity with respect to the construction of the temperature shock: baseline
with h = 2; one-step ahead forecast error h = 1; one-sided HP filter; one-step LP estimation with 4 lags
of global temperature changes. Solid lines: point estimate. Dark and light shaded areas: 68 and 90%
confidence bands, respectively in the baseline specification.

Figure 4(b) plots the change in GDP 5 years later at t + 5 against the temperature shocks

at time t after residualizing both from our set of controls. The negative relationship turns

out to be a robust one and is not driven by a specific set of outliers. Figure A.6 in Ap-

pendix A.5 displays a systematic jackknife exercise in which we censor one year at a time

and find that our estimates are not driven by specific years. Overall, these results indicate

that our estimates are unlikely to be driven by economic shocks spuriously correlated to
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temperature shocks.

Reverse causality. Changes in economic activity may affect short-run variations in tem-

perature: a decline in economic activity lowers emissions and temperature, and hence

increases output going forward.

There are two reasons why reverse causality due to greenhouse gases is unlikely to

substantially affect our interpretation. First, such reverse causality concerns typically lead

us to underestimate the effect of temperature on economic output. As temperature rises

and economic activity initially declines, the resulting fall in greenhouse gas emissions

implies lower future temperatures and thus higher future output. Thus, true damages

would be even larger than our estimates.

Second, annual fluctuations in emissions imply negligible temperature variations rel-

ative to the typical temperature shocks that we exploit. For instance, typical year-to-year

fluctuations in CO2 emissions are of the order of 2 gigatons. After accounting for oceanic

and biosphere absorption, these annual fluctuations translate into 1 gigaton of atmospheric

CO2. This magnitude corresponds to 0.15 part per million (ppm) in atmospheric CO2 con-

centration. Current CO2 atmospheric concentration is just above 400 ppm. Given a climate

sensitivity between 2 and 4, year-to-year fluctuations in emissions thus imply year-to-year

fluctuations in temperature of about 0.0005°C. This is an order of magnitude lower than

natural climate variability which is of the order of 0.1°C.

Aerosol emissions can also lead to reverse causality, for instance due to sulfur dioxide

(SO2). Aerosols have the opposite effect of greenhouse gases and reduce global temper-

ature by reflecting incoming sunlight. Aerosols are shorter-lived than greenhouse gases

in the atmosphere, which may amplify or dampen reverse causality concerns relative to

greenhouse gases depending on the horizon of interest.

Two exercises verify that reverse causality is unlikely to affect our results. First, we

test whether our temperature shocks are forecastable by past macro-financial variables

with a series of Granger-causality tests in Appendix A.2. We find no evidence that global

temperature shocks are forecastable, consistently with the substantial lag and small sen-

sitivity between emissions and temperature changes.

Second, we explicitly account for the feedback between output and temperature through

emissions. We consider the two most important greenhouse gases: carbon dioxide (CO2)

and methane (CH4). We also include the main source of aerosol emissions: sulfur dioxide

(SO2). We use standard estimates of the emissions-to-GDP elasticity and leading esti-
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mates of the dynamic sensitivity of temperature to an emissions impulse to construct our

adjustment. We provide more details in Appendix A.6. Figure 4(c) confirms that explicitly

controlling for reverse causality has no meaningful effect on our results.

External validity and temperature variability. Different ways of constructing our tem-

perature shocks or excluding specific sources of global temperature variation may lead to

different results. We address this concern with two exercises.

We show that our results hold across a variety of definitions of temperature shocks.

In our baseline specification, we measure temperature shocks using the Hamilton (2018)

filter with a horizon h = 2. In Figure 4(d), we show that constructing temperature shocks

as one-step ahead forecast errors h = 1 following previous work (see e.g. Bansal and

Ochoa, 2011; Nath et al., 2023) or using a one-sided HP filter produces similar results.

In addition, Appendix A.12.1 reproduces all our main analyses under a one-step ahead

forecast error h = 1 and finds virtually identical results.

We also show that our results are virtually unchanged when we directly estimate

the effects of temperature on world GDP without highlighting the identifying variation

through global temperature shocks. In that case, instead of estimating temperature shocks

in a first step by projecting temperature on its lags, and then projecting world real GDP on

temperature shocks in a second step, we directly project world real GDP on temperature

with enough lags of temperature and GDP. Both approaches are numerically equivalent

when we construct the shocks as one-step ahead forecast errors with the same controls.

In addition, our results do not depend on specific sources of global temperature vari-

ation. We re-evaluate our results after netting out temperature variation generated by El

Niño by controlling for ENSO indices in our main specification. The results are shown in

Figure A.3 in Appendix A.2. The responses are close to our baseline estimates. Similarly,

controlling for volcanic eruptions also yields virtually unchanged results. These exercises

indicate that our main results capture a broad effect of global temperature on economic

activity that is not specific to particular sources of temperature variation.

Together, these robustness exercises corroborate our interpretation that global tem-

perature shocks are driven by various external causes and internal climate variability and

have a large causal effect on world GDP. We expand more flexibly on these robustness

checks in the next section, where we study the effects of global temperature shocks in a

panel of countries.
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3 Temperature Shocks in the Panel of Countries

So far we have evaluated the impact of global temperature shocks directly on world GDP.

We now exploit country-level data on GDP to achieve four distinct goals. Our first goal in

Section 3.1 is to exploit the additional statistical power in the panel to further corroborate

our results when controlling for possibly confounding trends at the country level and

varying the span of our sample period. Our second goal in Sections 3.2 and 3.3 is to

contrast the impact of global temperature shocks with existing work that has focused on

country-level temperature shocks. Our third and fourth goals are to explore the margins

through which GDP declines and the heterogeneity in country-level responses (Section

3.4).

3.1 Global Temperature Shocks in the Panel

To estimate the dynamic causal effects of temperature shocks in the panel, we employ the

panel local projections approach in Jordà et al. (2020). In this section, we still estimate

the effect of global temperature shocks, now averaged across 173 countries. However,

the panel approach allows us to account for unobserved, time-invariant country char-

acteristics using country fixed effects. We can also control for past GDP growth at the

country level and regional trends. Specifically, we estimate the following series of panel

regressions for horizons h = 0, . . . , 10:

yi,t+h − yi,t−1 = αi,h + θhTshock
t + x′tβh + x′i,tγh + εi,t+h, (3)

where yi,t is the outcome variable of interest for country i in year t, Tshock
t is the global

temperature shock and θh is the dynamic causal effect of interest at horizon h. xt is a

vector of global controls, xi,t is a vector of country-specific controls and εi,t is an error

term. In our baseline specification, we use the same set of global controls as before, and in

addition control for two lags of country-level GDP growth. We expand on these controls

in further sensitivity checks below. Our main outcome variable of interest is country-level

log real GDP per capita. Our sample is an unbalanced panel spanning 1960-2019.

Because the temperature shock Tshock
t does not vary by country, the error term is po-

tentially serially and cross-sectionally correlated. For inference, we rely on Driscoll and
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Kraay (1998) standard errors that are robust to cross-sectional and serial dependence.4

By design, our specification is close to the specifications commonly used in the panel

literature on the economic effects of local temperature shocks (e.g. Dell et al., 2012; Burke

et al., 2015; Nath et al., 2023). Crucially however, the temperature shock Tshock
t does not

vary by country in our case. As a result, we cannot control for time fixed effects as is com-

mon when shocks are also country-specific. Instead, we include the same global control

variables as in our time-series specification (1).

Figure 5(a) shows the impulse responses to a global temperature shock, estimated in

the panel of countries. Consistently with our aggregate time-series evidence, global tem-

perature shocks lead to a significant fall in real GDP per capita that exceeds 10% at peak

and persists even 10 years out. This effect is close to our time series analysis, indicating

that our results are robust to accounting for unobserved fixed country characteristics.

The increased statistical power in the panel lets us conduct a number of additional

sensitivity checks. Panel (b) evaluates whether our results depend on the sample period.

We obtain similar results on a sample that starts in 1985 after the large oil shocks of the

1970s or on a sample ending before the 2008 Great Recession. We also consider a much

longer sample starting in 1900. For this analysis, we rely on the 18 advanced economies

in the Jordà-Schularick-Taylor Macrohistory Database for which we have consistent real

GDP data. The results are again very similar. The stability of our estimates across time

periods suggests a lack of adaptation to temperature shocks, at least historically.

Our second sensitivity check includes more flexible controls for potential confound-

ing effects. The main concern is that adverse global and regional economic shocks may

coincide with global and regional temperature shocks. We add global oil prices, the U.S.

treasury yield and, crucially, region-specific time trends. We also consider a specification

in which we control for 10 lags of world and country-GDP growth to capture as much eco-

nomic variability as possible. Figure 5(c) shows that our estimates turn out to be virtually

invariant to the set of controls. In Appendix A.7, we further establish that unobserved

global shocks are not driving our results by exploiting an intermediate level of spatial

aggregation of temperature shocks. The results from this specification that allows us to

include time fixed effects turn out again to be close to our baseline case.

4Our results are robust to using two-way clustered standard errors by country and year, or using boot-
strapping techniques for inference. In fact, to construct the confidence bands for our estimated structural
damage functions in Section 4.3, we rely on the distribution estimated using a Wild bootstrap. See Ap-
pendix A.3 for more details.
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Figure 5: The Average Effect of Global Temperature Shocks and Sensitivity

(a) Average effect in the panel
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(b) Alternative sample periods
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(c) Additional controls
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(d) Pre-trends
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Notes: Impulse responses of real GDP per capita to a global temperature shock estimated in the panel
using (3). Panel (a): baseline panel specification together with time-series response. Panel (b): results under
shorter (1985-2019), excluding the Great Recession (1960-2007), and longer (1900-2019, with restricted set of
countries) samples. Panel (c): sensitivity with respect to controls: baseline; specification with expanded set
of global controls (adding two lags of oil price and one-year US treasury yield); specification with expanded
set of global controls (four lags) and subregion-specific time trends; specification that controls for 10 lags of
world and country-GDP growth. Panel (d): baseline response with pre-trends. Solid line: point estimate.
Dark and light shaded areas: 68 and 90% confidence bands.

Our last sensitivity check investigates whether our results may be due to pre-trends.

Although Table A.2 already suggests that Granger causality is unlikely to be a concern,

Figure 5(d) plots our main estimate together with estimates 6 years prior to the global

temperature shock. The effect in the three years before the shock is zero by construction

since we control for two lags of GDP growth. We do not detect any statistically significant

nor economically meaningful effect up to 6 years prior to the shock.

Finally, we show in Appendix A.12 that our results are robust with respect to the
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Figure 6: Local and Global Temperature Shocks
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Notes: Local temperature shocks for the United States (left panel) and South Africa (right panel) in red
together with the global temperature shocks as the blue dashed line. All the shocks are computed based on
the Hamilton (2018) approach with (h = 2, p = 2). Local shocks computed based on population-weighted
country-level temperature data.

temperature and GDP data used as well as the number of lags included in our local pro-

jections. Overall, these results confirm the substantial and persistent negative effect of

global temperature shocks on real GDP.

3.2 Global vs. Local Temperature

How do these effects compare to local temperature shocks? Conventional estimates imply

that a 1°C rise in local temperature reduces GDP at most by 1-3% in the medium run (Dell

et al., 2012; Burke et al., 2015; Nath et al., 2023). To ensure that our findings are not driven

by differences in econometric specifications or data choices, we reproduce the effects of

local temperature shocks in our empirical framework. We measure local temperature

shocks using the Hamilton (2018) filter, as we do in Section 2.2 for global temperature,

but now based on population-weighted country-level temperature data.

Figure 6 shows local temperature shocks for the United States and South Africa over

our sample from 1960, as two illustrative examples. The standard deviation of local tem-

perature shocks is about three times larger than that of global temperature shocks. While

local and global shocks have a correlation of 0.33, they frequently move in different direc-

tions. Thus, local shocks do not always correspond to global shocks and vice-versa.

To estimate the responses to local shocks, we rely on our panel specification (3), with
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Figure 7: The Average Effect of Local Temperature Shocks
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Notes: Impulse responses of GDP per capita to a temperature shock in the panel using (3). Solid red: local
temperature, no time fixed effect. Dashed brown: local temperature, time fixed effect. Solid black: global
temperature. Lines: point estimates. Dark and light shaded areas: 68 and 90% confidence bands.

the critical difference that the temperature shock is a country-specific temperature shock

Tshock
i,t . In this first specification, we do not include time fixed effects to maximize compara-

bility with (3), but include global controls. Alternatively, we also use a specification that

includes time fixed effects:

yi,t+h − yi,t−1 = αi,h + δt,h + θhTshock
i,t + x′i,tγh + εi,t+h, (4)

which allows us to flexibly control for unobserved common shocks. In this case, the global

controls are absorbed by the time fixed effects.

Figure 7 shows the estimated impulse responses to a local temperature shock of 1°C

as the solid red line (global controls and no time fixed effect) and the dashed brown line

(with time fixed effects). For comparison, we also include the impulse responses to a

global temperature shock (in black). With or without time fixed effects, local temperature

shocks lead to a similar and significant fall in real GDP per capita. On impact, the effect

stands at -0.5% and reaches -1.5% after 5 years. These estimates are close to previous

findings in Dell et al. (2012), Burke et al. (2015), and Nath et al. (2023).

Simple statistical explanations cannot account for the smaller impact of local tempera-

21



ture. Figure A.8 in Appendix A.8 evaluates a specification in which we jointly estimate the

impacts of local and global temperature in the same local projections model. The effects

of each temperature shock turn out to be similar to their univariate estimates, reflecting

that different variation identifies the impact of global and local temperature shocks. The

difference between the two coefficients is statistically significant at the 90% level.

Both global and local shocks lead to a similarly persistent increase in local tempera-

ture. Thus, the persistence of temperature following each shock cannot account for the

differential impacts of global and local temperature shocks on GDP. Figure A.11 in Ap-

pendix A.10 shows that imposing the same internal persistence in response to global and

local temperature shocks using the Sims (1986) method produces results that are as dif-

ferent as in our baseline analysis.

These comparisons reveal that global temperature has much more pronounced impacts

on economic activity than local temperature. The estimated effects of global temperature

shocks are six to seven times larger than for local temperature shocks, based on the same

empirical model and the same sample period. Our analysis indicates that the key dif-

ference lies in the nature of the shock itself rather than in the set of global controls or

time fixed effects: changing the set of controls or fixed effects does not affect the local

temperature results meaningfully. Climatic variation within country or even smaller ge-

ographic units may help alleviate identification concerns, but misses any global effects

of climate change—itself a global phenomenon. By contrast, our approach purposefully

studies these common effects by focusing on climatic variation at the global level.

3.3 Reconciling the Impacts of Global and Local Temperature

Why, then, does global temperature cause more economic harm than local temperature?

We consider two possible economic explanations. The first explanation is that global tem-

perature shocks are inherently different from local temperature shocks and capture po-

tentially damaging climatic implications that local temperature does not. The second

explanation is that local temperature is the true determinant of damages but compounds

through economic spillovers that are however netted out in the panel specification.

Extreme Climatic Events. We start by investigating whether global temperature pre-

dicts meaningful shifts in climatic phenomena. We ask how temperature shocks correlate

with the likelihood of extreme weather events: extreme temperature, drought, extreme

precipitation, and extreme wind speed. As detailed in Section 2.1, we define an exposure
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index for each of these events by counting the fraction of cell-days within each year and

country that exceed a given threshold. This exposure index can thus be interpreted as a

probability. We use the panel local projection specification (3) and denote by θX
h the im-

pact of a 1°C temperature shock on the exposure index of event X at horizon h. Figure 8

displays our results.

Local temperature shocks lead to an increase in the share of extreme heat and drought

days. However, global temperature shocks lead to a substantially larger increase in these

extremes. Our extreme heat and drought indices have a baseline probability of 0.05 and

0.25 in 1950-1980, respectively. Thus, a 1°C global temperature shock correlates with a

doubling of the frequency of extreme heat and a 20% increase of the frequency of drought.

The contrast is even starker for extreme precipitation and extreme wind speed: global

temperature shocks predict a large increase in their frequency, while local temperature

shocks barely do. We construct the extreme precipitation and wind index to have a base-

line probability of 0.01 in 1950-1980. Thus, a 1°C global temperature shock correlates with

an increase of the frequency of extreme precipitation and wind of around 50%.

These findings are consistent with the geoscience literature: wind speed and precip-

itation are outcomes of the global climate—through oceanic warming and atmospheric

humidity—rather than outcomes of local temperature distributions (Seneviratne et al.,

2016; Wartenburger et al., 2017; Seneviratne et al., 2021; Domeisen et al., 2023). Given that

extreme climatic events are known to cause economic damage (Deschênes and Green-

stone, 2011; Hsiang and Jina, 2014; Bilal and Rossi-Hansberg, 2023), the differential corre-

lation of global versus local temperature shocks on extreme climatic events may rational-

ize the larger economic effects of global temperature shocks.

To gauge the quantitative importance of this channel, we start by estimating the im-

pact of extreme events in a panel local projection specification similar to (3). We denote by

ϕX
h the impact of extreme event X’s exposure index on GDP at horizon h. Figure A.12 in

Appendix A.11 reveals that these events are associated with substantial economic dam-

ages. Doubling extreme heat exposure at the country level lowers GDP by 2% at peak. A

20% rise in drought exposure lowers GDP by 1%. A 50% increase in extreme precipitation

or wind exposure lowers GDP by 0.5%.

Next, we aggregate the local impacts of extreme events. We interact the increase in

extreme event exposure following a global temperature shock θX
h from Figure 8 with the

GDP loss associated with these extreme events from Figure A.12 in Appendix A.11. To do
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Figure 8: Extreme Weather Events and Temperature
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Notes: Impulse responses θX
h of extreme temperature, drought, extreme precipitation, and extreme wind ex-

posures to global and local temperature shocks, estimated based on (3). Extreme weather exposure indices
record the share of cell-days in a given year and country where temperature, precipitation, or wind speed
are above/below a threshold. We define thresholds using the daily weather distribution in 1950-1980. Tem-
perature: above 95th percentile. Drought: below the 25th percentile. Precipitation: above 99th. Wind: above
99th percentile. Though not necessary for our results, we smooth the precipitation and wind measures with
a backward-looking (current and previous two years) moving average to remove their inherent noise. Solid
lines: point estimate. Dark and light shaded areas: 68 and 90% confidence bands.

so, we adjust the estimates ϕX
h to correspond to a one-time fully transitory rise in exposure

using again the Sims (1986) method. This persistence adjustment transforms the initial

estimates ϕX
h into new estimates ψX

h . In practice, this adjustment has minor consequences

as ϕX
h , ψX

h are close because extreme events have low internal persistence on their own.

We then aggregate these impacts according to Θh = ∑X ∑h
t=0 θX

t ψX
h−t, where the sum over

X includes the four extreme events and local temperature. Thus, the aggregate impact Θh

now factors in the highly persistent response of extreme events to a global temperature
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Figure 9: The Impact of Extreme Events on GDP Through Global Temperature
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Notes: Aggregated effect on GDP based on local temperature and extreme events impacts Θh (dashed red)
together with the impulse responses to a global temperature shock based on our baseline empirical model
(3). Dark and light shaded areas: 68 and 90% confidence bands.

shock {θX
h }h.

Figure 9 displays our results. The rise in the frequency of extreme events associated

with a global temperature shock implies a peak GDP impact of 7.5%, up from 1.5% under

local temperature alone. The additional impact of extreme events alone represents two

thirds of the direct effect of global temperature on GDP. This result indicates that global

temperature has a larger impact on economic activity than local temperature because the

physical nature of the shock is different.

Our aggregation exercise highlights that it is critical to consider climatic outcomes be-

yond local temperature in panel approaches (Kotz et al., 2024), but also illustrates the

challenges associated with such “bottom-up” exercises. Capturing all relevant local im-

pacts individually is challenging: researchers need to know ex-ante which variables to

consider, be able to measure them consistently throughout the world, and accurately es-

timate their degree of internal persistence. As shown in Figure 8, persistence can vary

greatly depending on global or local temperature shocks. Even then, Figure 9 suggests

that this “bottom-up” approach underestimates the true impact of global temperature,

perhaps because it fails to capture the changing intensity of extreme events. A key ad-

vantage of our time-series approach is its ability to encompass all relevant local impacts
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that are predictable by global temperature.

Economic spillovers. Our analysis of extreme events suggests that there is little room

left for economic spillovers to rationalize the large gap between global and local temper-

ature impacts. We now confirm this argument quantitatively.

When the trading partners of a given country are hit by adverse local temperature re-

alizations, some of the resulting economic consequences may also be felt domestically as

hypothesized by Neal (2023) and shown in Dingel et al. (2023) and Zappalà (2023). In that

case, these indirect effects would not appear in baseline local temperature estimates, un-

derestimating true damages. However, they may appear in global temperature estimates

if local temperature is spatially correlated.

To gauge the relevance of economic spillovers, we exploit intermediate levels of spatial

aggregation of local temperature shocks. We construct an external temperature shock for

each country that averages local temperature shocks of surrounding countries, weighted

by their respective trade share or distance at the beginning of the sample:

Ttrade, ex

i,t = ∑
j ̸=i

πijTshock
i,t Tdist, ex

i,t = ∑
j ̸=i

dijTshock
i,t , (5)

where πij denote trade shares based on imports plus exports between countries i and j in

1960. dij is proportional to the inverse geodesic distance between the centroids of coun-

tries i and j and sums to one for each country i. We expect the trade-weighted external

temperature shock Ttrade, ex

i,t in equation (5) to have a substantial impact on GDP if economic

spillovers explain the difference between local and global temperature impacts.

To conduct a fair comparison to our physical explanation about the nature of the

temperature shock and extreme events, we construct an external temperature shock that

weights the shocks in the surrounding countries by their physical distance. This distance-

weighted external temperature shock Tdist, ex

i,t in equation (5) captures similar physical vari-

ation to global temperature shocks but with a structure comparable to our trade-weighted

measure. Of course, it is well-known that trade and distance are correlated, but only im-

perfectly due to border and languages effects, allowing us to separately identify the im-

pact of each measure. We expect distance-weighted external temperature to have a larger

impact on GDP than trade-weighted external temperature if physical differences between

global and local temperature explain the larger impact of global temperature rather than

economic spillovers.
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Figure 10: The Role of Economic Spillovers
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(b) Distance- vs. trade-weighted
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Notes: Impulse responses of world real GDP per capita to external temperature shocks. Left panel: response
to a global and trade-weighted shock, estimated jointly in the same local projection specification with ex-
panded set of global controls and subregion-specific time trends. Right panel: responses to a distance-
weighted and a trade-weighted shock, estimated jointly in the same local projection specification with time
fixed effects. Solid lines: point estimates. Dark and light shaded areas: 68 and 90% confidence bands. Sam-
ple of countries differs from main analysis due to availability of trade data at the beginning of the sample.

We then estimate the impact of trade-weighted external temperature, jointly with ei-

ther global temperature or distance-weighted external temperature. We use the specifica-

tion in (3) but with both series as explanatory variables. When we use both distance- and

trade-weighted temperature, we can control for time fixed effects as we exploit variation

at the country level (see Appendix A.7 for more details).

Figure 10 presents the results. Panel (a) shows the response of a trade-weighted tem-

perature shock and a global temperature shock, jointly estimated in the same local pro-

jection model. Even when controlling for the trade-weighted temperature shock, global

temperature continues to have a substantial adverse impact on GDP. The shape of the

response to the global temperature shock is slightly different from Figure 5 because we

cannot obtain trade information for all countries at the beginning of our sample and must

thus rely on a different set of countries. By contrast, trade-weighted external temperature

itself has no significant effect on output. This suggests that economic spillovers cannot

account for the difference between global and local temperature.

We confirm this result in Panel (b), which shows the responses to a trade- and distance-

weighted temperature shock, jointly estimated in the same local projection model includ-

ing time fixed effects. Distance-weighted external temperature has a substantial impact

on GDP comparable to the impact of a global temperature shock while trade-weighted ex-
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ternal temperature has a null impact.5 These results indicate that extreme climatic events

provide a more plausible rationale than economic spillovers for the gap between global

and local temperature impacts on GDP.

3.4 Margins of GDP and Regional Impacts

We have documented that global temperature shocks lower world GDP, but how and

where does GDP respond most?

We evaluate the effects of global temperature shocks on capital, investment and pro-

ductivity in our panel of countries in Figure 11. Global temperature shocks lead to a

substantial and significant fall in investment and in the capital stock. The slow decline in

the capital stock is consistent with the adverse impact of extreme weather events such as

storms that materialize as capital depreciation shocks. Consistently with Hsiang and Jina

(2014), we find that disasters associated with global warming do not stimulate growth.

Instead, national income, productive capital and investment all dwindle.

Productivity also falls significantly after global temperature shocks. This is true for

Total Factor Productivity (TFP) as estimated in the Penn World Tables and for labor pro-

ductivity. The impact effect, which stands at -2%, is consistent with experimental studies

on the impact of temperature on productivity (Seppanen et al., 2003). However, these

effects build up over time, reaching -10% after four years.

In addition to unpacking the margins of world GDP, we analyze how the impact of

global temperature varies across different regions. Are warmer or lower-income coun-

tries more affected? Figure 12 displays the impact of global temperature shocks on twelve

regions of the world. All regions but one experience significantly negative effects. We es-

timate the strongest negative effects—close to 20% at peak—in hot regions such as South-

east Asia and Sub-Saharan Africa. Contrary to local temperature shocks, global tempera-

ture shocks lead to adverse economic effects even in higher-income, colder regions. The

peak effect in North America is around 10%, and in Europe around 7%. The only region

that gains from global temperature shocks is Central and East Asia, possibly because of

the relatively large number of cold countries in this region that may benefit from warmer

temperatures.

5Appendix A.9 shows that when we do not control for distance-weighted temperature or global tem-
perature, trade-weighted temperature shocks do have a significantly negative effect on GDP, but similarly
small to the direct impact of local temperature.
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Figure 11: Transmission of Global Temperature Shocks
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Notes: Impulse responses of investment per capita, the capital stock per capita, total factor productivity
and labor productivity to a global temperature shock, estimated based on panel local projections (3). Labor
productivity: output over employment. Total factor productivity: Penn World Tables. Solid line: point
estimate. Dark and light shaded areas: 68 and 90% confidence bands.

We evaluate whether the impact of global temperature shocks varies by country base-

line temperature and income level in Figure A.21, Appendix A.13. Although somewhat

imprecisely estimated, we find suggestive evidence that warm and low-income countries

display the strongest adverse effects of global temperature shocks, while cold and high-

income countries are less sensitive to global temperature shocks. This result is qualita-

tively consistent with previous evidence on local temperature (Dell et al., 2012; Burke et

al., 2015; Nath, 2022). Quantitatively, global temperature shocks have larger effects across

all countries. Overall, the effects of global temperature are larger and more uniformly

detrimental than those of local temperature (Burke et al., 2015).

So far we established the reduced-form impact of global temperature shocks on eco-
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Figure 12: Regional Impacts of Global Temperature Shocks
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Notes: Impulse responses of GDP per capita to global temperature shocks for different regions across the
world based on (3), conditioning on the different regions and controlling for subregion-specific time trends.
Solid lines: point estimate. Dark and light shaded areas: 68 and 90% confidence bands.

nomic activity at the world and country level. We now turn to our structural model to

convert these estimates into welfare losses and a value of the Social Cost of Carbon.

4 A Model of Climate Change Across the World

Our framework closely follows the standard neoclassical growth model. As such, it mir-

rors the backbone of the Dynamic Integrated Climate Economy (DICE) model introduced

by Nordhaus (1992). Our key innovations are to introduce capital depreciation damages

and to use our new reduced-form estimates of the impact of global temperature shocks to

structurally estimate the damage functions in the model.
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4.1 Model Description

Setup. Time is continuous and runs forever. There is a unit continuum of infinitely-

lived identical households who populate the world economy. Households have Constant

Relative Risk Aversion flow preferences: U(C) = C1−γ−1
1−γ . Labor supply is exogenous and

set to Lt = 1. The pure rate of time preference of households is ρ.

Firms produce according to a Cobb-Douglas production function in capital Kt and

labor Lt with time-dependent TFP Zt: Yt = ZtKα
t L1−α

t . They hire labor and rent capital

from households in competitive factor markets. Capital depreciates at rate ∆t, which is

covered by firms. The paths of Zt, ∆t are perfectly foreseen.

Households earn wages wt, hold capital Kt and rent it out to firms for production.

The net interest rate is rt. Firms make zero profits given constant returns to scale, so we

omit profits in the budget constraint of the household, which writes: Ct + K̇t = wt + rtKt.

Households are endowed with an initial capital stock K0.

A competitive equilibrium of our economy is a collection of sequences {Ct, Kt, rt, wt}∞
t=0

such that households optimize given prices {rt, wt}∞
t=0:

max
{Ct,Kt}t

∫ ∞

0
e−ρtU(Ct)dt subject to Ct + K̇t = wt + rtKt given K0;

firms optimize given prices {rt, wt}t: maxKD
t ,LD

t
Zt(KD

t )
α(LD

t )
1−α − (rt + ∆t)KD

t − wtLD
t ;

and factor markets clear: Kt = KD
t and 1 = LD

t .

Climate change. We model climate change as changes in TFP Zt and capital deprecia-

tion ∆t over time, relative to their baseline values Z0, ∆0. We take the path of global mean

temperature Tt relative to a reference level T0 as given, and denote by T̂t ≡ Tt − T0 the

path of excess temperature. Global mean temperature affects TFP and capital deprecia-

tion through structural damage functions {ζs, δs}s≥0:

Zt = Z0 exp
(∫ t

0
ζsT̂t−sds

)
∆t = ∆0 exp

(∫ t

0
δsT̂t−sds

)
. (6)

The structural damage functions ζs and δs govern the persistence of the effect of tran-

sitory global temperature shocks on TFP and capital depreciation. When ζs, δs are Dirac

mass points at s = 0, global temperature shocks have purely transitory level effects. When

ζs, δs are positive functions that asymptote to zero, global temperature shocks have per-

sistent level effects. When ζs, δs are positive functions that asymptote to a positive value,
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global temperature shocks have growth effects.

When temperature Tt ≡ T is constant, the economy converges to its steady-state with

the corresponding values of TFP Z = Z0 exp
(
(T − T0)

∫ ∞
0 ζsds

)
and capital depreciation

rate ∆ = ∆0 exp
(
(T − T0)

∫ ∞
0 δsds

)
. These expressions highlight that the cumulative dam-

age functions
∫ ∞

0 ζsds and
∫ ∞

0 δsds determine the long-run impact of global temperature

changes. In that case, ζs, δs need to be integrable to obtain a well-defined steady-state.

This requirement rules out growth effects which would imply an economy that asymp-

totes to zero. In any case, we do not find any evidence supporting growth effects.

We do not model the feedback between the economy and emissions, and associated

externalities, because we focus on climate damages. Thus, the competitive equilibrium is

efficient as is standard in the neoclassical growth model.

Social Cost of Carbon. In our framework, we define the Social Cost of Carbon as the

one-time dollar amount C that households would pay at time 0 that would make them

indifferent between a world with an additional ton of CO2 emitted at time 0, and a world

starting in steady-state, without emissions, but having paid C.

Given that we do not model emissions directly, we must map a one-time CO2 pulse

into a temperature path in order to calculate the SCC. We follow Folini et al. (2024) and

use the temperature response of global mean temperature to a CO2 pulse from Dietz et al.

(2021), itself based on Joos et al. (2013). Dietz et al. (2021) report the temperature response

in multiple state-of-the-art atmospheric circulation and radiative forcing models.

We denote by {T̂SCC
t }t≥0 the path of excess warming implied by a one-time pulse of

one ton of CO2 emitted at time 0. The average response in Dietz et al. (2021) indicates

that temperature rises steadily and eventually stabilizes at +0.002°C after 15 years. We re-

main conservative and use the lower end of available temperature responses: we define

{T̂SCC
t }t≥0 as half of the the multi-model mean in Dietz et al. (2021). Doing so ensures

that historical emissions are consistent with historical warming data. When we use the

multi-model mean, our SCC numbers nearly double. Our welfare numbers would re-

main unchanged as they do not depend on the temperature response to a CO2 pulse, but

instead on a particular warming scenario.

We then construct productivity and capital depreciation paths {ZSCC
t , ∆SCC

t }t≥0 ac-

cording to equation (6) in which we use the temperature path {T̂SCC
t }t≥0 rather than a

global warming scenario. The model delivers a path of value functions {VSCC
t (K)}t≥0,

equilibrium capital stocks {KSCC
t }t≥0 with initial condition KSCC

0 = Kss, leading to a path
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of realized values {VSCC
t (KSCC

t )}t≥0, in response to this CO2 pulse-induced warming.

Our definition requires that the SCC C is given implicitly by:

Vss(Kss − C) = VSCC
0 (Kss), (7)

where ss superscripts denote initial steady-state quantities.

To gain intuition, consider the case when the SCC is not too large. Then, a first

order perturbation implies that the SCC satisfies C =
∫ ∞

0 e−ρtu′(Css)(Css − CSCC
t )dt =

1
ρ

Css−CSCC

Css , where Css−CSCC

Css is the consumption-equivalent welfare loss from the warming

implied by the CO2 pulse. These identities indicate that the SCC is equal to the present

stock valuation of flow consumption-equivalent welfare losses from the warming induced

by the CO2 pulse. While these conditions are useful to gain intuition, in our quantifica-

tion we always use the nonlinear definition (7) that accounts for a time-varying marginal

rate of substitution.

4.2 Estimation Strategy

Our next step is to estimate the structural damage functions ζs, δs. To do so, we match

the reduced-form impulse response functions of output and capital to global temperature

shocks from Figures 7 and 11. We proceed in two steps.

In the first step, we calibrate our model based on standard values from the literature,

with the exception of our damage functions. We set risk-aversion to γ = 2. The capital

share is α = 0.33. The baseline annual capital depreciation rate is ∆0 = 0.08. Our choice

of annual pure rate of time preference ρ = 0.02 follows Rennert et al. (2022) and is con-

sistent with a 2% annual interest rate in steady-state.6 Of course, the equilibrium path of

consumption in the model determines the effective consumption-based discount rate. We

assess the robustness of our results with respect to the rate of time preference in Section

5.4 below.

In the second step, we invert our model to estimate the sequence of TFP and depre-

ciation shocks that correspond to a temperature shock. We leverage that the actual tem-

perature shocks that arise during our sample are small as in Figure 6 and therefore imply

6This framework immediately accommodates balanced productivity growth. Provided we adjust the
the rate of time preference and the baseline capital depreciation rate, standard rescaling arguments ensure
that allocations and welfare would be identical in counterfactuals when the baseline economy is in steady-
state or on a balanced growth path.
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output and capital fluctuations of the order of 1%. Therefore, we can use a first-order

perturbation of the model around the initial steady-state. For any sequence of tempera-

ture shocks T̂t, we denote by ẑt the resulting log deviation in TFP and by ∆̂t the resulting

level deviation capital depreciation rates. We denote by ŷt, k̂t the log deviations in output

and capital along the transition. We emphasize that we use log-linearization for estimation

only, not for counterfactuals.

Proposition 1. (Model inversion)

There exists Kt(ẑ), Jt,s given in Appendix B.3 such that, to a first order in {T̂t}t≥0:

ŷt = ẑt + αk̂t k̂t = Kt(ẑ) +
∫ ∞

0
Jt,s∆̂sds

Proof. See Appendix B.3.

Proposition 1 delivers an identification result. Given observed output and capital re-

sponses ŷt, k̂t, we can recover the underlying sequence of productivity shocks ẑt and capi-

tal depreciation shocks ∆̂t. The first equation of Proposition 1 lets us recover the sequence

of productivity shocks directly from the observed output and capital responses—this re-

lationship is immediate from the production function.

The main content of Proposition 1 lies in the second equation. By log-linearizing the

equilibrium conditions of the model and solving explicitly for the equilibrium sequence of

capital, we relate capital deviations to the sequence of capital depreciation rates through

the sequence-space Jacobian Jt,s (Auclert et al., 2021; Bilal and Goyal, 2023) given pro-

ductivity shocks embeded in Kt(ẑ). In the context of the neoclassical growth model, this

Jacobian admits a closed-form expression as a function of parameters and steady-state

objects. When Jt,s is invertible, the capital depreciation shocks are identified. We use

Proposition 1 to obtain the sequence of TFP and depreciation rates ẑt, ∆̂t that correspond

to any sequence of temperature shocks T̂t.

We use these observations to estimate ζs, δs. We consider the path of output and

capital in response to an observed temperature shock, that corresponds to the underlying

temperature path T̂t in Figure 3. Proposition 1 delivers the corresponding sequence of

productivity and capital depreciation shocks ẑt, ∆̂t. We then identify ζt and δt as the

innovations to these sequences as per equation (6).

This approach is consistent with households having rational expectations about fu-

ture temperature shocks: after a temperature shock, households expect temperature to
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remain persistently elevated as in Figure 3. One advantage of this approach is that we

identify damage functions off of empirical impulse responses to a shock that is itself per-

sistent. Thus, counterfactuals that focus on a permanent increase in temperature build on

moments identified from responses to a persistent shock—though not a fully permanent

shock—rather than a purely transitory shock.

In practice, we face two additional challenges. We address both of them by imposing

a smooth functional form for our structural damage function. We constrain ζs, δs to be of

the form A
(
e−Bs − e−Cs).

The first challenge that our constrained estimation addresses is that we can only esti-

mate the impulse response functions ŷt, k̂t up to a finite horizon. By contrast, Proposition

1 requires the entire impulse response function. We cannot simply set the capital impulse

response to 0 from year 11 onwards, as this would imply a large underlying capital wind-

fall gain for the economy. By constraining the shape of the structural damage functions,

we use our 10 data points to estimate 3 parameters per damage function.

The second challenge is to discipline the long-run effects of temperature shocks. By

constraining the structural damage functions, we ensure that the effects of transitory tem-

perature changes vanish in the very long run. If we estimated the structural damage

functions entirely unconstrained and with a longer horizon, temperature shocks could

potentially have longer-ranging but extremely imprecisely estimated effects. Therefore,

our approach is conservative in that it limits the long-run impact of a one-time transitory

temperature shock.

Hence, instead of exactly inverting the model, we estimate A, B and C for ζs, δs sepa-

rately using Non-Linear Least Squares to minimize the squared deviations from the equa-

tions in Proposition 1 for the first 10 years only.

4.3 Estimation Results

Figure 13 shows our estimation results. Column (a) displays the underlying temperature

path from Figure 3. Column (b) reveals that the estimated model closely fits the empirical

responses given its limited degrees of freedom. Of course, the model fit relies on our

constrained functional form: if we did not constrain the damage function, the fit would

be one-to-one.

Column (c) depicts the estimated structural damage functions, ζs and δs. They co-

incide with the productivity and capital depreciation responses to a one-time transitory
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Figure 13: Productivity and Capital Depreciation after Global Temperature Shocks

(a) Temperature (b) Output and capital (c) Damage Functions

Notes: Estimation results from matching the model impulse responses to the empirical responses to global
temperature shocks. Column (a): underlying temperature path. Column (b): output and capital responses
to this internally persistent temperature path. Dashed lines: data. Solid lines: model fit. Column (c):
implied productivity and capital depreciation shocks, together with 68% confidence intervals (shaded area)
based on 1,000 bootstrap draws from the empirical output, capital and temperature IRFs. We estimate
structural damage functions and solve for counterfactuals for each draw.

global temperature shock of 1°C. It implies a short-run productivity loss of 3% and an

increase in the capital depreciation rate of 1 p.p. Despite the corresponding temperature

shock being transitory, the impact on productivity decays only slowly and persists for up

to 10 years. The capital depreciation response, however, is short-lived. The bootstrapped

confidence bands reflect the confidence intervals around our empirical output and capital

responses.

How do the productivity and capital depreciation effects of global temperature shocks

compare to those associated with local temperature shocks? Given that the empirical

responses are substantially smaller for local temperature shocks as shown in Figure 7,

such shocks likely also imply smaller damages. To answer this question quantitatively,

we repeat our estimation but targeting the impulse response functions following local
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temperature shocks.

Figure B.1 in Appendix B.4 displays the productivity and capital depreciation effects

of local temperature shocks. The productivity effect of local temperature shocks is five to

six times smaller than under global temperature shocks. The impact response of capital

depreciation is about half of its value under global temperature shocks. We conclude that

global temperature shocks have much larger effects on economic fundamentals.

5 The Welfare Impact of Climate Change

5.1 Representing Climate Change

To evaluate the consequences of climate change, we specify a path for global mean tem-

perature. The baseline year t = 0 corresponds to 2024. The world subsequently warms

by 3°C above pre-industrial levels by 2100, after which temperature asymptotes to 3.3°C.

This scenario is broadly consistent with IPCC business-as-usual scenarios that imply 3 to

4°C of warming by 2100 (Lee et al., 2023). Given that the world has warmed by approx-

imately 1°C since pre-industrial times, this scenario implies 2°C of additional warming

since t = 0 (2024) by year t = 76 (2100).

We construct two counterfactuals to highlight the role of global temperature. In the

first counterfactual, we use the structural damage functions estimated under global tem-

perature shocks ζ
global
s , δ

global
s in Figure 13(c) to construct productivity and capital de-

preciation changes using equation (6) together with excess temperature T̂t. In the sec-

ond counterfactual, we instead use the structural damage functions estimated under local

temperature shocks ζlocal
s , δlocal

s in Figure B.3(c), Appendix B.4, using again equation (6)

together with the same excess temperature path T̂t.

Our counterfactuals compare allocations and welfare in an economy that warms ac-

cording to T̂t, to allocations and welfare in an economy that remains in steady-state under

T̂t ≡ 0. Welfare losses from climate change are defined as an equivalent percent decline

in steady-state consumption. The SCC is defined in equation (7) and is independent from

the global warming scenario because it relies on the temperature response to a given CO2

pulse {T̂SCC
t }t≥0. Conversely, the welfare calculations are independent from {T̂SCC

t }t≥0.

To solve for counterfactuals, we use standard global numerical methods to obtain the

global solution—we only use log-linearization for estimation.
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5.2 Welfare and the Social Cost of Carbon

Figure 14 presents our main results. Panel (a) depicts the path of global mean tempera-

ture. Panel (b) reveals that output drops rapidly as global temperature rises, relative to a

world that is not warming. In 2050, output declines by 19%. In 2100, output is 47% below

what it would have been without climate change. This substantial decline reflects accu-

mulated productivity losses that eventually reach 34% and a 2.3 p.p. rise in the capital

depreciation rate, representing a 29% increase.

Panel (c) highlights the combined adverse impact of lower productivity and higher

depreciation rates on capital accumulation. Initially, investment rises as households an-

ticipate lower income going forward and therefore save, following standard permanent

income logic. Capital starts decumulating rapidly thereafter under the combined pres-

sure of lower output and higher depreciation. By 2100, capital is 50% below what it

would have been without climate change.

Panel (d) reveals that consumption declines as much as output, eventually reaching

a 47% loss in the long run. This substantial decline in consumption translates into large

welfare losses. Panel (e) shows that the 2024 welfare impact of climate change amounts to

a 29% loss in consumption equivalent percent. This welfare loss exceeds the consumption

impact as households discount but value future declines in consumption as well. As

temperature keeps rising, welfare continues to decline and reaches a 47% loss.

Our results indicate that the impact of climate change is substantial. The welfare cost

of climate change is 640 times the cost of business cycles, or 10 times the cost of moving

from current trade relations to complete autarky. Perhaps most strikingly, in terms of out-

put, capital, consumption, and thus welfare, climate change is comparable in magnitude

to the effect of the 1929 Great Depression in the United States. However, climate change is

permanent. Thus, the losses from living in a world with climate change relative to a world

without it are comparable to living in the 1929 Great Depression, forever.

Panel (f) uses our structural damage function to construct the SCC. We obtain a SCC

of $1,065 per ton. This value is more than six times larger than the $185 per ton value in

Rennert et al. (2022). There are two possible reasons why we obtain a large SCC and sub-

stantial welfare costs of climate change. The first possible reason is our focus on global

temperature shocks. The second possible reason is that we include damages to produc-

tivity and capital depreciation, rather than productivity alone as in most previous work.

We demonstrate that our focus on global temperature shocks is the main driver of our
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Figure 14: Transitional Dynamics Under Climate Change

Notes: Transitional dynamics of the estimated model under the scenario in panel (a). Solid blue lines:
model estimated under global temperature, with productivity and capital depreciation damages. Shaded
blue areas: 68% confidence intervals. Dotted blue lines: model estimated under global temperature, with
productivity damages only. Dashed red lines: model estimated under local temperature, with productivity
damages only. Shaded red: 68% confidence intervals. Confidence intervals based on 1,000 bootstrap draws
from output, capital and temperature IRFs.

conclusions. We do so by re-estimating our model based on the impact of local tempera-

ture shocks on productivity only, consistently with previous research. In that case, Figure

14 shows that climate change then implies a long-run output decline of 7%, a present

value welfare cost of 4% and a SCC of $223 per ton. These values are consistent with

results in Nordhaus (1992), Dell et al. (2012), Burke et al. (2015), Nath et al. (2023), and

Rennert et al. (2022). When we estimate our model based on the impact of global temper-

ature shocks on productivity only, we obtain a welfare loss of 24% and a SCC of $886 per

ton, four times larger than with local shocks. Including damages to capital depreciation

further increases these values to our main results. Our bootstrapped confidence intervals
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highlight the uncertainty around these point estimates. The 68% confidence interval for

the SCC based on global temperature ranges from $690 per ton to $1,779 per ton. Despite

non-trivial uncertainty, even the lower bound of that confidence interval is several times

larger than conventional SCC estimates.

5.3 Growth Accounting

If the economic effects of climate change are so large, why were they not noticed after

nearly 1°C of global warming since 1960? We answer this question by analyzing the

historical impact of climate change. We start the economy in 1960 and feed in the realized

path of warming until 2019, after which we impose constant temperature. We construct

counterfactual changes in output relative to a baseline economy that remains in steady-

state. We then add these changes directly to the data.

Figure 15 displays the results. Panel (a) reveals that climate change is responsible

for moderate but persistent reductions in the world’s annual growth rate. In the 1960s,

there is little warming and so few effects on economic growth. By 2019, potential growth

without climate change deviates more systematically from realized growth with climate

change. Panel (a) highlights that historical warming shocks have moderate economic

year-to-year effects in comparison to other economic shocks. The analysis in Section 2

detects these effects that are otherwise hidden behind background economic variation.

Panels (b) and (c) show that the annual growth effects of climate change eventually ac-

cumulate because climate change is a permanent shock, despite having an initially mod-

erate effect on growth. Panel (b) indicates that climate change reduces the world growth

rate by as much as a third of baseline growth in the 21st century. Panel (c) shows that this

growth slowdown implies that world GDP per capita would be 18% higher today had no

warming occurred between 1960 and 2019. Even though in this counterfactual we hold

temperature constant at its 2019 level in all subsequent years, economic losses continue to

accumulate after 2019. These delayed impacts are due to the lagged productivity effects

embedded in our estimated damage functions {ζs}s and to the internal transitional dy-

namics of the neoclassical growth model. By 2040, output is 25% below its potential due

to climate change: more than one quarter of the economic losses caused by past warming

are yet to materialize.
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Figure 15: Growth Accounting With Climate Change

Notes: Impact of past climate change on world GDP. Panel (a): world output growth rate with (solid blue)
and without (dashed red) climate change. Horizontal lines: sample averages. Panel (b): fraction of growth
rate lost to climate change (annual growth loss out of 1960-2019 mean). Horizontal line: sample average.
Dashed line: linear regression fit. Panel (c): world output with (solid blue) and without (dashed orange)
climate change, normalized to one in 1960.

5.4 Sensitivity

Given the sizeable magnitude of our results, we investigate which parameters may be

driving them. Figure 16 displays how our results depend on four key choices: the rate of

time preference ρ, our treatment of expectations, 2100 global mean temperature, and the

climate sensitivity.

Panel (a) shows 2024 welfare losses as a function of the rate of time preference ρ, and

panel (b) shows the corresponding SCC. As expected, a higher rate of time preference

lowers welfare losses and the SCC: households then discount more damages that are far

in the future. Our baseline rate of time preference ρ = 0.02 is consistent with Rennert

et al. (2022) and with the secular decline in interest rates. However, even at much higher

discount rates—up to 0.04 or 0.05—we still obtain sizable losses in excess of 20% in con-

sumption equivalent. The corresponding SCC remains two to three times as large as the

high end of previous estimates. By contrast, as we approach very low discount rates

consistent with Stern (2006), welfare losses exceed 40% and the SCC rises above $3,000

per ton. Welfare losses are less sensitive to the discount rate than the SCC because wel-

fare losses represent an annualized flow of losses, while the SCC is a discounted stock

valuation.

Figure 16 also shows how our conclusions change when we treat household expec-

tations differently. In our main estimation, we assume that households have rational
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Figure 16: Welfare and the Social Cost of Carbon under Alternative Choices

Notes: Sensitivity of welfare costs and Social Cost of Carbon in 2024 with respect to the rate of time pref-
erence (ρ), 2100 global mean temperature, the climate sensitivity and treatment of expectations. Solid blue
lines: model estimated using global temperature shocks under baseline expectations. Dotted blue lines:
model estimated using global temperature shocks with temperature shock surprises. Dashed red lines:
model estimated using local temperature shocks under baseline expectations with productivity shocks only.

expectations about the temperature path following a temperature shock. An alternative

is to assume that households are surprised every period by persistently elevated temper-

atures following a temperature shock. Under this assumption, we linearly combine our

estimated impulse response functions to obtain the output and capital responses to a one-

time transitory temperature shock. We then target these responses to a transitory shock

to estimate structural damage functions, instead of estimating damage functions first as

in our baseline. We provide more details in Appendix B.4.

The dotted lines in Figure 16 displays our results under this alternative treatment of

expectations. The results are similar to our baseline, although slightly smaller. Both spec-

ifications are close because productivity losses drive most of climate damages in our es-

timated framework as shown in Figure 14. Proposition 1 highlights that productivity

damages are a direct function of the data that is independent from household expecta-
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tions. Thus, expectations only affect the estimation of the capital depreciation shocks and

thus a small fraction of economic losses. Figure B.2 in Appendix B.4 shows that capital

depreciation shocks are smaller when we assume that households are surprised: they

do not foresee future capital depreciation shocks that increase the marginal product of

capital, and hence invest less than under rational expectations. The model then requires

smaller capital depreciation shocks to rationalize the same decline in capital in the data.

Panels (c) and (d) show welfare losses and the SCC when we vary 2100 tempera-

ture relative to pre-industrial levels. Welfare losses under 20% materialize only at very

low warming scenarios of 1.5°C since pre-industrial levels by 2100. The IPCC evaluates

that the world is on track for 3°C to 4°C above pre-industrial levels under business as

usual: global mean temperatures already largely exceed 1°C since pre-industrial levels,

and some estimates indicate that 2023 reached 1.48°C since pre-industrial levels. By con-

trast, pessimistic scenarios under which global mean temperatures reach 6°C since pre-

industrial levels in 2100 lead to present value welfare losses of 60%. Of course, in Panel

(d), the 2024 SCC is independent from the warming scenario because it only depends on

the temperature response to a CO2 pulse.

Panels (e) and (f) display how the climate sensitivity affect our conclusions. The cli-

mate sensitivity governs how carbon emissions map into current and future warming.

Consequently, welfare losses to a given warming scenario in as in panel (e) are indepen-

dent from the climate sensitivity. However, as shown in panel (f), the SCC is not. Our

main analysis uses a strongly conservative climate sensitivity: half of the median climate

sensitivity in Dietz et al. (2021). This choice allows our analysis to remain more closely

consistent with the historical link between emissions and warming, but is below what

climate models tend to predict. When we use the median climate sensitivity, the SCC

exceeds $1,700 per ton. With a larger climate sensitivity, the SCC exceeds $3,000 per ton.

This analysis indicates that substantial climate damages occur over a wide range of

specification choices. We conclude that climate change poses a substantial threat to the

world economy.

6 Conclusion

In this paper, we demonstrate that the impact of climate change on economic activity is

substantial. We leverage natural climate variability in global mean temperature to obtain
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time-series estimates that are representative of the overall impact of global warming. We

find that a 1°C rise in global temperature causes global GDP to persistently decline, with

a peak loss at 12%. This large effect is due to an associated surge in extreme climatic

events. By contrast, local temperature shocks used in the traditional panel literature lead

to a minimal rise in extreme events and to much smaller economic effects. Together, our

results imply a SCC of $1,065 per ton and a 29% welfare loss from a moderate warming

scenario. These effects are comparable to experiencing the 1929 Great Depression, forever.

Not only do our results indicate that climate change represents a major threat to the

world economy, they also have salient consequences for decarbonization policy. Most

decarbonization interventions cost $80 per ton of CO2 abated (Bistline et al., 2023). A

conventional SCC value of $223 per ton implies that these policies are cost-effective only

if governments internalize benefits to the entire world, as captured by the SCC. However,

a government that only internalizes domestic benefits values mitigation benefits using

a Domestic Cost of Carbon. The DCC is always lower than the SCC because damages

to a single country are less than to the entire world. For instance, under conventional

estimates based on local shocks, the DCC of the United States is $45 per ton, making uni-

lateral emissions reduction prohibitively expensive. Under our new estimates however,

the DCC of the United States becomes $213 per ton and thus largely exceeds policy costs.

In that case, unilateral decarbonization policy is cost-effective for the United States.
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A Empirics

A.1 Data

A.1.1 Economic Data

We obtain economic information on GDP, population, consumption, investment and pro-

ductivity for a comprehensive selection of countries around the world from the Penn

World Tables (PWT; Feenstra et al., 2015). Our main output measure is real GDP per

capita from the national accounts (rgdpna/pop). For our country comparisons by in-

come, we use (expenditure-side) real GDP per capita at chained PPPs (rgdpe/pop). For

capital, we use the capital stock from national accounts (rnna). Investment, we compute

using data on capital and capital depreciation (delta) based on the capital accumulation

equation It = Kt − (1 − δt)Kt−1. For total factor productivity, we also use the measure

based on national accounts (rtfpna). We compute a measure of labor productivity based

on output and employment data (rgdpna/emp).1

The PWT data set is commonly used in the literature and of high quality. However,

as an alternative, we also use data from the World Bank. One limitation of both of these

data sets is that they only go back to the 1950s or 1960s. To extend our analysis to a longer

historical sample period, we therefore also include data from the Macro-history Database

(Jordà et al., 2017), which features high-quality economic data for 18 developed countries

starting in the late 19th century.

A.1.2 Climate Data

Gridded temperature datasets. Our primary gridded temperature dataset is Berkeley

Earth, due to its geographic coverage, temporal coverage, and update frequency.

We obtain gridded temperature anomalies (using air temperatures at sea ice) at a daily

and monthly frequency between 1850 and 2022 from Berkeley Earth (2023), at a resolution

of 1◦ × 1◦ latitude-longitude grid. Temperature anomalies are deviations from the clima-

tology, which is measured as the 1951-1980 mean temperature (Rohde and Hausfather,

2020). Grid-level temperature levels are constructed by adding the grid-level climatology

to the grid-level anomaly series.

1We use employment as a proxy for the labor input because the data on average hours is not very well
populated.
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We also obtain gridded estimates of temperature, wind, and precipitation at a daily

frequency between 1901 and 2019 from the Inter-Sectoral Impact Model Intercomparison

Project (ISIMIP), at a 0.5◦ spatial resolution (Lange et al., 2023).

To assess the sensitivity of the results to the gridded temperature data used, we obtain

alternate, prominent datasets used in the literature. We obtain gridded temperature levels

(surface air temperature) at a monthly frequency between 1948 and 2014 from the Prince-

ton Global Forcing Dataset (version 2) constructed by Sheffield et al. (2006), a later version

of which was used, for instance, by Nath et al. (2023). Additionally, we obtain the grid-

ded temperature levels (surface air temperatures) at a monthly frequency between 1900

and 2014 from the Willmott and Matsuura, University of Delaware Dataset (version 4.01)

(Matsuura and National Center for Atmospheric Research Staff, 2023), earlier versions of

which were used, for instance, by Dell et al. (2012) and Burke et al. (2015).

Aggregation of gridded temperature datasets. To aggregate the gridded temperature

datasets to the global or country level we consider two different type of weights. One

approach is to use area weights. Specifically, we use the area of the grid, calculated us-

ing the latitude and longitude. Alternatively, we use population weights. In that case,

we use the grid-level population count in 2000 as weights, obtained from the Center for

International Earth Science Information Network (CIESIN), Columbia University (2018).

Global temperatures. We obtain land and ocean surface temperature anomalies (in de-

grees Celsius) at an annual frequency between 1850 and 2022 from NOAA National Cen-

ters for Environmental Information (2023a). Temperature anomalies are deviations from

the climatology, which is measured as the 1901-2000 mean temperature, 13.9 degree Cel-

sius (NOAA National Centers for Environmental Information, 2023b). Temperature levels

are constructed by adding the climatology to the anomaly series.

We also obtain the combined land-surface air and sea-surface water temperature anoma-

lies (in degrees Celsius) at an annual frequency between 1880 and 2022 from Lenssen et al.

(2019) and NASA Goddard Institute for Space Studies (2023). Temperature anomalies are

deviations from the climatology, which is measured as the 1951-1980 mean temperature,

approximately 14 degree Celsius (NASA Earth Observatory, 2020). Temperature levels

are similarly constructed by adding the climatology to the anomaly series.

As a quality check of the gridded temperature data, we compute population- and area-

weighted global temperature measures and compare them to the official measures from

NOAA and NASA. Note that both official measures follow an area-weighted aggregation
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Figure A.1: Global Average Temperature Since 1950
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Notes: Evolution of global average temperature. The NOAA and NASA measures are constructed by
adding the climatology to the official anomaly series. The Berkeley Earth measure is constructed by first,
obtaining grid-level temperature levels by adding the grid-level climatology to the grid-level anomaly se-
ries, and second, aggregating the grid-level temperature levels using area weights. We plot the Berkeley
Earth series starting 1956, following which the percentage of monthly grid-level missing observations is
consistently below ≈2%.

scheme. Reassuringly, aggregating the Berkeley Earth gridded temperature data using

area weights to obtain a global temperature measure produces a series that is virtually

perfectly correlated with both the NOAA and NASA global temperature series: we find

that the measures based on all these different data sets align very well, as shown in Figure

A.1.

Country-level temperatures. We use the Berkeley Earth gridded temperature data to

construct population- and area-weighted country-level mean temperatures. In our anal-

yses, we use population-weighted temperature as the baseline, however, using area-

weighted measures produces very similar results. To assess the sensitivity of the results

with respect to the gridded temperature data used, we similarly compute the population-

and area-weighted country-level mean temperatures using the Princeton Global Forcing

Dataset and the University of Delaware Dataset. We find that the results are consistent

across different temperature datasets.

Extreme climatic events. We use the ISIMIP gridded estimates of temperature, wind,

and precipitation at a daily frequency between 1901 and 2019 to construct extreme events
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indicators for each latitude-longitude grid. To define a threshold for extreme events, we

use the percentiles of the distribution of the variables between 1950 and 1980, and define

an extreme event as one where the realization of a variable was above a given percentile

of its distribution. Specifically, we use the percentiles of the worldwide distribution to

construct “absolute” extreme events indicators, and the percentiles of a country’s distri-

bution for “relative” indicators. We use the relative indicators as our baseline, however,

our results are robust to using the absolute indicators.

To aggregate the variables across the grids to construct country-level measures, we use

two methods. First, we construct the daily average of the variable for the country, and

then compute the fraction of days in the year when the variable was above the thresh-

old percentile (i.e., “country-level” extreme events indicator). We define these threshold

percentiles such that the extreme heat, drought, extreme precipitation and extreme wind

indices have a baseline probability of 0.05, 0.25, 0.01 and 0.01, respectively. Alternatively,

we also compute the fraction of days in the year when the variable was above the thresh-

old percentile at the grid-level, and then aggregate this indicator for the country (i.e., “cell-

level” extreme events indicator). Of course, the threshold percentile changes across the

definitions: for the former, we use the distribution of daily country-level averages, and

for the latter, the distribution of daily grid-level observations between 1950 and 1980. As

a robustness exercise, we used alternative thresholds computed based on data from 1900

to 1930, yielding very similar results. Note that similar to the aggregation of gridded tem-

perature datasets, we consider both area- and population-weights in both methods above.

We use the country-level, area-weighted indicators as our baseline. However, the results

are robust to using our alternative measures (cell-level and/or population-weighted).

Descriptive statistics. Our main data set spans the period from 1960 to 2019. We drop

countries for which we have fewer than 20 non-missing observations of temperature and

real GDP per capita. This leaves us with 173 countries. Our results are robust to restricting

the selection of countries further. In Appendix A.12, we replicate our results based on the

original panel datasets used in Dell et al. (2012) and Burke et al. (2015).

In Table A.1, we present some descriptive statistics on the main variables of interest.

In Panel (a), we report statistics on our global time-series variables. In Panel (b), we

show statistics for the country-level variables. Specifically, we report the number of non-

missing observations, the mean, median, standard deviation as well as the minimum and

the maximum observation.
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Table A.1: Descriptive Statistics

Obs Mean SD Median Min Max

Panel (a): Global variables

Global temperature anomaly 60 0.36 0.30 0.34 -0.15 1.03
Global temperature shock 60 0.00 0.12 -0.01 -0.24 0.28
World real GDP per capita growth 59 2.06 1.47 2.13 -1.74 6.36
Oil price change 59 8.55 30.32 1.70 -47.79 167.83
US Treasury yield 60 5.04 3.31 5.00 0.12 14.78

Panel (b): Country-level variables

Local temperature anomaly 10379 0.40 0.57 0.35 -1.89 3.33
Local temperature shock 10379 0.01 0.46 0.00 -2.59 2.89
Real GDP per capita growth 9090 2.07 6.31 2.23 -67.01 94.17
Investment per capita growth 8938 6.58 23.61 4.68 -98.36 499.01
TFP growth 5716 0.33 4.90 0.47 -65.22 83.10
Labor productivity growth 8353 1.75 6.63 1.79 -67.31 142.17
Extreme heat days 10379 0.10 0.08 0.08 0.00 0.87
Drought days 10033 0.29 0.10 0.27 0.05 0.91
Extreme precipitation days 10033 0.01 0.01 0.01 0.00 0.08
Extreme wind days 10033 0.01 0.01 0.01 0.00 0.06

Notes: Descriptive statistics for our global and country-level variables. We report the number of non-
missing observations, the mean, standard deviation, median, and min and max for the main variables used
in our analysis over the period 1960-2019.
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A.2 Statistical Properties of Global Temperature Shocks

In this appendix, we discuss some of the statistical properties of global temperature

shocks in more detail.

Serial correlation. Figure A.2 shows the autocorrelation function of the global temper-

ature shock. The shocks are weakly autocorrelated. This is not too surprising, given that

we construct the shocks as multi-step forecast errors. To account for this serial correla-

tion, we therefore include two lags of the global temperature shock in our local projec-

tions. However, as we show in Appendix A.12, our results are robust with respect to the

number of lags for the temperature shock.

Figure A.2: Autocorrelation of Global Temperature Shock
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Notes: Autocorrelation function of global temperature shocks, together with the 95% confidence bands,
computed based on Bartlett’s formula for MA(q).

Forecastablility. A desirable feature of “shocks” is that they should not be forecastable

by past information (Ramey, 2016). In our context, if global tempreature shocks were fore-

castable by economic variables, this could point to reverse causality or other endogeneity

threats. Thus, we check whether our temperature shocks are forecastable, considering

a wide set of past macroeconomic or financial variables in a series of Granger-causality

tests. To account for the long and variable lags between emissions and warming, we con-

servatively include up to 8 years worth of lags.2 Table A.2 reports the results. We find no

2We would like to ideally include 10 lags (= our impulse horizon) but unfortunately in our baseline
sample we do not have enough degrees of freedom to do so.
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Table A.2: Granger-causality Tests

Variable p-value

Real GDP 0.494
Population 0.801
Brent price 0.756
Commodity price index 0.664
Treasury 1Y 0.830
Overall 0.825

Notes: p-values of a series of Granger causality tests of the global temperature shock series using a selection
of macroeconomic and financial variables. Non-stationary variables are transformed to growth rates. We
allow for up to 8 lags.

evidence that macroeconomic or financial variables have any power in forecasting global

temperature shocks. None of the selected variables Granger cause the series at conven-

tional significance levels. The joint test is also insignificant.

The role of El Niño and other temperature variability. Are our results are driven by

specific sources of temperature variability such as El Niño events? To answer this ques-

tion, we net out variation coming from El Niño by controlling for ENSO indices in our

main specification. The results are shown in Figure A.3.

The responses are similar to our baseline estimates, suggesting that our main results

capture a common effect of global temperature on economic activity that does not depend

heavily on being driven by El Niño or other sources of climate variability. A related con-

cern is that major volcanic eruptions may affect world real GDP through other channels

than temperature, for instance by limiting air travel. Controlling for volcanic eruptions

also yields virtually unchanged results.
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Figure A.3: The Role of El Niño and Other Temperature Variability
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Notes: Impulse responses of real GDP per capita to a global temperature shock estimated based on the
panel local projection approach, controlling for El Niño and volcanic eruptions. Dark and light shaded
areas: 68 and 90% confidence bands for our baseline estimates.

A.3 Accounting for Estimation Uncertainty in Temperature Shocks

Our baseline specifications take the global temperature shock as given and do not take

estimation uncertainty in the shock into account. To assess the potential role of estima-

tion uncertainty in the shock, we alternatively construct the confidence bands using boot-

strapping techniques. We resample the shock and controls using a Wild bootstrap and

then compute bootstrapped series of our outcome variables based on our autoregressive

model. We repeat this procedure a 1,000 times and re-estimate our local projection spec-

ification for each iteration of the bootstrap. Based on the bootstrapped distribution, we

can then compute confidence bands for all our objects of interest.

Figure A.4 compares the confidence bands based on our baseline lag-augmentation

approach with the bootstrapped confidence bands. The coverage is similar, suggesting

that taking estimation uncertainty in the global temperature shock into account turns out

to be inconsequential in the context of our application.
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Figure A.4: The Role of Estimation Uncertainty in Temperature Shocks
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Notes: Impulse responses of real GDP per capita to a global temperature shock, estimated based on the
panel local projection approach. Solid black line: point estimate. Dark and light shaded areas are 68 and
90% confidence bands based on our simple lag-augmentation approach. Red dotted and dashed lines: 68
and 90% confidence bands based on our bootstrap, taking estimation uncertainty in the temperature shock
into account.

A.4 Alternative Estimation Models

Our main empirical specification relies on local projection techniques. In this appendix,

we alternatively estimate the responses based on VAR techniques. Starting point is the

following structural vector moving-average representation

Yt = B(L)Sεt, (A.1)

where Yt is a k × 1 vector of annual time series, εt is a vector of structural shocks driving

the economy with E[εtε
′
t] = I, B(L) ≡ I + B1L + B2L2 + . . . is a matrix lag polynomial,

and S is the structural impact matrix.

Assuming that the vector-moving average process (A.1) is invertible, it admits the

following VAR representation:

A(L)Yt = Sεt = ut, (A.2)
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where ut is a k × 1 vector of reduced-form innovations with variance-covariance matrix

E[utu′
t] = Σu and A(L) ≡ I − A1L − . . . is a matrix lag polynomial. Truncating the VAR

to order p, we can estimate the model using standard techniques and recover an estimate

of B(L).

The main identification problem is then to find the structural impact matrix S. From

the linear relation between the structural shocks and the reduced-form innovations, we

obtain the following covariance restrictions SS′ = Σu. We assume that temperature

shocks can impact on all variables in the VAR contemporaneously, while other shocks

only affect temperature with a lag. This is motivated by the fact that emissions increases

usually translate into temperature with a substantial lag. The identifying restriction can

be implemented via the Cholesky decomposition of Σu, denoted by S̃.

In terms of model specification, Yt includes global temperature and real GDP growth.

To mitigate concerns about non-invertibility, we also include oil price growth and the U.S.

treasury yield. The lag order is set to 4 and we also include our recession dummies as an

exogenous variable.

Figure A.5: VAR Responses
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Notes: Impulse responses of global temperature and real GDP per capita to a global temperature shock,
estimated based on our VAR model (A.2). Solid lines: point estimates. Dark and light shaded areas: 68 and
90% confidence bands.

Figure A.5 shows the results. The estimated impacts turn out to be consistent with our

local projection evidence. As expected, the shape of the impulse response is not exactly

as in Figure 3 because the VAR extrapolates from the first four autocovariances between

GDP and temperature to obtain impacts at higher horizons, while the local projection in

Figure 3 directly estimates these impacts at higher horizons.
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A.5 Searching for Influential Observations

Section 2.2 displays the identifying variation in a scatter plot. The negative relationship

between temperature and GDP turns out to be a robust one and does not appear to be

driven by a particular set of extreme observations.

Nevertheless, there were two potentially influential temperature shocks: a strong neg-

ative temperature shock in 1964 that was followed by a significant economic upswing and

a large positive temperature shock in 1977. This latter observation precedes the second

oil shock and the following Volker disinflation, even though we already control for these

events through our set of recession dummies.

To formally assess the role of influential observations, we perform a jackknife exercise.

Specifically, we censor one shock value at a time to zero, and re-run our local projection.

To account for the differential impact on our controls, we also include a dummy variable

for the year we censor.

Figure A.6: Sensitivity of the Response to Global Temperature Shocks
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Notes: Baseline response of real GDP per capita to a global temperature shock (in black), together with the
responses obtained from the jackknife, censoring one shock value at a time (in gray). Dark and light shaded
areas: 68 and 90% confidence bands for our baseline response.

Figure A.6 shows our baseline response in black, together with the responses from the

jackknife exercise in gray. The estimated impact of temperature on GDP is not driven any

single extreme shock. When censoring certain shocks we can get even bigger impacts,
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while when dropping others the effects can be somewhat attenuated. In all cases, the

peak effect is always larger than 7-8% and well within the confidence bands. Excluding

the 1977 shock value corresponds to one of the more attenuated responses in the jackknife.

However, even in this case we still find a sizeable effect.

A.6 Reverse Causality

In this appendix, we describe how we account for reverse causality. We assume that we

start from detrended, stationary variables. We specify for GDP:

yt =
t

∑
s=−∞

Tsθt−s + εt,

where Ts is the temperature deviation, and εt is a possibly autocorrelated shock. We are

interested in estimating the vector θ. For temperature, we specify:

Tt =
t

∑
s=−∞

ysγt−s + τt,

where τt is a possibly autocorrelated shock, and we know γ. Without loss of generality,

We normalize the variance of Tt and yt to 1. The local projection estimates:

PYT
h ≡ Cov[yt+h − yt−1, Tt|xt−1] ≡ Covt−1[yt+h − yt−1, Tt],

where xt−1 is our vector of controls, and we denote Covt−1[•, •] ≡ Cov[•, •|xt−1]. We

have:

PYT
h = Covt−1[yt+h − yt−1, Tt]

= Covt−1

[
t+h

∑
s=−∞

Tsθt+h−s + εt+h − yt−1, Tt

]

= Covt−1

[
t+h

∑
s=−∞

Tsθt+h−s + εt+h, Tt

]

= Covt−1

[
t+h

∑
s=−∞

Tsθt+h−s, Tt

]
+ Covt−1 [εt+h, Tt]

= Covt−1

[
t−1

∑
s=−∞

Tsθt+h−s, Tt

]
+ Covt−1

[
h

∑
s=0

Tt+sθh−s, Tt

]
+ Covt−1 [εt+h, Tt]
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The third equality holds because we include lagged GDP yt−1 in our vector of controls

xt−1. From the last line, as long as we include sufficiently many lags of temperature and

GDP in our vector of controls to cover the moving average structure, the first term is zero.

We proceed under the assumption that we include sufficiently many lags. Hence,

PYT
h = Covt−1

[
h

∑
s=0

Tt+sθh−s, Tt

]
+ Covt−1 [εt+h, Tt]

=
h

∑
s=0

θh−sCovt−1 [Tt+s, Tt] + Covt−1 [εt+h, Tt]

There are two sources of reverse causality: internal persistence (first term), and residual

shocks to GDP (second term). Of course, residual shocks can also affect the covariance in

the first term, but one can condition this channel out with the deconvolution procedure

that conditions on the realized temperature path after a shock.

We start with the second term:

Covt−1 [εt+h, Tt] = Covt−1

[
εt+h,

t

∑
s=−∞

ysγt−s + τt

]

=
t

∑
s=−∞

γt−sCovt−1 [εt+h, ys] + Covt−1[εt+h, τt]

= γ0Covt−1[εt+h, yt] + Covt−1[εt+h, τt]

= γ0Covt−1[εt+h, yt]

= γ0Covt−1[εt+h, θ0Tt + εt]

= γ0Covt−1[εt, εt+h] + γ0θ0Covt−1[εt+h, Tt]

The third equality obtains because we again assume that control for enough lags of GDP.

The fourth equality obtains because we assume that structural shocks are orthogonal.

The fifth equality follows from substituting the equation for output and noting that we

include enough lags of temperature as controls. Re-arranging, we obtain:

Covt−1 [εt+h, Tt] =
γ0

1 − γ0θ0
Covt−1[εt, εt+h]

We now denote by PTT
s = Covt−1 [Tt+s, Tt] the (observed) autocovariance function of the

temperature process. We also denote by Es = Covt−1[εt, εt+s] the (unobserved) autoco-

63



variance function of the GDP residuals. We have shown that our local projection estimator

is:

PYT
h =

h

∑
s=0

θh−sPTT
s +

γ0

1 − γ0θ0
Eh.

The first term represents the how internal persistence to the temperature process affects

our estimator. We start our discussion by abstracting from the bias in the second term.

If we are only interested in the response to a purely transitory temperature shock—

i.e. the θ’s—then we can directly correct our estimator for this internal persistence using

the observed autocovariance PTT
s . However, if we want to reconstruct the unbiased GDP

response to a temperature shock with the same amount of persistence as in the data, i.e.

θ̃h =
h

∑
s=0

θh−sCovt−1[τt, τt+s],

we need to construct the autocovariance function of the structural temperature shocks

Vs ≡ Covt−1[τt, τt+s]. Since we assumed that we know the γ’s, we can simply residualize

the temperature process using lagged GDP and the known γ’s and obtain the τ’s.

Now we turn to the second term. This term is the classic reverse causality bias. How-

ever, since we assume that we know γ0, we can construct Eh as a function of θ and known

covariances, and then solve for θ. Indeed, we have:

Eh = Covt−1[εt, εt+h]

= Covt−1

[
yt −

t

∑
s=−∞

θt−sTs, yt+h −
t+h

∑
s=−∞

θt+h−sTs

]

= Covt−1

[
yt − θ0Tt, yt+h −

h

∑
s=0

θh−sTt+s

]

= Covt−1[yt, yt+h]− θ0Covt−1[yt+h, Tt]−
h

∑
s=0

θh−sCovt−1[yt, Tt+s] + θ0

h

∑
s=0

θh−sCovt−1[Tt, Tt+s]

= PYY
h − θ0PYT

h −
h

∑
s=0

θh−sPTY
s + θ0

h

∑
s=0

θh−sPTT
s .

The third equality obtains because we controls for enough lags. In the fourth equality we

defined PYY
h = Covt−1[yt, yt+h] the known autocovariance function of output. We recog-
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nized the local projection PYT
h . We defined as PTY

s = Covt−1[yt, Tt+s] the local projection

of temperature on output (the “reverse” of our baseline local projection).

Hence, we obtain the collection of equations (some nonlinear) indexed by h:

PYT
h =

h

∑
s=0

θh−sPTT
s +

γ0

1 − γ0θ0

{
PYY

h − θ0PYT
h −

h

∑
s=0

θh−sPTY
h + θ0

h

∑
s=0

θh−sPTT
s

}

The θ’s are the unknowns. Everything else is known or observable. The only nonlinearity

comes from θ0. Conditional on θ0, these are linear equations. Hence, we examine the

equation for θ0 separately. We obtain:

PYT
0 = θ0 +

γ0

1 − γ0θ0

{
1 − θ0PYT

0 − θ0PTY
0 + θ2

0

}
,

where recall that we normalized V0 = 1 and Y0 = 1. We also note that PYT
0 = PTY

0 by

definition (but not at higher lags). Multiplying by 1 − γ0θ0,

PYT
0 (1 − γ0θ0) = θ0(1 − γ0θ0) + γ0

{
1 − 2θ0PYT

0 + θ2
0

}
.

Re-arranging, we observe that the quadratic terms cancel out. Hence the equation for θ0

is actually also linear. We obtain:

θ0 =
PYT

0 − γ0

1 − γ0PYT
0

.

We have thus constructed an unbiased estimator of θ0.

Then given θh, we construct θh+1 by induction. We have (using some changes of in-

dices):

PYT
h+1 = θh+1 +

h

∑
s=0

θsPTT
h+1−s

+
γ0

1 − γ0θ0

{
PYY

h+1 − θ0PYT
h+1 −

h

∑
s=0

θsPTY
h+1−s − PYT

0 θh+1 + θ0

h

∑
s=0

θsPTT
h+1−s + θ0θh+1

}
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Re-arranging:

(
1 +

γ0

1 − γ0θ0

{
−PYT

0 + θ0

})
θh+1 = PYT

h+1 −
h

∑
s=0

θsPTT
h+1−s

− γ0

1 − γ0θ0

{
PYY

h+1 − θ0PYT
h+1 −

h

∑
s=0

θsPTY
h+1−s + θ0

h

∑
s=0

θsPTT
h+1−s

}
.

Further re-arranging:

1 − γ0PYT
0

1 − γ0θ0
θh+1 =

1
1 − γ0θ0

PYT
h+1 −

h

∑
s=0

θsPTT
h+1−s −

γ0

1 − γ0θ0

{
PYY

h+1 −
h

∑
s=0

θsPTY
h+1−s + θ0

h

∑
s=0

θsPTT
h+1−s

}
.

Therefore:

θh+1 =
1

1 − γ0PYT
0

PYT
h+1 −

1 − γ0θ0

1 − γ0PYT
0

h

∑
s=0

θsPTT
h+1−s

− γ0

1 − γ0PYT
0

{
PYY

h+1 −
h

∑
s=0

θsPTY
h+1−s + θ0

h

∑
s=0

θsPTT
h+1−s

}
.

This correction delivers the θ’s after adjusting for reverse causality. We observe that the

“classic” reverse causality adjustment scales with γ0.

We can then construct θ̃h, the response to a persistent temperature shock τt. We start

from the unbiased θ’s. Then, we construct the autocovariance function of the τ’s, i.e. V .

We have:

Vh = Covt−1[τt+h, τt]

= Covt−1

[
Tt+h −

t+h

∑
s=−∞

ysγt+h−s, Tt −
t

∑
s=−∞

ysγt−s

]

= Covt−1

[
Tt+h −

h

∑
s=0

yt+sγh−s, Tt − ytγ0

]

= PTT
h − γ0PTY

h −
h

∑
s=0

γh−s
(

PYT
s − γ0PYY

s
)
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The third equality follows from including enough controls. Then we construct:

θ̃h =
h

∑
s=0

θh−sVs.

Implementation. In practice, we need a sequence γ. We construct a central case, and

some alternatives for robustness.

The central case uses the following parameters. We use η = 1 for CO2, CH4 and

SO2: emissions move one-for-one with output, which is consistent with a Cobb-Douglas

production function.

Average world CO2 emissions during our 1960-2019 sample are ECO2
= 22.5 Gt/y.3

The temperature response in Celsius to a 100 Gt pulse in Dietz et al. (2021) is well-

approximated by:

100 × ϕCO2
h = aCO2

100 × (e−bCO2×h − e−cCO2×h) + dCO2
100 × (1 − e− f CO2×h)

aCO2
100 = 0.1878, bCO2 = 0.083, cCO2 = 0.2113, dCO2

100 = 0.1708, f CO2 = 0.2113.

Then we define: γCO2
h = η × ECO2 × ϕCO2

h .

We use CH4 emissions of ECH4
= 125 Mt/y.4 The temperature response in Celsius to

a 1 Mt pulse in Azar et al. (2023) is well-approximated by:

ϕCH4
h = aCH4 × (e−bCH4×h − e−cCH4×h) + dCH4 × (1 − e− f CH4×h)

aCH4 = 4.9970, bCH4 = 0.1230, cCH4 = 0.1376, dCH4 = 0.0109, f CH4 = 0.0019.

Then we define: γCH4
h = η × ECH4 × ϕCH4

h .

We use SO2 emissions of ESO2
= 100 Mt/y.5 The temperature response in Celsius to a

1 Mt pulse in Albright et al. (2021) is well-approximated by:

ϕSO2
h = FSO2 × (ASO2

1 e−h/τSO2
1 + ASO2

2 e−h/τSO2
2 + ASO2

3 e−h/τSO2
3 )

FSO2 = −0.0051

ASO2
1 = 0.2537, τSO2

1 = 0.6700, ASO2
2 = 0.0269, τSO2

2 = 12, ASO2
3 = 0.0010, τSO2

3 = 352

3See https://ourworldindata.org/co2-emissions.
4See https://www.iea.org/reports/global-methane-tracker-2023/overview.
5See https://ourworldindata.org/grapher/so-emissions-by-world-region-in-million-tonnes.
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Then we define: γSO2
h = η × ESO2 × ϕSO2

h .

Finally, we define γ = γCO2 +γCH4 +γSO2. Alternative, plausible choices of emissions-

to-GDP elasticities or temperature sensitivity do not affect the reverse causality correction

materially because it is small to begin with.

A.7 Time Fixed Effects and Correlated Temperature Shocks

In this appendix, we shed further light on the role of time fixed effects. Figure A.7(a)

compares the impulse responses of GDP to local temperature shocks with and without

time fixed effects. The responses from the local temperature shock specification with time

fixed effects are strikingly close to the baseline with global controls. The coverage of

the confidence bands is also comparable. Overall, these results suggest that our controls

successfully account for common economic shocks.

To further mitigate concerns that other unobserved global factors may confound our

results, we exploit regional variation in temperature. We construct country-level temper-

ature shocks that also incorporate external temperature. For each country, we compute a

shock that is a weighted average of its own temperature shock and all other temperature

shocks in the world, weighted by country distance with closer countries getting a higher

weight as in equation (5). Specifically, we construct the correlated shock as

Tcorr
i,t = ∑

j
dijTshock

i,t , (A.3)

where dij is proportional to the inverse geodesic distance between the centroids of coun-

tries i and j and sums to one for each country i.6 We thus obtain correlated temperature

shocks that still vary by country, which allows us to control for time fixed effects—which

we cannot do in the specification with global temperature shocks.

Figure A.7(b) displays the results. Real GDP per capita falls substantially after such

correlated temperature shocks, approaching -9% at its peak. Thus, the effects are again

substantially larger than for local temperature shocks, and close those for global temper-

ature shocks. We conclude that global temperature shocks lead to larger economic effects

than local temperature shocks.

6We compute these ourselves using the Python geopandas package. We use the inverse distance as the
weight and include the own country with the same weight as its closest neighbor.
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Figure A.7: The Role of Time Fixed Effects

(a) Global controls vs. time fixed effects
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Notes: Impulse responses of real GDP per capita. Panel (a): responses to a local temperature shock, with
global controls (3) or with time FE (4). Black line: specification with global controls. Red line: specification
with time fixed effects. Panel (b): impulse response to correlated temperature shocks from a specification
controlling for time fixed effects. Solid line: point estimate. Dark and light shaded areas: 68 and 90%
confidence bands.

A.8 Global vs. Local Temperature Shocks

In this appendix, we estimate the impact of global and local temperature jointly in the

same local projection specification. We estimate the following local projection model:

yi,t+h − yi,t−1 = αi,h + θglobal

h Tshock
t + θlocal

h Tshock
i,t + x′tβh + x′i,tγh + εi,t+h, (A.4)

where Tshock
t is our global temperature shock, Tshock

i,t is a local, country-level temperature

shock, and θglobal

h and θlocal
h are the associated impulse responses, respectively.

Figure A.8 displays the results. Panel (a) shows the responses based on our main spec-

ification. The jointly estimated responses are very close to our baseline responses. How-

ever, the difference between the responses turns out to be only borderline significant at

the 90% level. Therefore, we also report results from the specification with our expanded

set of controls (expanded global controls and subregion-specific time trends) in Panel (b).

Reassuringly, the point estimates remain very similar. However, these additional controls

help reduce sampling uncertainty, and the difference is now highly significant even at the

90% level.
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Figure A.8: Local vs. Global Temperature Shocks

(a) Baseline specification
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(b) Specification with expanded set of controls
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Notes: Impulse responses of GDP per capita to global and local temperature shocks together with the
difference between global and local shock impulse responses, estimated based on (A.4). Panel (a): Base-
line specification. Panel (b): Specification with expanded set of controls (expanded global controls and
subregion-specific time trends). Lines: point estimates. Dark and light shaded areas: 68 and 90% confi-
dence bands.

A.9 External Temperature Shocks

As discussed in Section 3.3, we also construct external temperature shocks. For each coun-

try, we define external temperature shocks as the weighted average of the local temper-

ature shocks in all other countries. We consider both trade and distance weights. Trade

weights are based on total trade flows (imports plus exports) in 1960 from TRADHIST.

We then normalize total trade flows such that all weights sum to one for any given coun-

try. Distance weights are based on physical distance (geodesic distance between country
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centroids), which we also normalize to sum to one. Unlike when we defined correlated

temperature shocks in Appendix A.7, we do not include the domestic temperature shock

of country i in the weighted average of country i. We thus maximize comparibility be-

tween trade- and distance-weighted external temperature shocks since they only differ

by the weights.

Figure A.9 shows the impulse responses of world real GDP to the two external tem-

perature shocks, estimated in separate specifications. Temperature shocks to a country’s

trading partners (trade-weighted external temperature shocks) lead to a notable fall in

output, comparable to the impacts of local, idiosyncratic temperature shocks. However,

Figure 10 shows that this effect vanishes when we control for global or distance-weighted

temperature shocks. On the other hand, the effects of distance-weighted external temper-

ature shocks are robust to controlling for trade-weighted external temperature.

Figure A.9: The Impact of External Temperature Shocks
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Notes: Impulse responses of world real GDP per capita to external temperature shocks, estimated based
on (4). Left panel: response to a trade-weighted shock. Right panel: responses to a distance-weighted
shock. Solid lines: point estimates. Dark and light shaded areas: 68 and 90% confidence bands. Sample of
countries differs from main analysis due to availability of trade data at the beginning of the sample.

A.10 Accounting for the Persistence of Temperature Shocks

Global temperature shocks lead to a persistent increase in the level of global temperature.

This increase in global temperature is much more persistent than the shock itself and

persists even 10 years out as shown in Figure 3.
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In this appendix, we show that this internal persistence accounts for a substantial frac-

tion of the slow and large impact of global temperature shocks on GDP. We compute the

responses to a purely transitory global temperature shock, i.e. a shock that raises tem-

perature by 1°C in the current year but has no effect on temperature afterwards. We do

do using the Sims (1986) method, which amounts to construct a sequence of temperature

shocks to exactly offset the internal persistence.

Figure A.10 displays our results. Two observations stand out. First, the peak impact

of a transitory temperature shock is much smaller, at 5%. Second, the effects materialize

more quickly and are less persistent, with a peak response after about 3-4 years. After 8

years, the effect reverts to zero. These findings highlight that a substantial share of the

estimated damages and their sluggishness are driven by the internal persistence of the

temperature response itself that leads to accumulating economic damages.

Figure A.10: The Effects of a Transitory Global Temperature Shock
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Notes: Impulse responses of real GDP per capita to purely transitory global temperature shock, constructed
using the Sims (1986) method based on our panel estimates. Solid lines: point estimates. Dark and light
shaded areas: 68 and 90% confidence bands.

Next, we ask whether differential internal persistence between global and local tem-

perature shocks could account for the gap in GDP impacts. The left panel in Figure A.11

shows the response of local temperature levels to global and local temperature shocks,

respectively. Global and local shocks lead to a comparable increase in local temperature.

The response turns out to be slightly more persistent for the global shock, however, the

difference seems not stark enough to account for the vastly different GDP impacts. We

confirm this intuition formally, estimating the effects of local temperature shocks on real
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Figure A.11: The Effects of Local and Global Temperature Shocks
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Notes: Left panel: impulse response of local temperature to a global and local temperature shock. Right
panel: impulse responses of real GDP per capita to a local temperature shock, estimated in the panel using
(3), against the effects of a global temperature shock. We impose that the local temperature shock has the
same effect on local temperature levels as global temperature shocks using the Sims (1986) method. Solid
lines: point estimates. Dark and light shaded areas: 68 and 90% confidence bands.

GDP, imposing the same persistence of the local temperature response as for global tem-

perature shocks. We do so again using the Sims (1986) approach.

The right panel in Figure A.11 shows that the effects of local temperature shocks are

in this case slightly more pronounced than in our baseline, depicted in Figure 7. Im-

portantly, however, the effects of the global temperature shocks are still by a magnitude

larger than for local temperature shocks because global and local temperature have a sim-

ilar degree of internal persistence. The small difference in persistence cannot account for

the differential impacts of global and local temperatures shocks.

A.11 Impacts of Extreme Events

Figure 8 shows that global temperature shocks strongly correlate with the exposure to ex-

treme weather events: extreme temperature, drought, extreme precipitation, and extreme

wind. Here we project world real GDP on extreme event exposure directly, so that we can

aggregate up the impact of global temperature on GDP through extreme events. We use

the panel local projection specification (3), except that we replace the global temperature

shock on the right-hand-side with extreme event exposure. We denote by ψX
h the impact

of an increase in exposure for extreme event X on country-level GDP at horizon h.

Figure A.12 displays our results. Graphically, we normalize the estimated impact nor-
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Figure A.12: The Impact of Extreme Events on GDP
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Notes: Impulse responses of world real GDP per capita to extreme events, estimated based on (3) with
our expanded set of controls. Extreme weather variables record the share of cell-days in a given year
and country where temperature, precipitation, or wind speed are above/below a threshold. We define
threshold using the daily weather distribution in 1950-1980. Temperature: above 95th percentile. Drought:
below 25th percentile. Extreme precipitation: above 99th percentile. Wind: above 99th percentile. Though
not necessary for our results, we smooth the precipitation and wind measures with a backward-looking
(current and previous two years) moving average to remove their inherent noise. Responses are normalized
to the peak increase in frequency from Figure 8: graphical responses report ψX

h /(maxt θX
t ). Solid lines: point

estimates. Dark and light shaded areas: 68 and 90% confidence bands.

malized by the peak frequency rise in exposure from Figure 8 to ease interpretation: we

report ϕX
h

maxt θX
t

. Extreme weather events lead to a significant and persistent fall in GDP.

The response is particularly pronounced for extreme heat and extreme precipitation and

droughts but also extreme wind has substantial adverse effects, even though somewhat

less precisely estimated.

To construct the aggregate impact of global temperature on GDP through extreme

events, we further need to adjust the estimates ϕX
h for internal persistence. Underlying
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the estimates in Figure A.12, extreme event exposures turn out to have very low internal

persistence. Thus, the estimates in Figure A.12 largely represent the GDP impact of a one-

time increase in extreme events. Nevertheless, we convert the estimates ϕX
h in response

to a realized rise in extreme event frequency to estimates in response to a one-time fully

transitory surge in extreme event frequency using the Sims (1986) method. We denote

those adjusted estimates by ψX
h . In practice, the ϕX

h and ψX
h are close. We then aggregate

these estimates using the definition of Θh in Section 3.3.

A.12 Additional Robustness Checks

In this appendix, we perform a number of additional sensitivity checks on the effect of

global temperature shocks based on our panel local projections. We start by examining

the role of data choices, the construction of the temperature shock, and the number of

lags included.

Figure A.13 collects the results. Panels (a)-(b) assess the sensitivity with respect to

the GDP and temperature data we use. Using real GDP per capita from the PWT or

from the WDI produces very similar results. Similarly, using aggregated global mean

temperature data from the Berkeley Earth dataset or off-the-shelf measures from NASA

or NOAA produces virtually identical results. In Panel (c), we replicate our results with

the datasets from Burke et al. (2015) and Dell et al. (2012). We obtain their datasets from

the respective replication packages, merge our global temperature shock, and compute

the impulse responses to the shock. We obtain similar results with their datasets.

Panel (d) assesses additional ways of constructing of the temperature shocks. Using

simple one-step ahead forecast errors, using the one-sided HP filter or the simple 2-year

difference proposed in Hamilton (2018) produces qualitatively very similar results.

Panels (e)-(f) evaluate sensitivity with respect to the number of lags included for real

GDP and temperature shocks. When varying the lag order of the dependent variable, we

keep the lag order of our temperature shock at the baseline value and vice versa. Our

results turn out to be robust with respect to the lag order. In fact, in the main text, we

show that our results even survive when we control up to 10 lags of real GDP.
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Figure A.13: Sensitivity of the Average Effect of Global Temperature Shocks
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(e) Lag order dependent variable
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Notes: Sensitivity of the effects of global temperature shocks on real GDP per capita to a global temperature
shock, with respect to data choices, the construction of the temperature shock, and the number of lags in-
cluded. Solid line: point estimate. Dark and light shaded areas: 68 and 90% confidence bands, respectively.
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Figure A.14: Sensitivity of the Average Effect of Global Temperature Shocks II
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(c) Excluding Great Recession
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Notes: Sensitivity of the effects of global temperature shocks on real GDP per capita to a global temperature
shock, with respect to the sample period. Solid line: point estimate. Dark and light shaded areas: 68 and
90% confidence bands, respectively.

Figure 5 in the main text shows that our point estimates are similar in a longer sam-

ple (1900-2019, based on a smaller selection of countries), a shorter sample (1985-2019),

and stopping the sample prior to the Great Recession (1960-2007).7 However, are the re-

sponses also statistically significant? Figure A.14 shows the impulse responses on the

three periods that we consider, together with the associated confidence bands. The esti-

7The longer sample includes 18 advanced economies, specifically Australia, Belgium, Canada, Den-
mark, Finland, France, Germany, Ireland, Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden,
Switzerland, UK, and USA. We control for the world wars using a dummy for the years 1914-1918 and
1939-1945. We further control for the Great Depression and the Great Recession using a recession dummy
(1929-1939 and 2007-2009). In the shorter sample, we add the European debt crisis to our recession dummy
(2011-2012). This period was marked by low growth globally and is relatively more important in the shorter
sample, which is why we control for it.
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mated impact is significant in all the alternative sample periods.

Overall, these results further illustrate the robustness of our finding that global tem-

perature shocks lead to a sizeable, persistent and statistically significant fall in economic

output that is by a magnitude larger than the estimates in the literature for local temper-

ature shocks.

A.12.1 Results Based on One-step Forecast Error Temperature Shocks

As our baseline, we measure the temperature shocks as two-step ahead forecast errors,

motivated by the period of the climatic variation we aim to capture. A more common

choice in the literature is to construct temperature shocks as one-step ahead forecast er-

rors, as in Bansal and Ochoa (2011) and Nath et al. (2023). We have already showed that

the GDP response is virtually identical when using the one- or two-step ahead forecast

error as the relevant shock measure. For completeness, we present all our main results

based on the one-step ahead temperature forecast error. The results are shown in Fig-

ures A.15-A.20. Our results turn out to be virtually identical using this alternative shock

measure.
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Figure A.15: Alternative Global and Local Temperature Shocks
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Notes: Panel (a): Global temperature shocks, computed as in Hamilton (2018) with (h = 1, p = 2), over
the post-World War II era. Panel (b): Local temperature shocks for the United States (left panel) and South
Africa (right panel) in red together with the global temperature shocks as the blue dashed line. All shocks
computed based on the Hamilton (2018) approach with (h = 1, p = 2), over our sample from 1960. Local
shocks computed based on population-weighted country-level temperature data.
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Figure A.16: Time-series Results Based on One-Step Ahead Forecast Error
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(d) Scatter plot at h = 5
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(e) Accounting for reverse causality
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(f) Construction of temperature shock
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Notes: Reproduces Figures 3 and 4 for a global temperature shock measured as a one-step ahead forecast
error.
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Figure A.17: Panel Results Based on One-Step Ahead Forecast Error I
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(f) Distance- vs. trade-weighted
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Notes: Reproduces Figures 5, 7 and 10 for global, local and external temperature shocks measured as a
one-step ahead forecast errors.
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Figure A.18: Panel Results Based on One-Step Ahead Forecast Error II
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Notes: Reproduces Figures 8 and 9 for global, local, and external temperature shocks measured as a one-
step ahead forecast errors.
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Figure A.19: Panel Results Based on One-Step Ahead Forecast Error III

-6
0

-4
0

-2
0

0
20

Pe
rc

en
t

0 2 4 6 8 10

Years

Investment

-2
5

-2
0

-1
5

-1
0

-5
0

Pe
rc

en
t

0 2 4 6 8 10

Years

Capital
-2

0
-1

5
-1

0
-5

0
5

Pe
rc

en
t

0 2 4 6 8 10

Years

Total factor productivity

-3
0

-2
0

-1
0

0
10

Pe
rc

en
t

0 2 4 6 8 10

Years

Labor productivity

Notes: Reproduces Figure 11 for a global temperature shock measured as a one-step ahead forecast error.

83



Figure A.20: Panel Results Based on One-Step Ahead Forecast Error IV
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Notes: Reproduces Figure 12 for a global temperature shock measured as a one-step ahead forecast error.

A.13 Regional Impacts

We study how the impact of global temperature varies by average temperature and in-

come. To this end, we bin countries into different groups based on temperature and

income data. Specifically, we bin countries into three temperature and income groups,

based on data from 1957-1959 to ensure that group characteristics are not influenced by

the effects of the global temperature shocks.

Figure A.21 displays our results. Panel (a) shows the effects to a global temperature

shock for cold countries (average temperature below 10°C), temperate climate countries

(average temperature between 10°C and 20°C) and hot countries (average temperature

above 20°C). Hot countries display the strongest adverse effects of temperature shocks.
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Figure A.21: Heterogeneous Effects of Global Temperature Shocks

(a) By average temperature
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(b) By income per capita
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Notes: Impulse responses of real GDP per capita to a global temperature shock for different groups of
countries. We estimate these responses based on (3), with our expanded set of controls, conditioning on the
different groups. In Panel (a), we group countries by their average temperature in 1957-1959. In Panel (b),
we group countries by their per capita income (in PPP terms) in 1957-1959. Solid line: point estimate. Dark
and light shaded areas: 90% confidence bands.

This result is qualitatively consistent with previous evidence on local temperature shocks

(Dell et al., 2012; Burke et al., 2015; Nath, 2022). Quantitatively, global temperature shocks

have larger effects across all countries: they are more uniformly detrimental than local

temperature shocks. Temperate countries also display a response that is economically

large. Only colder countries display a somewhat smaller effect that is also not statistically

significant.

Figure A.21(b) shows the responses by income per capita. We consider effects on

poorer countries (real GDP per capita below 3,000 USD), middle income countries (real

GDP per capita between 3,000 and 8,000 USD), and high income countries (real GDP per

capita above 8,000 USD). Relative to the evidence based on local temperature, we find

again more unformly detrimental impacts: real GDP per capita falls across all income

groups. Poor countries experience the most significant and persistent decline. Middle-

income countries also see a considerable decrease in output. Only high-income countries

are relatively more insulated, with a somewhat smaller and less enduring impact.
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B Model

Our solution to the neoclassical growth model is entirely standard and we present it for

completeness.

B.1 Equilibrium

The resource constraint is:

K̇t = ZtKα
t − Ct − ∆tKt.

Firm behavior and market clearing implies rt + ∆t = αZtKα−1
t and wt = (1 − α)Ka

t . The

Euler equation is:

Ċt = γ−1(αZtKα−1
t − ∆t − ρ)Ct.

In steady-state,

r = αZKα−1 = ρ + ∆ =⇒ K =

(
αZ

ρ + ∆

) 1
1−α

C = ZKα − ∆K.

B.2 Linearization

We denote steady-state variables without time subscripts. We denote deviations from

steady-state with hats. We linearize the resource constraint:

dK̂t

dt
= (αZKα−1 − ∆)K̂t − Ĉt + ẐtKα − ∆̂tK

= ρK̂t − Ĉt + Yẑt − K∆̂t.

where we denoted ẑt = Ẑt/Z. Next, we linearize the Euler equation:

dĈt

dt
=

C
γ

(
−α(1 − α)ZKα−2K̂t + αKα−1Ẑt − ∆̂t

)
=

C
γ

(
− (1 − α)r

K
K̂t + rẑt − ∆̂t

)
.
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We define:

Xt =

(
K̂t

Ĉt

)
, st =

(
ẑt

∆̂t

)
.

We can summarize the linearized resource constraint and Euler equation as:

Ẋt = AXt + St,

where:

A =

(
ρ −1

− (1−α)rC
γK 0

)
, St = Bst , B =

(
Y −K
rC
γ −C

γ

)
.

We have an initial condition K̂0, and a terminal condition Ĉt → 0. We now apply standard

Blanchard-Kahn arguments. Let A = M−1DM, with D diagonal. For determinacy we

require that parameters are such that D has a positive eigenvalue in the top left position,

and a negative eigenvalue in the bottom right position. We denote by Xt = MXt, so that

Ẋt = DXt + MSt.

We then solve explicitly for Xt:

Xt = etD
[
X0 +

∫ t

0
e−sD(MSt)ds

]
.

Hence, long-run stability requires the top entry of the bracket to be zero as time grows.

That is:

0 = X0,1 +
∫ ∞

0
e−sD1(MSs)1ds.

Therefore,

M1•X0 = −
∫ ∞

0
e−sD1 M1•Ssds.
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We can thus solve for initial consumption:

Ĉ0 = − 1
M12

[
M11K̂0 +

∫ ∞

0
e−sD1 M1•Ssds

]
.

We denote εK = −M11
M12

, εS = − 1
M12

M1• and εS,s = e−sD1εS. We can write more compactly:

Ĉ0 = εKK̂0 +
∫ ∞

0
εS,sSsds.

Of course, this condition must hold at all times:

Ĉt = εKK̂t +
∫ ∞

0
εS,sSt+sds.

B.3 Model Inversion: Proof of Proposition 1

We substitute the solution for linearized consumption into the law of motion of capital:

dK̂t

dt
= (L11 − εK)K̂t + S1t −

∫ ∞

0
εS,sSt+sds.

Denote κ = −(L11 − εK) and St = S1t −
∫ ∞

0 εS,sSt+sds so that:

dK̂t

dt
= −κK̂t + St.

Assuming we start in steady-state, we obtain:

K̂t = e−κt
∫ t

0
eκsSsds.

In percentage deviations:

K̂t

K
=

e−κt

K

∫ t

0
eκsSsds.

We can directly back out productivity shocks from the production function given move-

ments in output and capital:

Ŷt

Y
= ẑt + α

K̂t

K
.
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We then use the capital accumulation equation to recover capital depreciation shocks. To

do so, we express:

∫ t

0
eκsSsds =

∫ t

0
eκs
(

S1s −
∫ ∞

0
εS,rSs+rdr

)
ds

=
∫ t

0
eκsS1sds −

∫∫ ∞

0
1[s ≤ t]εS,rSs+reκsdsdr

=
∫ t

0
eκsS1sds −

∫∫ ∞

0
1[s ≤ t]εSSs+reκs−D1rdsdr.

Changing variables to τ = s + r over r, we obtain

∫ t

0
eκsSsds =

∫ t

0
eκsS1sds − εS

∫∫ ∞

0
1[s ≤ t, s ≤ τ]Sτeκs−D1(τ−s)dsdτ

=
∫ t

0
eκsS1sds − εS

∫ ∞

τ=0
e−D1τSτ

∫ min{t,τ}

s=0
e(D1+κ)sdsdτ

≡
∫ t

0
eκsS1sds − εS

∫ ∞

τ=0
Jt,τSτdτ,

where we defined:

Jt,τ = e−D1τ
∫ min{t,τ}

s=0
e(D1+κ)sds = e−D1τ e(D1+κ)min{t,τ} − 1

D1 + κ
.

Having estimated the productivity shocks, we can express:

St = St + ∆̂tS∆ St ≡ ẑt

(
Y
rC
γ

)
S∆ ≡

(
−K

−C
γ

)
.

Then, we write

∫ t

0
eκsSsds =

∫ t

0
eκsS1sds − εS

∫ ∞

τ=0
Jt,τSτdτ ++S∆,1

∫ t

0
eκs∆̂sds −

(
εSS∆

) ∫ ∞

0
Jt,s∆̂sds.

Hence, we have obtained that:

K̂t

K
= Kt(ẑ) + Jt,•∆̂•,
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where

Kt(ẑ) =
e−κt

K

[∫ t

0
eκsS1sds − εS

∫ ∞

0
Jt,sSsds

]
Jt,s =

e−κt

K
[
S∆,11[s ≤ t]eκsds −

(
εSS∆

)
Jt,sds

]
.

These equations conclude the proof of Proposition 1.

B.4 Estimation

Figure B.1 displays the productivity and capital depreciation effects of local temperature

shocks, discussed in the main text.

Figure B.1: Productivity and Capital Depreciation after Local Temperature Shocks

(a) Temperature (b) Output and capital (c) Damage Functions

Notes: Estimation results from matching the model impulse responses to the empirical responses to local
temperature shocks. Column (a): underlying temperature path. Column (b): output and capital responses
to this internally persistent temperature path. Dashed lines: data. Solid lines: model fit. Column (c):
implied productivity and capital depreciation shocks, together with 68% confidence intervals (shaded area)
based on 1,000 bootstrap draws from the empirical output, capital and temperature IRFs.
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An alternative estimation strategy is to construct the impulse response function to a

one-time transitory temperature shock with linear combinations of the impulse response

function to the observed, persistent temperature shock before matching the model to the

data. The interpretation of this approach is that households are surprised by elevated

temperature each period after a global temperature shock.

We follow Sims (1986) to obtain the impulse response to one-time transitory tempera-

ture shocks. It is equivalent to using a recursive approach. Indeed, denote by ỹt the un-

known impulse response function of output to a transitory temperature shock. In discrete

data and under linearity: ŷt = ∑t
s=0 T̂t−sỹs. We then obtain ỹt =

(
ŷt − ∑t−1

s=0 T̂t−sỹs

) /
T̂0

recursively.

With the deconvoluted impulse response functions of output and capital to a one-time

unit transitory temperature shock at hand, we use Proposition 1 and obtain the corre-

sponding shocks ẑt, ∆̂t. We then identify ζs = ẑs and δs = ∆̂s/∆0.

Figure B.2 shows our estimation results. The panels in column (a) display the output

(i) and capital (ii) responses to internally persistent temperature shocks, in the model (in

which households are surprised by elevated temperature) and in the data. By construc-

tion, these responses account for the persistent increase in global temperature levels in

response to global temperature shocks as estimated in the data (see Figure 8). The dashed

lines are the impulse responses as estimated in Section 3. The solid lines show the cor-

responding responses in the estimated model. Our model closely tracks the empirical

responses, even under the alternative treatment of expectations.

The dashed lines in column (b) show the deconvoluted responses of output and capital

that we use for estimation under this alternative treatment of expectations. These corre-

spond to a one-time transitory global temperature shock of 1°C. As expected, the output

and capital responses are smaller, given the considerable degree of internal persistence

of the estimated global temperature shock. However, they remain sizeable and peak at

around -5%, respectively. The solid lines show again the model fit under our constrained

functional form.

Finally, the panels in column (c) compare the estimated structural damage functions,

ζs and δs under our baseline treatment of expectations in the main text (solid line) and un-

der the alternative assumption that households are surprised every period (dotted line).

Panel (c)(i) confirms our argument that estimated productivity shocks are independent

from our treatment of expectations—or, equivalently, whether we deconvolute the data
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Figure B.2: Productivity and Capital Depreciation after Global Temperature Shocks

(a) Persistent T̂t (b) Transitory T̂t (c) Damage Functions

Notes: Estimation results from matching the model impulse responses to the empirical responses to global
temperature shocks. The four left panels show the output and capital responses in the data and the model.
Column (a) shows the responses to persistent temperature shocks. Column (b) shows the responses to
transitory temperature shocks used in the estimation. Column (c) plots the implied productivity and capital
depreciation shocks, together with 68% confidence intervals (shaded area) for the transitory case based on
1,000 bootstrap draws from the empirical output, capital and temperature IRFs.

before estimation or not. We obtain the same structural damage functions for productivity

in both cases. Panel (c)(ii) indicates that expectations affect the estimation of the capital

depreciation shocks in practice. We infer smaller capital depreciation shocks when we as-

sume that households are surprised: in that case, households do not foresee future capital

depreciation shocks that increase the marginal product of capital, and hence invest less

than under rational expectations. The model then requires smaller capital depreciation

shocks to rationalize the same decline in capital in the data.

Figure B.3 displays the productivity and capital depreciation effects of local temper-

ature shocks under the baseline assumption of rational expectations. The productivity

effect of local temperature shocks is five times smaller than under global temperature

shocks. The impact response of capital depreciation is somewhat larger but vanishes im-

mediately, so that the cumulated impact is substantially lower than under global shocks.
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Figure B.3: Productivity and Capital Depreciation after Local Temperature Shocks

(a) Persistent T̂t (b) Transitory T̂t (c) Damage Functions

Notes: Estimation results from matching the model impulse responses to the empirical responses to local
temperature shocks. The four left panels show the output and capital responses in the data and the model.
Column (a) shows the responses to persistent temperature shocks. Column (b) shows the responses to
transitory temperature shocks used in the estimation. Column (c) plots the implied productivity and capital
depreciation shocks, together with 68% confidence intervals (shaded area) for the transitory case based on
1,000 bootstrap draws from the output, capital and temperature IRFs.

We conclude that global temperature shocks have much larger effects on economic fun-

damentals.
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