Bilateral Trade with Costly Information Acquisition

Daniil Larionov¹ Takuro Yamashita²

¹University of Münster

²Osaka School of International Public Policy, Osaka University

August 25, 2024

How to design mechanisms if participants can acquire information?

• Which objectives can be implemented?

How to design mechanisms if participants can acquire information?

• Which objectives can be implemented?

Bilateral trade problem with information acquisition.

- Principal proposes a trading mechanism,
- Buyer and Seller privately acquire payoff-relevant information,
- Information acquisition is costly and flexible,
- Information acquisition can be arbitrarily correlated across players.

How to design mechanisms if participants can acquire information?

• Which objectives can be implemented?

Bilateral trade problem with information acquisition.

- Principal proposes a trading mechanism,
- Buyer and Seller privately acquire payoff-relevant information,
- Information acquisition is costly and flexible,
- Information acquisition can be arbitrarily correlated across players.

What do we do?

- Provide implementability conditions,
- Characterize info structures consistent with allocational efficiency.
 - Application: subsidy minimization for efficient trade.

Correlated information presents a challenge to mechanism design.

Correlated information presents a challenge to mechanism design.

 Myerson and Satterthwaite (1983): independent information ⇒ implementing allocational efficiency requires subsidies.

Correlated information presents a challenge to mechanism design.

- Myerson and Satterthwaite (1983): independent information ⇒ implementing allocational efficiency requires subsidies.
- Crémer and McLean (1988): correlated information ⇒ can implement allocational efficiency and extract full surplus!

Correlated information presents a challenge to mechanism design.

- Myerson and Satterthwaite (1983): independent information ⇒ implementing allocational efficiency requires subsidies.
- Crémer and McLean (1988): correlated information ⇒ can implement allocational efficiency and extract full surplus!

Endogenous information acquisition can help.

- Bikhchandani (2010): FSE \Rightarrow incentives to acquire info about others.
- Bikhchandani and Obara (2017): "inflexible" info \Rightarrow FSE (not always).
 - "inflexible" = finitely many conditionally independent signals.

Correlated information presents a challenge to mechanism design.

- Myerson and Satterthwaite (1983): independent information ⇒ implementing allocational efficiency requires subsidies.
- Crémer and McLean (1988): correlated information ⇒ can implement allocational efficiency and extract full surplus!

Endogenous information acquisition can help.

- Bikhchandani (2010): FSE \Rightarrow incentives to acquire info about others.
- Bikhchandani and Obara (2017): "inflexible" info \Rightarrow FSE (not always).
 - "inflexible" = finitely many conditionally independent signals.

Flexible endogenous information acquisition addresses the challenge.

- Also interesting in its own right.
- Growing literature on flexible info in fixed games.

Preview of results

Tractable characterization of implementabilty.

• Finite dimensional system of equations and inequalities.

Information structures consistent with allocational efficiency.

• Perfectly correlated signals \Rightarrow allocational efficiency.

Preview of results

Tractable characterization of implementabilty.

• Finite dimensional system of equations and inequalities.

Information structures consistent with allocational efficiency.

- Perfectly correlated signals \Rightarrow allocational efficiency.
- Allocational efficiency \Rightarrow (essentially) perfectly correlated signals.

Preview of results

Tractable characterization of implementabilty.

• Finite dimensional system of equations and inequalities.

Information structures consistent with allocational efficiency.

- Perfectly correlated signals \Rightarrow allocational efficiency.
- Allocational efficiency \Rightarrow (essentially) perfectly correlated signals.

Application: subsidy minimization for efficient trade.

- Perfect correlation forces the designer to give up surplus.
 - Compensate for the cost of information acquisition \Rightarrow no gross FSE.
 - Prevent further information acquisition \Rightarrow no *net* FSE.

Principal and two players: Buyer and Seller.

Principal and two players: Buyer and Seller.

Buyer and Seller can trade an indivisible good with quality $v \in V$.

• *V* is finite (Today: *V* is binary, i.e. $V = \{\underline{v}, \overline{v}\}$),

Principal and two players: Buyer and Seller.

Buyer and Seller can trade an indivisible good with quality $v \in V$.

- V is finite (Today: V is binary, i.e. $V = \{\underline{v}, \overline{v}\}$),
- Buyer's valuation is u^b(v), Seller's valuation is u^s(v)
 ⇒ Interdependent values (nests private and pure common values).

Principal and two players: Buyer and Seller.

Buyer and Seller can trade an indivisible good with quality $v \in V$.

- V is finite (Today: V is binary, i.e. $V = \{\underline{v}, \overline{v}\}$),
- Buyer's valuation is u^b(v), Seller's valuation is u^s(v)
 ⇒ Interdependent values (nests private and pure common values).

Principal collects revenue from/subsidizes trade.

Model: information

The true quality $v \in V$ is unknown to anyone at the beginning.

We need a model where players jointly determine info structrure:

 \Rightarrow player's actions = random variables.

Commonly known to everyone at the beginning:

- Probability space $(X, \mathcal{F}, \mathbb{P})$, where $X = [0, 1] \ni x$ and \mathbb{P} is uniform.
- A random variable $\mathbf{V}: X \to V$, induces a common prior μ_0 on V.

Commonly known to everyone at the beginning:

- Probability space $(X, \mathcal{F}, \mathbb{P})$, where $X = [0, 1] \ni x$ and \mathbb{P} is uniform.
- A random variable $\mathbf{V}: X \to V$, induces a common prior μ_0 on V.

Players acquire info about $v \in V$ by choosing other random var's.

- Players have access to a countably infinite set of signal realizations.
- A signal of player $p \in \{b, s\}$ is a pair $\sigma^p = (S^p, \mathbf{S}^p)$, where
 - S^p is a finite non-empty subset of \mathbb{N} , $\mathbf{S}^p : X \to S^p$ is a random variable.

Commonly known to everyone at the beginning:

- Probability space $(X, \mathcal{F}, \mathbb{P})$, where $X = [0, 1] \ni x$ and \mathbb{P} is uniform.
- A random variable $\mathbf{V}: X \to V$, induces a common prior μ_0 on V.

Players acquire info about $v \in V$ by choosing other random var's.

- Players have access to a countably infinite set of signal realizations.
- A signal of player $p \in \{b, s\}$ is a pair $\sigma^p = (S^p, \mathbf{S}^p)$, where
 - S^p is a finite non-empty subset of \mathbb{N} , $\mathbf{S}^p : X \to S^p$ is a random variable.

 $(\mathbf{V}, \sigma^b, \sigma^s)$ induces a joint distribution α over $\mathbf{V} \times \mathbf{S}^b \times \mathbf{S}^s$.

• Any Bayes-plausible (i.e. $marg_V \alpha = \mu_0$) α can be induced.

Commonly known to everyone at the beginning:

- Probability space $(X, \mathcal{F}, \mathbb{P})$, where $X = [0, 1] \ni x$ and \mathbb{P} is uniform.
- A random variable $\mathbf{V}: X \to V$, induces a common prior μ_0 on V.

Players acquire info about $v \in V$ by choosing other random var's.

- Players have access to a countably infinite set of signal realizations.
- A signal of player $p \in \{b, s\}$ is a pair $\sigma^p = (S^p, \mathbf{S}^p)$, where
 - S^p is a finite non-empty subset of \mathbb{N} , $\mathbf{S}^p : X \to S^p$ is a random variable.

(V, σ^b, σ^s) induces a joint distribution α over V × S^b × S^s.
 Any Bayes-plausible (i.e. marg_Vα = μ₀) α can be induced.

Signals are costly; $C(\sigma^p)$ is posterior separable, ...

• **Today:** $C(\sigma^p)$ is proportional to reduction in entropy.

Model: timing

- Nature draws x
 X uniformly, but nobody observes it.
- Principal designs a trading mechanism (M, q, t).
 - $M = M^b \times M^s$; M^p is the message space of player p.
 - $q = (q^b, q^s);$ $q^p : M \to [0, 1]$ is the allocation function of player p. $t = (t^b, t^s);$ $t^p : M \to \mathbb{R}$ is the payment function of player p.
- Sector player p privately chooses $\sigma^p = (S^p, \mathbf{S}^p)$.
- **6** Each player p privately observes $s^p = \mathbf{S}^p(x)$ and sends $m^p \in M^p$.
- Solutions and payments are determined according to (q, t); Quality v = V(x) is realized.

Roadmap

- Implementability
- 3 Information structures consistent with efficient trade
 - 4 Application: subsidy minimization for efficient trade

Concluding remarks

Roadmap

- Implementability
- 3 Information structures consistent with efficient trade
- 4 Application: subsidy minimization for efficient trade
- Concluding remarks

Revelation principle

Unlike in standard mechanism design, type space is endogenous.

- Players choose signals in response to principal's mechanism.
- Players' signal realizations become their "types".

Revelation principle

Unlike in standard mechanism design, type space is endogenous.

- Players choose signals in response to principal's mechanism.
- Players' signal realizations become their "types".

As in standard mechanism design, principal selects equilibrium.

 Principal selects equilibrium ⇒ correctly anticipates players' choice of signals ⇒ can ask about their signal realizations directly.

Revelation principle

Unlike in standard mechanism design, type space is endogenous.

- Players choose signals in response to principal's mechanism.
- Players' signal realizations become their "types".

As in standard mechanism design, principal selects equilibrium.

 Principal selects equilibrium ⇒ correctly anticipates players' choice of signals ⇒ can ask about their signal realizations directly.

Revelation principle: it is w.l.o.g. to consider direct mechanisms.

• Players could report one of their signal realizations or abstain:

$$M^b = S^b \cup \{m^b_\emptyset\}, \qquad M^s = S^s \cup \{m^s_\emptyset\},$$

where S^{b} and S^{s} are endogenously determined.

Roadmap

2 Implementability

3 Information structures consistent with efficient trade

4 Application: subsidy minimization for efficient trade

Concluding remarks

Implementability lemma

Lemma (Implementability for the buyer)

 (α, q, t) is implementable for the buyer iff there are multipliers $\lambda_j^b(v)$ for all $s_j^s \in S^s$ and $\phi_{ij}^b(v)$ for all $(s_i^b, s_j^s) \in S^b \times S^s$ and all $v \in V$:

$$\begin{array}{ll} (\mathsf{S}\mathsf{T}^b) & \underbrace{q^b_{ij}u^b(v) - t^b_{ij}}_{\frac{\partial U^b}{\partial \alpha_{ij}(v)}} - \underbrace{\log\left(\mu^b_i(v)\right)}_{\frac{\partial C^b}{\partial \alpha_{ij}(v)}} - \lambda^b_j(v) + \phi^b_{ij}(v) = 0, \\ (\mathsf{D}\mathsf{F}^b) & \phi^b_{ij}(v) \ge 0, \\ (\mathsf{C}\mathsf{S}^b) & \alpha_{ij}(v)\phi^b_{ij}(v) = 0, \\ (\mathsf{N}\mathsf{A}^b) & \sum_{v \in V} \exp\left(-\min_j\{\lambda^b_j(v)\}\right) \le 1. \end{array}$$

• Analogous conditions apply to the seller. Seller's implementability

Consider a candidate (α, q, t) with α induced by some (σ^b, σ^s) .

- Does Buyer have a profitable deviation $\tilde{\sigma}^{b}$?
- l + 1 actions under $\sigma^b \Rightarrow \tilde{\sigma}^b$ with $\leq l + 1$ realizations are w.l.o.g.
- $(\tilde{\sigma}^{b}, \sigma^{s})$ will induce an alternative information structure $\tilde{\alpha}$.
- Can rewrite the best deviation problem in terms of $\tilde{\alpha}$:

$$\mathcal{BD}^{b}(\alpha, q, t) = \operatorname{argmax}_{\tilde{\alpha}, \tilde{S}^{b}} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{v \in V} \tilde{\alpha}_{ij}(v) (q_{ij}^{b} u^{b}(v) - t_{ij}^{b}) - c^{b}(\tilde{\alpha}),$$

$$(1) \quad \tilde{S}^{b} = S^{b} \cup \{s_{\emptyset}^{b}\}, \quad \tilde{\alpha} \in \Delta(\tilde{S}^{b} \times S^{s} \times V);$$

$$(2) \quad \operatorname{marg}_{S^{s} \times V} \tilde{\alpha} = \operatorname{marg}_{S^{s} \times V} \alpha.$$

Consider a candidate (α, q, t) with α induced by some (σ^b, σ^s) .

- Does Buyer have a profitable deviation $\tilde{\sigma}^b$?
- l + 1 actions under $\sigma^b \Rightarrow \tilde{\sigma}^b$ with $\leq l + 1$ realizations are w.l.o.g.
- $(\tilde{\sigma}^{b}, \sigma^{s})$ will induce an alternative information structure $\tilde{\alpha}$.
- Can rewrite the best deviation problem in terms of $\tilde{\alpha} :$

$$\mathcal{BD}^{b}(\alpha, q, t) = \operatorname{argmax}_{\tilde{\alpha}, \tilde{S}^{b}} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{v \in V} \tilde{\alpha}_{ij}(v) (q_{ij}^{b} u^{b}(v) - t_{ij}^{b}) - c^{b}(\tilde{\alpha}),$$

$$(1) \quad \tilde{S}^{b} = S^{b} \cup \{s_{\emptyset}^{b}\}, \quad \tilde{\alpha} \in \Delta(\tilde{S}^{b} \times S^{s} \times V);$$

$$(2) \quad \operatorname{marg}_{S^{s} \times V} \tilde{\alpha} = \operatorname{marg}_{S^{s} \times V} \alpha.$$

Implementability condition for the buyer: $(\alpha, S^b) \in \mathcal{BD}^b(\alpha, q, t)$.

Solution to Buyer's problem

We split Buyer's deviations into two classes:

- Class 1: induce different $\tilde{\alpha}$'s over the same signal realizations S^{b} .
- Class 2: augment S^b with s^b_{\emptyset} with positive probability.

Solution to Buyer's problem

We split Buyer's deviations into two classes:

- Class 1: induce different $\tilde{\alpha}$'s over the same signal realizations S^{b} .
- Class 2: augment S^b with s^b_{\emptyset} with positive probability.

Our approach:

O Solve **Class 1**-problem, characterize solution in terms of λ , ϕ .

- Convex problem \Rightarrow KKT conditions are necessary and sufficient.
- Show the following:

Lemma

If α solves Class 1-problem, then (α, S^b) solves Class 2-problem iff

$$(\mathsf{NA}^b) \quad \sum_{\mathbf{v}\in V} \exp\big(-\min_j \{\lambda_j^b(\mathbf{v})\}\big) \leq 1.$$

Class 2-lemma

Lemma

If α solves Class 1-problem, then (α, S^b) solves Class 2-problem iff

$$(\mathsf{NA}^b) \quad \sum_{v \in V} \exp\left(-\min_j \{\lambda_j^b(v)\}\right) \leq 1.$$

Proof sketch: illustrate the proof using a $2 \times 2 \times 2$ example.

Class 2-lemma

Lemma

If α solves Class 1-problem, then (α, S^b) solves Class 2-problem iff

$$(\mathsf{NA}^b) \quad \sum_{v \in V} \exp\left(-\min_j \{\lambda_j^b(v)\}\right) \leq 1.$$

Proof sketch: illustrate the proof using a $2 \times 2 \times 2$ example.

 $G_{\alpha}(\epsilon\beta)$ is the gain from deviation in direction $\epsilon\beta$ from α . $MG_{\alpha}(\beta) \equiv \lim_{\epsilon \to 0} \frac{1}{\epsilon} G_{\alpha}(\epsilon\beta)$ is the corresponding marginal gain.

Proof of Class 2-lemma

We prove the contrapositive statement:

- Suppose there is a deviation with a positive gain G_α(β) > 0.
- Convexity of cost function $\Rightarrow [G_{\alpha}(\beta) > 0 \Rightarrow MG_{\alpha}(\beta) > 0].$
- $MG_{\alpha}(\beta)$ can be computed in closed form:

$$MG_{\alpha}(\beta) = -\sum_{i,j,v} \underbrace{\beta_{ij}(v)}_{ij} \times \left[\underbrace{q_{ij}^{b}u^{b}(v) - t_{ij}^{b} - \log\left(\mu_{i}^{b}(v)\right)}_{=\lambda_{j}^{b}(v) \text{ as long as } \alpha_{ij}(v) > 0, \text{ by KKT}}\right] - MCost(\beta)$$
$$= -\sum_{i,j,v} \beta_{ij}(v)\lambda_{j}^{b}(v) - MCost(\beta).$$

• Let $\beta^* = \operatorname{argmax}_{\beta} MG_{\alpha}(\beta; \lambda^b)$, then $MG_{\alpha}(\beta^*; \lambda^b) > 0 \Rightarrow \neg(NA^b)$.

Roadmap

2 Implementability

3 Information structures consistent with efficient trade

Application: subsidy minimization for efficient trade

Concluding remarks

Information structures consistent with efficient trade

 $V = \{\underline{v}, \overline{v}\}$ and gains from trade at every quality level: $u^{b}(v) > u^{s}(v)$.

Information structures consistent with efficient trade

 $V = \{\underline{v}, \overline{v}\}$ and gains from trade at every quality level: $u^b(v) > u^s(v)$. Order the posteriors wlog: $\overline{\mu}_1^p \ge \overline{\mu}_2^p \ge \dots$ for both $p \in \{b, s\}$.

Information structures consistent with efficient trade

 $V = \{\underline{v}, \overline{v}\}$ and gains from trade at every quality level: $u^b(v) > u^s(v)$. Order the posteriors wlog: $\overline{\mu}_1^p \ge \overline{\mu}_2^p \ge \dots$ for both $p \in \{b, s\}$.

Proposition (Efficiency \Rightarrow Essentially perfect correlation)

If α is consistent with efficient trade, then α has the following form:

State v	s_1^s		s_k^s		$s_{l-\ell}^{s}$		s¦
s_1^b	α_{11}		α_{1k}		0		0
÷	÷	·	÷	·	÷	·	:
s_k^b	α_{k1}		$\alpha_{\textit{kk}}$		0		0
:	÷	·	÷	·	-	·	:
$s_{I-\ell}^b$	0		0		$\alpha_{I-\ell,I-\ell}$		$\alpha_{I-\ell,I}$
÷	÷	۰.	÷	·	:	·	:
s_l^b	0		0		$\alpha_{I,I-\ell}$		α_{II}

and the posteriors within each block are equal to each other.

Larionov and Yamashita (2024)

Bilateral Trade w/ Costly Info Acquisition

$\mathsf{Efficiency} \Rightarrow \mathsf{Essentially} \text{ perfect correlation}$

Proof sketch ($2 \times 2 \times 2$, distinct posteriors)

Consider the following special case:

State <u>v</u>	<i>s</i> ^s ₁	<i>s</i> ₂ ^s	State \overline{v}	s_1^s	s_2^s
s_1^b	$\underline{\alpha}_{11}$	$\underline{\alpha}_{12}$	s_1^b	$\overline{\alpha}_{11}$	$\overline{\alpha}_{12}$
s_2^b	$\underline{\alpha}_{21}$	$\underline{\alpha}_{22}$	s_2^b	$\overline{\alpha}_{21}$	$\overline{\alpha}_{22}$

$\mathsf{Efficiency} \Rightarrow \mathsf{Essentially} \text{ perfect correlation}$

Proof sketch ($2 \times 2 \times 2$, distinct posteriors)

Consider the following special case:

State <u>v</u>	s_1^s	<i>s</i> ₂ ^s	State \overline{v}	s_1^s	s_2^s
s_1^b	$\underline{\alpha}_{11}$	$\underline{\alpha}_{12}$	s_1^b	$\overline{\alpha}_{11}$	$\overline{\alpha}_{12}$
s_2^b	$\underline{\alpha}_{21}$	$\underline{\alpha}_{22}$	s_2^b	$\overline{\alpha}_{21}$	$\overline{\alpha}_{22}$

Our goal is to show perfect correlation:

Efficiency \Rightarrow Essentially perfect correlation

$\mathsf{Efficiency} \Rightarrow \mathsf{Essentially} \text{ perfect correlation}$

$$(\mathsf{ST}_{11}^b) \quad \underline{u}^b - t_{11}^b - \log\left(\underline{\mu}_1^b\right) - \underline{\lambda}_1^b + \underline{\phi}_{11}^b = 0,$$
$$\overline{u}^b - t_{11}^b - \log\left(\overline{\mu}_1^b\right) - \overline{\lambda}_1^b + \overline{\phi}_{11}^b = 0;$$
$$\overline{\lambda}_1^b - \underline{\lambda}_1^b - (\overline{u}^b - \underline{u}^b) = \overline{\phi}_{11}^b - \underline{\phi}_{11}^b - \log\left[\frac{\overline{\mu}_1^b}{\mu_1^b}\right]$$

$\mathsf{Efficiency} \Rightarrow \mathsf{Essentially} \text{ perfect correlation}$

$$(\mathsf{ST}_{11}^b) \quad \underline{\underline{u}}^b - \underline{t}_{11}^b - \log\left(\underline{\underline{\mu}}_{1}^b\right) - \underline{\lambda}_{1}^b + \underline{\underline{\phi}}_{11}^b = 0,$$
$$\overline{\underline{u}}^b - \underline{t}_{11}^b - \log\left(\overline{\underline{\mu}}_{1}^b\right) - \overline{\lambda}_{1}^b + \overline{\underline{\phi}}_{11}^b = 0;$$
$$\overline{\lambda}_{1}^b - \underline{\underline{\lambda}}_{1}^b - (\overline{\underline{u}}^b - \underline{\underline{u}}^b) = \overline{\overline{\phi}}_{11}^b - \underline{\phi}_{11}^b - \log\left[\frac{\overline{\underline{\mu}}_{1}^b}{\underline{\underline{\mu}}_{1}^b}\right]$$

$$(\mathsf{ST}_{21}^b) \quad \underline{u}^b - t_{21}^b - \log(\underline{\mu}_2^b) - \underline{\lambda}_1^b + \underline{\phi}_{21}^b = 0,$$
$$\overline{u}^b - t_{21}^b - \log(\overline{\mu}_2^b) - \overline{\lambda}_1^b + \overline{\phi}_{21}^b = 0;$$

$$\overline{\lambda}_{1}^{b} - \underline{\lambda}_{1}^{b} - (\overline{u}^{b} - \underline{u}^{b}) = \overline{\phi}_{21}^{b} - \underline{\phi}_{21}^{b} - \log\left[\frac{\overline{\mu}_{2}^{b}}{\underline{\mu}_{2}^{b}}\right].$$

Efficiency \Rightarrow Essentially perfect correlation

$\mathsf{Efficiency} \Rightarrow \mathsf{Essentially} \text{ perfect correlation}$

Proof sketch ($2 \times 2 \times 2$, distinct posteriors)

$$\overline{\phi}_{11}^{b} + \underline{\phi}_{21}^{b} = \overline{\phi}_{21}^{b} + \underline{\phi}_{11}^{b} + \underbrace{\log\left[\frac{\overline{\mu}_{1}^{b}}{\underline{\mu}_{1}^{b}}\right] - \log\left[\frac{\overline{\mu}_{2}^{b}}{\underline{\mu}_{2}^{b}}\right]}_{>0 \text{ by ordering assumption}}.$$

Consideration of (ST_{11}^b) and (ST_{21}^b) therefore implies:

$\mathsf{Efficiency} \Rightarrow \mathsf{Essentially} \text{ perfect correlation}$

Proof sketch ($2 \times 2 \times 2$, distinct posteriors)

$$\overline{\phi}_{11}^{b} + \underline{\phi}_{21}^{b} = \overline{\phi}_{21}^{b} + \underline{\phi}_{11}^{b} + \underbrace{\log\left[\frac{\overline{\mu}_{1}^{b}}{\underline{\mu}_{1}^{b}}\right] - \log\left[\frac{\overline{\mu}_{2}^{b}}{\underline{\mu}_{2}^{b}}\right]}_{>0 \text{ by ordering assumption}}.$$

Consideration of (ST_{11}^b) and (ST_{21}^b) therefore implies:

Analogous consideration of (ST_{12}^b) and (ST_{22}^b) implies:

$$\underbrace{\overline{\phi}_{12}^b + \underline{\phi}_{22}^b}_{} > \overline{\phi}_{22}^b + \underline{\phi}_{12}^b.$$

 \Rightarrow at least one term is >0

Efficiency \Rightarrow Essentially perfect correlation

$\mathsf{Efficiency} \Rightarrow \mathsf{Essentially} \text{ perfect correlation}$

Proof sketch (2 \times 2 \times 2, distinct posteriors)

Suppose $\overline{\phi}_{11}^b > 0$ and $\overline{\phi}_{12}^b > 0$, then CS implies:

State <u>v</u>	s_1^s	s_2^s	State \overline{v}	s_1^s	s_2^s
s_1^b	$\underline{\alpha}_{11}$	$\underline{\alpha}_{12}$	s_1^b	0	0
s_2^b	$\underline{\alpha}_{21}$	$\underline{\alpha}_{22}$	s_2^b	$\overline{\alpha}_{21}$	$\overline{\alpha}_{22}$

$\mathsf{Efficiency} \Rightarrow \mathsf{Essentially} \text{ perfect correlation}$

Proof sketch (2 \times 2 \times 2, distinct posteriors)

Suppose $\overline{\phi}_{11}^b > 0$ and $\overline{\phi}_{12}^b > 0$, then CS implies:

State <u>v</u>	s_1^s	s_2^s	State \overline{v}	s_1^s	s_2^s
s_1^b	$\underline{\alpha}_{11}$	$\underline{\alpha}_{12}$	s_1^b	0	0
s_2^b	$\underline{\alpha}_{21}$	$\underline{\alpha}_{22}$	s_2^b	$\overline{\alpha}_{21}$	$\overline{\alpha}_{22}$

Suppose $\underline{\phi}_{21}^{b} > 0$ and $\underline{\phi}_{22}^{b} > 0$, then CS implies:

State <u>v</u>	s_1^s	s_2^s	State \overline{v}	s_1^s	<i>s</i> ^s ₂
s_1^b	$\underline{\alpha}_{11}$	$\underline{\alpha}_{12}$	s_1^b	$\overline{\alpha}_{11}$	$\overline{\alpha}_{12}$
s_2^b	0	0	s_2^b	$\overline{\alpha}_{21}$	$\overline{\alpha}_{22}$

Efficiency \Rightarrow Essentially perfect correlation

Proof sketch ($2 \times 2 \times 2$, distinct posteriors)

Suppose $\overline{\phi}_{11}^b > 0$ and $\underline{\phi}_{22}^b > 0$, then CS implies:

State <u>v</u>	s_1^s	s_2^s	State \overline{v}	s_1^s	s 2 ^s
s_1^b	$\underline{\alpha}_{11}$	$\underline{\alpha}_{12}$	s_1^b	0	$\overline{\alpha}_{12}$
s_2^b	$\underline{\alpha}_{21}$	0	s_2^b	$\overline{\alpha}_{21}$	$\overline{\alpha}_{22}$

$\mathsf{Efficiency} \Rightarrow \mathsf{Essentially} \text{ perfect correlation}$

Proof sketch ($2 \times 2 \times 2$, distinct posteriors)

Suppose $\overline{\phi}_{11}^b > 0$ and $\underline{\phi}_{22}^b > 0$, then CS implies:

State <u>v</u>	s_1^s	s_2^s	State \overline{v}	s_1^s	<i>s</i> ₂ ^s
s_1^b	$\underline{\alpha}_{11}$	$\underline{\alpha}_{12}$	s_1^b	0	$\overline{\alpha}_{12}$
s_2^b	$\underline{\alpha}_{21}$	0	s_2^b	$\overline{\alpha}_{21}$	$\overline{\alpha}_{22}$

• Bayes-plausibility then implies:

$$\overline{\mu}_{0} < \overline{\mu}_{1}^{b} = \frac{\overline{\alpha}_{12}}{\underline{\alpha}_{11} + \underline{\alpha}_{12} + \overline{\alpha}_{12}} \le \frac{\overline{\alpha}_{12}}{\underline{\alpha}_{12} + \overline{\alpha}_{12}},$$
$$\overline{\mu}_{0} > \overline{\mu}_{2}^{s} = \frac{\overline{\alpha}_{12} + \overline{\alpha}_{22}}{\underline{\alpha}_{12} + \overline{\alpha}_{12} + \overline{\alpha}_{22}} \ge \frac{\overline{\alpha}_{12}}{\underline{\alpha}_{12} + \overline{\alpha}_{12}}.$$

Efficiency \Rightarrow Essentially perfect correlation Proof sketch (2 × 2 × 2, distinct posteriors)

The only remaining possibility is $\overline{\phi}_{12}^b > 0$ and $\underline{\phi}_{21}^b > 0$:

State <u>v</u>	s_1^s	s_2^s	State \overline{v}	s_1^s	s_2^s
s_1^b	$\underline{\alpha}_{11}$	$\underline{\alpha}_{12}$	s_1^b	$\overline{\alpha}_{11}$	0
s_2^b	0	$\underline{\alpha}_{22}$	s_2^b	$\overline{\alpha}_{21}$	$\overline{\alpha}_{22}$

Efficiency \Rightarrow Essentially perfect correlation Proof sketch (2 × 2 × 2, distinct posteriors)

The only remaining possibility is $\overline{\phi}_{12}^b > 0$ and $\phi_{21}^b > 0$:

State <u>v</u>	s_1^s	s_2^s	State \overline{v}	s_1^s	s_2^s
s_1^b	$\underline{\alpha}_{11}$	$\underline{\alpha}_{12}$	s_1^b	$\overline{\alpha}_{11}$	0
s_2^b	0	$\underline{\alpha}_{22}$	s_2^b	$\overline{\alpha}_{21}$	$\overline{\alpha}_{22}$

Analogous argument for Seller gives $\phi_{12}^s > 0$ and $\overline{\phi}_{21}^s > 0$:

State <u>v</u>	s_1^s	s_2^s	State \overline{v}	s_1^s	s_2^s
s_1^b	$\underline{\alpha}_{11}$	0	s_1^b	$\overline{\alpha}_{11}$	$\overline{\alpha}_{12}$
s_2^b	$\underline{\alpha}_{12}$	$\underline{\alpha}_{22}$	s_2^b	0	$\overline{\alpha}_{22}$

Roadmap

- Revelation principle
- 2 Implementability
- 3 Information structures consistent with efficient trade

Application: subsidy minimization for efficient trade

Concluding remarks

Subsidy minimization \Rightarrow perfect correlation is w.l.o.g.

Corollary (Perfect correlation)

If $(\alpha', I', J'; t'; \phi', \lambda')$ is feasible in the subsidy minimization problem, then there is $(\alpha, I, J; t; \phi; \lambda)$, which is also feasible and achieves the same objective value, but I = J and $\underline{\alpha}_{ij} = \overline{\alpha}_{ij} = 0$ for $i \neq j$.

State <u>v</u>	s_1^s	s ₂ ^s		s;		State \overline{v}	s_1^s	s ₂ ^s		s;
s_1^b	$\underline{\alpha}_1$	0		0	-	s_1^b	$\overline{\alpha}_1$	0		0
s_2^b	0	$\underline{\alpha}_2$		0		s_2^b	0	$\overline{\alpha}_2$		0
:	:	:	•	:		:	:	:	·.,	:
s _I ^b	0	0		$\underline{\alpha}_{l}$		s _I ^b	0	0		$\overline{\alpha}_{I}$

Proof: merge signal realizations with equal posteriors.

Subsidy minimization \Rightarrow perfect correlation is w.l.o.g.

Corollary (Perfect correlation)

If $(\alpha', I', J'; t'; \phi', \lambda')$ is feasible in the subsidy minimization problem, then there is $(\alpha, I, J; t; \phi; \lambda)$, which is also feasible and achieves the same objective value, but I = J and $\underline{\alpha}_{ij} = \overline{\alpha}_{ij} = 0$ for $i \neq j$.

State <u>v</u>	s_1^s	s ₂ ^s		s;	State \overline{v}	s_1^s	s ₂ ^s		s;
s_1^b	$\underline{\alpha}_1$	0		0	 s_1^b	$\overline{\alpha}_1$	0		0
s_2^b	0	$\underline{\alpha}_2$		0	s_2^b	0	$\overline{\alpha}_2$		0
:	:	:	۰.	:	:	:	:	•.	:
•	· ·	•	•	•	•	•	•	-	•
s _l ^b	0	0		$\underline{\alpha}_{I}$	s _I ^b	0	0		$\overline{\alpha}_{I}$

Proof: merge signal realizations with equal posteriors.

Two design concerns for the principal: IC and total cost of info.

- IC: More correlated signals \Rightarrow easier to incentivize truthful reporting.
- Total cost: Less correlated signals ⇒ more info at lower cost.

Subsidy minimization \Rightarrow perfect correlation is w.l.o.g.

Corollary (Perfect correlation)

If $(\alpha', I', J'; t'; \phi', \lambda')$ is feasible in the subsidy minimization problem, then there is $(\alpha, I, J; t; \phi; \lambda)$, which is also feasible and achieves the same objective value, but I = J and $\underline{\alpha}_{ij} = \overline{\alpha}_{ij} = 0$ for $i \neq j$.

State <u>v</u>	s_1^s	s ₂ ^s		s;		State \overline{v}	s_1^s	s ₂ ^s		s;
s_1^b	$\underline{\alpha}_1$	0		0	_	s_1^b	$\overline{\alpha}_1$	0		0
s_2^b	0	$\underline{\alpha}_2$		0		s_2^b	0	$\overline{\alpha}_2$		0
:	:	:	۰.	:		:	:	:	۰.	:
•	· ·	•	•	•		•.	· ·	•	•	•
s ^b	0	0		$\underline{\alpha}_{I}$		s ^b	0	0		$\overline{\alpha}_{I}$

Proof: merge signal realizations with equal posteriors.

Two design concerns for the principal: IC and total cost of info.

- IC: More correlated signals \Rightarrow easier to incentivize truthful reporting.
- Total cost: Less correlated signals ⇒ more info at lower cost.

IC overwhelmingly dominates \Rightarrow pay for the same info twice!

Subsidy minimization as Bayesian persuasion

$$\max_{\{\tau,\mu;l;\Lambda\}} \sum_{i=1}^{l} \tau_{i} T(\underline{\mu}_{i},\overline{\mu}_{i};\Lambda^{b},\Lambda^{s})$$
(BP)
$$\sum_{i=1}^{l} \tau_{i}\underline{\mu}_{i} = \underline{\mu}_{0}, \qquad \sum_{i=1}^{l} \tau_{i}\overline{\mu}_{i} = \overline{\mu}_{0};$$
(NA^b)
$$\exp\left(-\underline{\Lambda}^{b}\right) + \exp\left(-\overline{\Lambda}^{b}\right) = 1,$$
(NA^s)
$$\exp\left(-\underline{\Lambda}^{s}\right) + \exp\left(-\overline{\Lambda}^{s}\right) = 1.$$

where $\tau_i = \underline{\alpha}_i + \overline{\alpha}_i$, and $\underline{\Lambda}^p = \min_i \left\{ \underline{\lambda}_i^p \right\}$ and $\overline{\Lambda}^p = \min_i \left\{ \overline{\lambda}_i^p \right\}$.

For a fixed Λ , this is a Bayesian persuasion problem \Rightarrow look at concave closure of T. Concave closure of T

Roadmap

- Revelation principle
- 2 Implementability
- 3 Information structures consistent with efficient trade
- 4 Application: subsidy minimization for efficient trade

6 Concluding remarks

Concluding remarks

- Bilateral trade problem with information acquisition.
- Information acquistion is costly and flexible.
- Tractable characterization of implementability.
- Characterization of info structures consistent with efficient trade.
- Subsidy minimization for efficient trade.

Appendix

6 Implementability for the seller

Implementability for the seller

Lemma (Implementability for the seller)

 (α, q, t) is globally implementable for the seller iff there are multipliers $\lambda_i^s(\mathbf{v})$ for all $s_i^b \in S^b$ and $\phi_{ij}^s(\mathbf{v})$ for all $(s_i^b, s_j^s) \in S^b \times S^s$ and all $\mathbf{v} \in V$:

$$(\mathsf{ST}^{s}) \quad \underbrace{t_{ij}^{s} - q_{ij}^{s}u^{s}(v)}_{\frac{\partial U^{s}}{\partial \alpha_{ij}(v)}} - \underbrace{\log\left(\mu_{j}^{s}(v)\right)}_{\frac{\partial C^{s}}{\partial \alpha_{ij}(v)}} - \lambda_{i}^{s}(v) + \phi_{ij}^{s}(v) = 0,$$

$$(\mathsf{DF}^{s}) \quad \phi_{ij}^{s}(v) \ge 0,$$

$$(\mathsf{CS}^{s}) \quad \alpha_{ij}(v)\phi_{ij}^{s}(v) = 0,$$

$$(\mathsf{NA}^{s}) \quad \sum_{v \in V} \exp\left(-\min_{i}\{\lambda_{i}^{s}(v)\}\right) \le 1.$$

• Analogous conditions apply to the buyer. Buyer's implementability

Appendix

Implementability for the seller

Subsidy minimization as Bayesian persuasion: solution

Concave closure of $T(\underline{\mu}, 1 - \underline{\mu}; \Lambda^b, \Lambda^s)$

August 25, 2024 4 / 5

Optimality conditions

Proposition (Optimality conditions)

If the subsidy minimization problem achieves a minimum, then we can set I = 2 w.l.o.g., and moreover the optimal posteriors satisfy

$$\begin{array}{ll} (\mathsf{Opt}^b) & \underline{u}^b - \mathsf{log}(\underline{\mu}_1) - \underline{\Lambda}^b = \overline{u}^b - \mathsf{log}(\overline{\mu}_1) - \overline{\Lambda}^b, \\ (\mathsf{Opt}^s) & \underline{u}^s + \mathsf{log}(\underline{\mu}_2) + \underline{\Lambda}^s = \overline{u}^s + \mathsf{log}(\overline{\mu}_2) + \overline{\Lambda}^s. \end{array}$$

Combine (Opt) with (NA) to solve for A and plug into the objective \Rightarrow unconstrained problem for posteriors.

Go back