Foreign Reserves and Capital Controls: Role of Financial Development

Chang Ma

Fudan University

Hidehiko Matsumoto

Keio University

August 27, 2024 EEA-ESEM at Erasmus University

### Introduction

- $\bullet\,$  Financial globalization  $\rightarrow\,$  Countries are more subject to external shocks.
- Capital controls and foreign reserves as stabilization policy tools.
- Data: wide cross-country variation in these two policies.
- Questions:
  - Why do countries use both capital controls and foreign reserves?
  - What explains the cross-country variation in these two policies?

### This Paper

• Empirical facts about cross-country variation:

- Foreign reserve-to-GDP ratio is non-monotonic in financial development: Countries with intermediate development have high reserve-to-GDP ratio.
- Capital control index monotonically decreases in financial development index.
- Small-open-economy model:
  - Size of rollover risk (proxy for financial development)
    - $\rightarrow$  Explains the cross-country pattern of reserves and capital controls.

### This Paper

• Empirical facts about cross-country variation:

- Foreign reserve-to-GDP ratio is non-monotonic in financial development: Countries with intermediate development have high reserve-to-GDP ratio.
- Capital control index monotonically decreases in financial development index.
- Small-open-economy model:
  - Size of rollover risk (proxy for financial development)
    - $\rightarrow$  Explains the cross-country pattern of reserves and capital controls.

### Literature

- Capital controls: Bianchi (2011), Benigno et al. (2013), Benigno et al. (2016), Bianchi and Mendoza (2018), Jeanne and Korinek (2020), Ma (2020).
- Foreign reserves: Jeanne and Rancière (2011), Hur and Kondo (2016), Cavallino (2019), Céspedes and Chang (2020), Bianchi and Sosa-Padilla (2020), Bocola and Lorenzoni (2020), Jeanne and Sandri (2020), Shousha (2021), Matsumoto (2022).
- Substitutes: Arce et al. (2019), Davis et al. (2021a), Davis et al. (2021b), Fanelli and Straub (2021).
- Combination: Amador et al. (2017), Lutz and Zessner-Spitzenberg (2022).
- Contribution of our work:
  - > Explain observed cross-country pattern in policy and financial development.

# **Empirical Facts**

### Reserve-to-GDP Ratio and Capital Controls

- 85 countries, average over 1980-2019. Similar results for each decade.
- Financial development: IMF Financial Development Index.
- Capital control index: Chinn-Ito Index.



### Regressions

|                                    | Reserv   | e/GDP    | Capita | Capital Control Index |  |  |
|------------------------------------|----------|----------|--------|-----------------------|--|--|
|                                    | (1)      | (2)      | (3)    | (4)                   |  |  |
| Financial Development              | 0.48***  | 0.43***  | -3.83* | ** -3.78***           |  |  |
|                                    | (0.12)   | (0.12)   | (0.52  | ) (0.44)              |  |  |
| Financial Development <sup>2</sup> | -0.69*** | -0.62*** |        |                       |  |  |
|                                    | (0.15)   | (0.16)   |        |                       |  |  |
| Pop (log)                          |          | -0.00    |        | 0.09                  |  |  |
|                                    |          | (0.01)   |        | (0.09)                |  |  |
| GDP per capita (log)               |          | -0.01    |        | -0.57***              |  |  |
|                                    |          | (0.01)   |        | (0.13)                |  |  |
| Private credit                     |          | 0.03     |        | 0.39                  |  |  |
|                                    |          | (0.02)   |        | (0.40)                |  |  |
| Trade                              |          | 0.05***  |        | -0.01                 |  |  |
|                                    |          | (0.02)   |        | (0.32)                |  |  |
| Observations                       | 85       | 85       | 83     | 83                    |  |  |

# Model

### Firm-Households

• Utility function:

$$\mathbb{E}_0\left[\sum_{t=0}^\infty \beta^t \ln(c_t)\right]$$

• Budget constraint:

$$c_t + \frac{b_t}{R_t} + \frac{s_t}{R^s} + z_t = a_t + b_{t-1} + s_{t-1} + q_t a_t^{\ell}$$

- *b<sub>t</sub>*: foreign bond (negative *b<sub>t</sub>* is borrowing).
- ▶ *s*<sub>t</sub>: reserve holdings.
- *z<sub>t</sub>*: investment to accumulate productive assets.
- $a_t$ : productive assets and output,  $y_t = a_t$ . Accumulates through  $z_t$ .
- $q_t a_t^{\ell}$ : proceeds from asset liquidation (next page).

### Liquidity Shock and Asset Liquidation

- At the beginning of each period, liquidity shock may hit the economy.
  - ▶ Need to repay  $\theta$  fraction of debt  $b_{t-1}$  before new borrowing and production.
  - $\theta$ : size of roll-over risk. Proxy for the measure of financial development.
- Households repay debt  $-\theta b_{t-1}$  by
  - ▶ Reserve holdings *s*<sub>*t*−1</sub>.
  - Liquidating  $a_t^{\ell}$  units of asset to obtain liquidity  $q_t a_t^{\ell}$ .

• Liquidation  $a_t^{\ell}$  needs to cover the liquidity shortage  $-\theta b_{t-1} - s_{t-1}$ :

$$q_t a_t^\ell \ge -\theta b_{t-1} - s_{t-1}$$

- Downward-sloping demand for  $a_t^{\ell}$  from foreign buyers.
- $q_t$  declines in aggregate  $a_t^\ell o$  Fire-sale externality.

### Liquidity Shock and Asset Liquidation

- At the beginning of each period, liquidity shock may hit the economy.
  - ▶ Need to repay  $\theta$  fraction of debt  $b_{t-1}$  before new borrowing and production.
  - $\theta$ : size of roll-over risk. Proxy for the measure of financial development.
- Households repay debt  $-\theta b_{t-1}$  by
  - Reserve holdings  $s_{t-1}$ .
  - Liquidating  $a_t^{\ell}$  units of asset to obtain liquidity  $q_t a_t^{\ell}$ .

• Liquidation  $a_t^{\ell}$  needs to cover the liquidity shortage  $-\theta b_{t-1} - s_{t-1}$ :

$$q_t a_t^\ell \ge -\theta b_{t-1} - s_{t-1}$$

- Downward-sloping demand for  $a_t^{\ell}$  from foreign buyers.
- $q_t$  declines in aggregate  $a_t^\ell o$  Fire-sale externality.

### Liquidity Shock and Asset Liquidation

- At the beginning of each period, liquidity shock may hit the economy.
  - ▶ Need to repay  $\theta$  fraction of debt  $b_{t-1}$  before new borrowing and production.
  - $\theta$ : size of roll-over risk. Proxy for the measure of financial development.
- Households repay debt  $-\theta b_{t-1}$  by
  - Reserve holdings  $s_{t-1}$ .
  - Liquidating  $a_t^{\ell}$  units of asset to obtain liquidity  $q_t a_t^{\ell}$ .
- Liquidation  $a_t^{\ell}$  needs to cover the liquidity shortage  $-\theta b_{t-1} s_{t-1}$ :

$$q_t a_t^\ell \geq -\theta b_{t-1} - s_{t-1}$$

- Downward-sloping demand for  $a_t^{\ell}$  from foreign buyers.
- $q_t$  declines in aggregate  $a_t^\ell o$  Fire-sale externality.

### Cost and Benefit of Reserve Holdings

• Combining the Euler equations regarding  $b_t$  and  $s_t$ :

$$\beta(R_t - R^s)\mathbb{E}_t[u'(c_{t+1})] = \beta\mathbb{E}_t[(R^s - R_t\theta)\psi_{t+1}] + \nu_t$$

• LHS: opportunity cost of holding reserves due to the interest gap  $R_t > R^s$ .

• RHS: reserves have liquidity advantage over debt.

- $\psi_{t+1}$ : benefit of reducing liquidity shortage and asset fire-sale at t+1.
- ▶ If  $R^s > R_t \theta$ , HHs can lower liquidity shortage  $-\theta b_t s_t$  by borrowing debt and accumulating reserves.
- Households choose  $b_t$  and  $s_t$  to equalize cost and benefit of holding reserves.

### Cost and Benefit of Reserve Holdings

• Combining the Euler equations regarding  $b_t$  and  $s_t$ :

$$\beta(R_t - R^s)\mathbb{E}_t[u'(c_{t+1})] = \beta\mathbb{E}_t[(R^s - R_t\theta)\psi_{t+1}] + \nu_t$$

- LHS: opportunity cost of holding reserves due to the interest gap  $R_t > R^s$ .
- RHS: reserves have liquidity advantage over debt.
  - $\psi_{t+1}$ : benefit of reducing liquidity shortage and asset fire-sale at t+1.
  - If  $R^s > R_t \theta$ , HHs can lower liquidity shortage  $-\theta b_t s_t$  by borrowing debt and accumulating reserves.
- Households choose b<sub>t</sub> and s<sub>t</sub> to equalize cost and benefit of holding reserves.

### Cost and Benefit of Reserve Holdings

• Combining the Euler equations regarding  $b_t$  and  $s_t$ :

$$\beta(R_t - R^s)\mathbb{E}_t[u'(c_{t+1})] = \beta\mathbb{E}_t[(R^s - R_t\theta)\psi_{t+1}] + \nu_t$$

- LHS: opportunity cost of holding reserves due to the interest gap  $R_t > R^s$ .
- RHS: reserves have liquidity advantage over debt.
  - $\psi_{t+1}$ : benefit of reducing liquidity shortage and asset fire-sale at t+1.
  - If  $R^s > R_t \theta$ , HHs can lower liquidity shortage  $-\theta b_t s_t$  by borrowing debt and accumulating reserves.
- Households choose  $b_t$  and  $s_t$  to equalize cost and benefit of holding reserves.

### Non-Monotonic Relation between $\theta$ and Reserves

$$\beta(R_t - R^s)\mathbb{E}_t[u'(c_{t+1})] = \beta\mathbb{E}_t[(R^s - R_t\theta)\psi_{t+1}] + \nu_t$$

#### Proposition 1

If  $\theta = 0$ , households do not hold reserves,  $s_t = 0$ .

 $\theta = 0$  implies  $\psi_{t+1} = 0$  for any states. No liquidity risk.

### Proposition 2 If $\theta \ge R^s / R_t$ , households do not hold reserves, $s_t = 0$ .

No liquidity advantage of reserves.

• Intermediate  $\theta \rightarrow$  Both liquidity risk and advantage are relatively high.

 $\rightarrow$  Reserve holdings become large.

### Non-Monotonic Relation between $\theta$ and Reserves

$$\beta(R_t - R^s)\mathbb{E}_t[u'(c_{t+1})] = \beta\mathbb{E}_t[(R^s - R_t\theta)\psi_{t+1}] + \nu_t$$

#### **Proposition** 1

If  $\theta = 0$ , households do not hold reserves,  $s_t = 0$ .

 $\theta = 0$  implies  $\psi_{t+1} = 0$  for any states. No liquidity risk.

### Proposition 2 If $\theta \ge R^s/R_t$ , households do not hold reserves, $s_t = 0$ .

No liquidity advantage of reserves.

• Intermediate  $\theta \rightarrow$  Both liquidity risk and advantage are relatively high.

 $\rightarrow$  Reserve holdings become large.

### Non-Monotonic Relation between $\theta$ and Reserves

$$\beta(R_t - R^s)\mathbb{E}_t[u'(c_{t+1})] = \beta\mathbb{E}_t[(R^s - R_t\theta)\psi_{t+1}] + \nu_t$$

### Proposition 1

If  $\theta = 0$ , households do not hold reserves,  $s_t = 0$ .

 $\theta = 0$  implies  $\psi_{t+1} = 0$  for any states. No liquidity risk.

### Proposition 2 If $\theta \ge R^s/R_t$ , households do not hold reserves, $s_t = 0$ .

No liquidity advantage of reserves.

- Intermediate  $\theta \rightarrow$  Both liquidity risk and advantage are relatively high.
  - $\rightarrow$  Reserve holdings become large.

### Social Planner's Solution

- Social planner internalizes that  $q_t$  is decreasing in  $a_t^{\ell}$ .
- Planner chooses  $b_t$  and  $s_t$  by internalizing the fire-sale externality.
  - Liquidity shortage  $-\theta b_t s_t$  is lower.
  - Fire-sale  $a_t^{\ell}$  is lower, and liquidation price  $q_t$  is higher.
- Planner's allocation can be achieved by tax on debt and either of
  - subsidy on reserves, or
  - public reserve holdings with no private reserves.

•  $\partial \tau_t^b / \partial \theta > 0$  can be analytically shown in a simplified two-period model.

### Social Planner's Solution

- Social planner internalizes that  $q_t$  is decreasing in  $a_t^{\ell}$ .
- Planner chooses  $b_t$  and  $s_t$  by internalizing the fire-sale externality.
  - Liquidity shortage  $-\theta b_t s_t$  is lower.
  - Fire-sale  $a_t^{\ell}$  is lower, and liquidation price  $q_t$  is higher.
- Planner's allocation can be achieved by tax on debt and either of
  - subsidy on reserves, or
  - public reserve holdings with no private reserves.
- $\partial \tau_t^b / \partial \theta > 0$  can be analytically shown in a simplified two-period model.

## Quantitative Analysis

### Crisis Dynamics under DE and SP ( $\theta = 0.45$ )





### Optimal Policies across Different $\theta$

- Reserve-to-GDP is non-monotonic and peaks at 33% when  $\theta = 0.30$ .
- Capital controls monotonically increase in  $\theta$ .
- Expected welfare gain: 0.4% higher permanent consumption when  $\theta = 0.45$ .



### Conclusion

- Empirical facts on cross-country patterns of reserves and capital controls:
  - ▶ Reserve-to-GDP ratio is non-monotonic in financial development.
  - Capital controls monotonically decrease with financial development.
- Small-open-economy model with liquidity shock:
  - Reserve holdings are determined by two factors:
     Opportunity cost and liquidity advantage of reserves.
  - Fire-sale externality justifies joint use of capital controls and reserve policy.
- Model can explain the cross-country patterns of capital controls and reserves.

# Appendix

### External Liability and External Debt Liability 🚥

• Positive correlation between financial development and external liability.



### Panel Regressions **Dack**

|                                    | Reserv   | e/GDP    | Capital Control Index |         | External Liability/GDP |          | External Debt Liability/GDP |          |
|------------------------------------|----------|----------|-----------------------|---------|------------------------|----------|-----------------------------|----------|
|                                    | (1)      | (2)      | (3)                   | (4)     | (5)                    | (6)      | (7)                         | (8)      |
| Financial Development              | 0.78***  | 0.91***  | -0.56***              | -0.24** | 0.89***                | 0.50**   | 0.64***                     | 0.63***  |
|                                    | (0.15)   | (0.24)   | (0.08)                | (0.11)  | (0.11)                 | (0.21)   | (0.10)                      | (0.22)   |
| Financial Development <sup>2</sup> | -0.22*** | -0.23*** |                       |         |                        |          |                             |          |
|                                    | (0.07)   | (0.09)   |                       |         |                        |          |                             |          |
| GDP per capita (log)               |          | -0.16    |                       | -0.28   |                        | -0.87*** |                             | -0.81*** |
|                                    |          | (0.35)   |                       | (0.26)  |                        | (0.32)   |                             | (0.29)   |
| Trade (% GDP)                      |          | 0.18     |                       | -0.24** |                        | 0.24***  |                             | 0.08     |
|                                    |          | (0.13)   |                       | (0.09)  |                        | (0.08)   |                             | (0.11)   |
| Institutional Quality              |          | 0.20     |                       | -0.55** |                        | -0.39*   |                             | -0.26    |
|                                    |          | (0.26)   |                       | (0.21)  |                        | (0.21)   |                             | (0.25)   |
| Peg                                |          | -0.06    |                       | 0.00    |                        | -0.02    |                             | 0.02     |
|                                    |          | (0.15)   |                       | (0.08)  |                        | (0.07)   |                             | (0.08)   |
| CA (% GDP)                         |          | 0.07     |                       | -0.02   |                        | -0.03    |                             | 0.01     |
|                                    |          | (0.04)   |                       | (0.02)  |                        | (0.04)   |                             | (0.04)   |
| Constant                           | 0.16**   | 0.29**   | 0.04***               | -0.04   | -0.08***               | 0.16*    | -0.08***                    | -0.01    |
|                                    | (0.06)   | (0.14)   | (0.01)                | (0.07)  | (0.01)                 | (0.10)   | (0.01)                      | (0.08)   |
| Year FE                            | N        | Y        | N                     | Y       | N                      | Y        | N                           | Y        |
| Country FE                         | Y        | Y        | Y                     | Y       | Y                      | Y        | Y                           | Y        |
| Observations                       | 3212     | 1853     | 3141                  | 1852    | 3137                   | 1819     | 3138                        | 1813     |
| Adjusted R <sup>2</sup>            | 0.480    | 0.681    | 0.685                 | 0.869   | 0.533                  | 0.747    | 0.504                       | 0.697    |

Ma and Matsumoto

### Joint Dynamics of Debt and Reserves **Debt**

| Dep. Variables          | Capital flows (% GDP) |                  |                    |                    | Reserve flows (% GDP) |                    |  |
|-------------------------|-----------------------|------------------|--------------------|--------------------|-----------------------|--------------------|--|
|                         | (1)                   | (2)              | (3)                | (4)                | (5)                   | (6)                |  |
| Reserve flows           | 0.57***<br>(0.19)     | 0.56**<br>(0.21) |                    |                    |                       |                    |  |
| EMBI spread             |                       |                  | -0.30***<br>(0.09) | -0.20***<br>(0.07) | -0.05**<br>(0.02)     | -0.06**<br>(0.03)  |  |
| Population              |                       | 13.76*<br>(7.01) |                    | 46.29**<br>(19.22) |                       | 2.10<br>(4.94)     |  |
| GDP per capita          |                       | 7.33**<br>(3.00) |                    | 15.05***<br>(4.97) |                       | -0.06<br>(0.93)    |  |
| Trade                   |                       | -0.41<br>(2.99)  |                    | 8.75*<br>(4.97)    |                       | 5.97**<br>(2.42)   |  |
| Private credit          |                       | 4.23<br>(3.23)   |                    | -7.83<br>(7.92)    |                       | -7.76***<br>(2.68) |  |
| Year FE                 | Yes                   | Yes              | Yes                | Yes                | Yes                   | Yes                |  |
| Country FE              | Yes                   | Yes              | Yes                | Yes                | Yes                   | Yes                |  |
| Observations            | 1269                  | 961              | 663                | 574                | 664                   | 575                |  |
| Adjusted R <sup>2</sup> | 0.143                 | 0.183            | 0.202              | 0.250              | 0.112                 | 0.150              |  |

### Asset Liquidation Price **back**

• Foreign buyers produce tradable goods using  $a_t^{\ell}$  and  $a_t^*$ :

$$\pi_t^* = \max_{\substack{a_t^\ell}} (a_t^*)^{\zeta} (a_t^\ell)^{1-\zeta} - q_t a_t^\ell$$

•  $a_t^*$  grows at a fixed rate  $1 + \bar{g}$ .

• FOC determines the asset liquidation price q<sub>t</sub>:

$$q_t = (1 - \zeta) \left(rac{a_t^*}{a_t^\ell}
ight)^\zeta$$

► Liquidation price  $q_t$  declines as aggregate liquidation  $a_t^{\ell}$  increases. But individual households take  $q_t$  as given  $\rightarrow$  Fire-sale externality.

### Maximization Problem

• Households' maximization problem, taking  $q_t$  as given:

$$\begin{split} & V(b_{t-1}, s_{t-1}, z_{t-1}, a_{t-1}; \Theta_t, a_{t-1}^*) \\ &= \max_{c_t, b_t, s_t, z_t, a_t^\ell, a_t} u(c_t) + \beta \mathbb{E}_t V(b_t, s_t, z_t, a_t; \Theta_{t+1}, a_t^*) \\ &- \lambda_t \left[ c_t + \frac{b_t}{R_t} + \frac{s_t}{R^s} + z_t - a_t - b_{t-1} - s_{t-1} - q_t a_t^\ell \right] \\ &- \xi_t \left[ a_t - a_{t-1} - \eta z_{t-1}^{\gamma} \left[ (1 - \kappa) a_{t-1} + \kappa a_{t-1}^* \right]^{1 - \gamma} + a_t^\ell \right] \\ &+ \psi_t \left[ q_t a_t^\ell + \theta_t b_{t-1} + s_{t-1} \right] \\ &+ \varphi_t q_t a_t^\ell \\ &+ \nu_t \frac{s_t}{R^s} \end{split}$$

•  $\theta_t = \{0, \theta\}$  is a liquidity shock.

• Non-negativity constraints on liquidation  $a_t^{\ell}$  and reserves  $s_t$ .

### Firsr-Order Conditions by Households **Gene**

$$\begin{split} u'(c_t) &= \beta \frac{R_t}{1 + \psi_b \exp\left(-\frac{b_t}{a_t} - \bar{b}\right) \frac{b_t/a_t}{R_t}} \mathbb{E}_t \left[u'(c_{t+1}) + \psi_{t+1}\theta_{t+1}\right] \\ u'(c_t) &= \beta R^s \mathbb{E}_t \left[u'(c_{t+1}) + \psi_{t+1}\right] + \nu_t \\ u'(c_t) &= \beta \mathbb{E}_t \left[\xi_{t+1}\eta\gamma \left(\frac{z_t}{(1 - \kappa)a_t + \kappa a_t^*}\right)^{\gamma - 1}\right] \\ &\quad \xi_t &= u'(c_t) \left[1 + \left(\frac{b_t/a_t}{R_t}\right)^2 \psi_b \exp\left(-\frac{b_t}{a_t} - \bar{b}\right)\right] \\ &\quad + \beta \mathbb{E}_t \left[\xi_{t+1} \left\{\phi + \eta(1 - \gamma)(1 - \kappa) \left(\frac{z_t}{(1 - \kappa)a_t + \kappa a_t^*}\right)^{\gamma}\right\}\right] \\ &\quad \psi_t + \varphi_t &= \frac{\xi_t}{q_t} - u'(c_t) \end{split}$$

## First-Order Conditions w.r.t. Liquidation $a_t^{\ell}$

$$a_t^\ell:\psi_t+\varphi_t=\frac{\xi_t}{q_t}-u'(c_t)$$

• When  $a_t^{\ell} > 0$ , liquidity constraint binds.  $\psi_t > 0$  and  $\varphi_t = 0$ .

- When  $a_t^{\ell} = 0$ , non-negativity constraint binds.  $\psi_t = 0$  and  $\varphi_t > 0$ .
- $\psi_t$ : *private* value of one unit of liquidity when the liquidity constraint binds:
  - One unit of liquidity reduces liquidity shortage  $-\theta b_{t-1} s_{t-1}$  by one unit.
  - One unit of liquidity reduces liquidation by  $1/q_t$  units, whose value is  $\xi_t/q_t$ .
  - It also reduces available resource by one unit, whose value is  $-u'(c_t)$ .

back

### First-Order Conditions **Dack**

• First-order conditions:

$$a_t^{\ell}: \psi_t = \frac{\xi_t}{q_t} - u'(c_t)$$
  

$$b_t: u'(c_t) = \beta R_t \mathbb{E}_t \left[ u'(c_{t+1}) + \psi_{t+1} \theta \right]$$
  

$$s_t: u'(c_t) = \beta R^s \mathbb{E}_t \left[ u'(c_{t+1}) + \psi_{t+1} \right] + \nu_t$$

- $\psi_t$ : <u>Private</u> value of liquidity when there is a liquidity shortage and  $a_t^{\ell} > 0$ . One unit of liquidity  $\rightarrow 1/q_t$ -unit reduction in asset liquidation.
- HHs can reduce liquidity shortage  $-\theta b_t s_t$ .
  - Reducing debt  $-b_t \rightarrow$  Reduce liquidity shortage by  $R_t \theta$  units at t + 1.
  - Increasing reserve  $s_t \rightarrow$  Reduce liquidity shortage by  $R^s$  units at t + 1.

### Social Planner's Problem **Gale**

$$\begin{split} & V(b_{t-1}, s_{t-1}, z_{t-1}, a_{t-1}; \Theta_t, a_{t-1}^*) \\ &= \max_{c_t, b_t, s_t, z_t, a_t^\ell, a_t} u(c_t) + \beta \mathbb{E}_t V(b_t, s_t, z_t, a_t; \Theta_{t+1}, a_t^*) \\ &- \lambda_t \left[ c_t + \frac{b_t}{R_t} + \frac{s_t}{R^s} + z_t - a_t - b_{t-1} - s_{t-1} - q(a_t^\ell; a_t^*) a_t^\ell \right] \\ &- \xi_t \left[ a_t - a_{t-1} - \eta(z_{t-1})^\gamma (a_{t-1} + \kappa (a_{t-1}^* - a_{t-1}))^{1-\gamma} + a_t^\ell \right] \\ &+ \psi_t^{SP} \left[ q(a_t^\ell; a_t^*) a_t^\ell + \theta_t b_{t-1} + s_{t-1} \right] \\ &+ \varphi_t^{SP} q(a_t^\ell; a_t^*) a_t^\ell \\ &+ \nu_t \frac{s_t}{R^s} \end{split}$$

### Social Planner's Solution Gark

- Social planner internalizes that  $q_t$  is decreasing in  $a_t^{\ell}$ .
- <u>Social</u> value of liquidity when there is a liquidity shortage:

$$\psi_t^{SP} = \frac{\xi_t}{q_t - \zeta q_t} - u'(c_t)$$

- $(\partial q_t / \partial a_t^\ell) a_t^\ell = -\zeta q_t < 0$  is the fire-sale externality.
- ▶  $\psi_{t+1}^{SP} > \psi_{t+1}$  implies households overborrow and hold too little reserves.
- Planner's allocation can be achieved by tax on debt and either of
  - subsidy on reserves, or
  - public reserve holdings with no private reserves.

### Social Planner's Euler Equations

• Planner's Euler equations:

$$u'(c_t) = \beta R_t \mathbb{E}_t \left[ u'(c_{t+1}) + \psi_{t+1}^{SP} \theta_{t+1} \right]$$
$$u'(c_t) = \beta R^s \mathbb{E}_t \left[ u'(c_{t+1}) + \psi_{t+1}^{SP} \right] + \nu_t$$

- $\psi_{t+1}^{SP} > \psi_{t+1}$  implies households overborrow and hold too little reserves.
- Planner's allocation can be achieved by tax on debt and either of:
  - subsidy on reserves, or
  - public reserve holdings with no private reserves.
- Propositions 1, 2, 3 hold under the planner's solution.
- $\partial \tau_t^b / \partial \theta > 0$  can be analytically shown in a simplified two-period model.



• Tax on debt:

$$u'(c_t) = \beta(1+\tau_t^b) R_t \mathbb{E}_t \left[ u'(c_{t+1}) + \psi_{t+1} \theta_{t+1} \right]$$

with

$$1 + \tau_t^b = \frac{\mathbb{E}_t \left[ u'(c_{t+1}) + \psi_{t+1}^{SP} \theta_{t+1} \right]}{\mathbb{E}_t \left[ u'(c_{t+1}) + \psi_{t+1} \theta_{t+1} \right]}$$

•  $\partial \tau_t^b / \partial \theta > 0$  can be shown in a simplified two-period model.

- As  $\theta$  becomes higher, the size of liquidation  $a_t^{\ell}$  becomes larger and  $q_t$  lowers.
- Lower  $q_t$  increases the value of liquidity  $\psi_t$  and  $\psi_t^{SP}$ .
- Internalizing effect of  $a_t^\ell$  on  $q_t$ ,  $\psi_t^{SP}$  increases proportionally more than  $\psi_t$ .

### Externally Determined Parameter Values 📖

• One period is one year. Utility function is  $u(c_t) = \ln(c_t)$ .

|                 | Parameter                       | Value  | Source                   |
|-----------------|---------------------------------|--------|--------------------------|
| β               | Discount factor                 | 0.91   | Bianchi (2011)           |
| $R^{b}$         | Gross interest rate on debt     | 1.06   | Standard                 |
| Rs              | Gross interest rate on reserves | 1      | Standard                 |
| $\gamma$        | Investment curvature            | 0.8    | Comin and Gertler (2006) |
| Ē               | Foreign growth rate             | 0.0261 | Data                     |
| $\varepsilon^R$ | Interest rate shock             | 0.0196 | Mendoza (2010)           |

• Three-state Markov process for shocks:

• 
$$(\varepsilon_t^R, \theta_t) = \{(\varepsilon^R, \mathbf{0}), (-\varepsilon^R, \mathbf{0}), (\varepsilon^R, \theta)\}$$

- ▶ In normal times,  $\varepsilon_t^R$  stays/changes with 54%/36%, and liquidity shock 10%.
- ▶ In liquidity crisis,  $(\varepsilon^R, 0)$  with 90%, and  $(\varepsilon^R, \theta)$  with 10%.

### Calibrated Parameter Values 🛛 📾

| Parameter  |                           | Value  | Target                        | Model  |        |
|------------|---------------------------|--------|-------------------------------|--------|--------|
| $\eta$     | Investment efficiency     | 0.1085 | Mean CA-to-GDP                | -0.017 | -0.017 |
| $\kappa$   | Productivity spillover    | 0.25   | Fire-sale price/normal price  | 0.37   | 0.36   |
| ζ          | Share of foreign assets   | 0.46   | Elasticity of fire-sale price | 1.74   | 1.87   |
| $\psi_{b}$ | Debt-elasticity of spread | 0.01   | S.D. of CA-to-GDP             | 0.063  | 0.064  |
| Б          | Baseline debt-to-GDP      | 0.8    | Mean debt-to-GDP              | 0.53   | 0.53   |
| $\theta$   | Size of liquidity shock   | 0.45   | Mean reserve-to-GDP           | 0.17   | 0.17   |

- Fire-sale price and elasticity are based on Aguiar and Gopinath (2005).
- Other moments are average of 47 emerging economies in 1987-2019.
- Baseline parameter is  $\theta = 0.45$ . Later study how the value of  $\theta$  affects policy.

## Crisis Dynamics in Decentralized Economy



### Crisis Dynamics in Decentralized Economy

- Percentage deviations from pre-crisis 10-period log-linear trend.
- Persistent impacts are consistent with the empirical regularities of crises.



### Business Cycle Correlations of Debt and Reserves

- Positive correlation between debt and reserve flows.
- $\bullet$  Low interest rate  $\rightarrow$  High debt and low opportunity cost  $\rightarrow$  High reserves.



### Welfare Gains across Different $\theta$

- Expected welfare gain is the largest at 0.4% when  $\theta = 0.45$ .
- Excessive risk taking in decentralized economy peaks when  $\theta = 0.45$ .



### Model with Endogenous Maturity Choice

- Endogenize  $\theta$  as a choice of maturity composition:
  - $\theta_t$ : Share of short-term debt that is subject to liquidity shock.
- New assumption on the interest rate:
  - Short-term interest rate  $R_t$  is the same as the baseline model.
  - Long-term interest rate  $R_t^L$  is increasing in the share of long-term debt:

$$R_t^L = R_t + \Gamma (1 - \theta_t)^2$$

- Low (high)  $\Gamma$  is high (low) financial development:
  - Broner et al. (2013) show that emerging economies pay higher risk premium on long-term bonds than on short-term bonds.
  - Empirical evidence on cross-country correlations across financial development, maturity, and interest rate. Qian and Strahan (2007), Bae and Goyal (2009).

### Model Modifications and First-Order Conditions

• Households' budget constraint is now:

$$c_{t} + \frac{\theta_{t}b_{t}}{R_{t}} + \frac{(1 - \theta_{t})b_{t}}{R_{t}^{L}} + \frac{s_{t}}{R^{s}} + z_{t} = a_{t} + b_{t-1} + s_{t-1} + q_{t}a_{t}^{\ell}$$

• First-order conditions regarding  $b_t$  and  $\theta_t$ :

$$b_t: \ u_c(t) \left[ \frac{\theta_t}{R_t} + \frac{1 - \theta_t}{R_t^L} \right] = \beta \mathbb{E}_t \left[ u_c(t+1) + \psi_{t+1} \theta_t \right]$$
  
$$\theta_t: \ u_c(t) \left[ \frac{1}{R_t} - \frac{1}{R_t^L} - (1 - \theta_t) \frac{1}{(R_t^L)^2} \frac{\partial R_t^L}{\partial \theta_t} \right] = \beta \mathbb{E}_t \left[ \psi_{t+1} \right]$$

- LHS: Increasing  $\theta_t$  lowers the average interest rate and  $R_t^L$ .
- RHS: Increasing  $\theta_t$  increases the liquidity risk next period.
- Socially too high debt  $b_t$  and short-term debt share  $\theta_t$  because  $\psi_{t+1} < \psi_{t+1}^{SP}$ .

## Choosing $b_t^S$ and $b_t^L$ Separately

• Alternatively, households choose  $b_t^S$  and  $b_t^L$  separately:

$$c_t + \frac{b_t^S}{R_t} + \frac{b_t^L}{R_t^L} + \frac{s_t}{R^s} + z_t = a_t + b_{t-1} + s_{t-1} + q_t a_t^\ell$$

• First-order conditions regarding  $b_t^S$  and  $b_t^L$ :

$$b_t^{S}: u'(c_t) \left[ \frac{1}{R_t} - \frac{b_t^L}{(R_t^L)^2} \frac{\partial R_t^L}{\partial b_t^S} \right] = \beta \mathbb{E}_t \left[ u'(c_{t+1}) + \psi_{t+1} \right]$$
$$b_t^L: u'(c_t) \left[ \frac{1}{R_t^L} - \frac{b_t^L}{(R_t^L)^2} \frac{\partial R_t^L}{\partial b_t^L} \right] = \beta \mathbb{E}_t \left[ u'(c_{t+1}) \right]$$

- Households overborrow short-term debt  $b_t^S$ , but no distortion regarding  $b_t^L$ .
- If tax on short-term debt is available, policy to correct  $\theta_t$  is not necessary.

## Optimal Policies across Different $\Gamma$

- Low  $\Gamma$  (better financial development) is associated with low  $\theta$ .
- Reserves are non-monotonic in financial development  $\boldsymbol{\Gamma}.$
- Capital controls on the entire debt monotonically increase in  $\Gamma$ .



### Reference I

- Aguiar, M. and Gopinath, G. (2005). Fire-Sale Foreign Direct Investment and Liquidity Crises. *Review of Economics and Statistics*, 87(3):439–452.
- Amador, M., Bianchi, J., Bocola, L., and Perri, F. (2017). Exchange Rate Policies at the Zero Lower Bound. Federal Reserve Bank of Minneapolis Working Paper, 740.
- Arce, F., Bengui, J., and Bianchi, J. (2019). A Macroprudential Theory of Foreign Reserve Accumulation. *mimeo*.
- Bae, K. H. and Goyal, V. K. (2009). Creditor rights, enforcement, and bank loans. Journal of Finance, 64(2):823–860.
- Benigno, G., Chen, H., Otrok, C., Rebucci, A., and Young, E. R. (2013). Financial crises and macro-prudential policies. *Journal of International Economics*, 89(2):453–470.
- Benigno, G., Chen, H., Otrok, C., Rebucci, A., and Young, E. R. (2016). Optimal capital controls and real exchange rate policies: A pecuniary externality perspective. *Journal of Monetary Economics*, 84:147–165.
- Bianchi, J. (2011). Overborrowing and Systemic Externalities in the Business Cycle. American Economic Review, 101(December):3400–3426.
- Bianchi, J. and Mendoza, E. G. (2018). Optimal Time-Consistent Macroprudential Policy. Journal of Political Economy, 126(2).

### Reference II

- Bianchi, J. and Sosa-Padilla, C. (2020). Reserve Accumulation, Macroeconomic Stabilization, and Sovereign Risk. *mimeo*.
- Bocola, L. and Lorenzoni, G. (2020). Financial Crises, Dollarization, and Lending of Last Resort in Open Economies. *American Economic Review*, 110(8):2524–2557.
- Broner, F., Lorenzoni, G., and Schmukler, S. L. (2013). Why Do Emerging Economies Borrow Short Term? *Journal of the European Economic Association*, 11(January):67–100.
- Cavallino, P. (2019). Capital flows and foreign exchange intervention. American Economic Journal: Macroeconomics, 11(2):127–170.
- Céspedes, L. F. and Chang, R. (2020). Optimal Foreign Reserves and Central Bank Policy under Financial Stress. *NBER Working Paper*, 27923.
- Comin, D. and Gertler, M. (2006). Medium-Term Business Cycles. *American Economic Review*, 96(3).
- Davis, J. S., Devereux, M. B., and Yu, C. (2021a). Sudden Stops in Emerging Economies: The Role of World Interest Rates and Foreign Exchange Intervention. *mimeo*.
- Davis, J. S., Fujiwara, I., Huang, K. X., and Wang, J. (2021b). Foreign exchange reserves as a tool for capital account management. *Journal of Monetary Economics*, 117:473–488.
- Fanelli, S. and Straub, L. (2021). A Theory of Foreign Exchange Interventions. *Review of Economic Studies*, (March):2857–2885.

### Reference III

- Hur, S. and Kondo, I. O. (2016). A theory of rollover risk, sudden stops, and foreign reserves. Journal of International Economics, 103:44–63.
- Jeanne, O. and Korinek, A. (2020). Macroprudential Regulation versus mopping up after the crash. *Review of Economic Studies*, 87(3):1470–1497.
- Jeanne, O. and Rancière, R. (2011). the Optimal Level of International Reserves for Emerging Market Countries: a New Formula and Some Applications. *Economic Journal*, 121:905–930.
- Jeanne, O. and Sandri, D. (2020). Global Financial Cycle and Liquidity Management. NBER Working Paper, (27901).
- Lutz, F. and Zessner-Spitzenberg, L. (2022). Sudden Stops and Reserve Accumulation in the Presence of International Liquidity Risk. *mimeo*.
- Ma, C. (2020). Financial stability, growth and macroprudential policy. Journal of International Economics, 122.
- Matsumoto, H. (2022). Foreign reserve accumulation, foreign direct investment, and economic growth. *Review of Economic Dynamics*, 43:241–262.
- Mendoza, E. G. (2010). Sudden Stops, Financial Crises, and Leverage. American Economic Review, 100(5):1941–1966.
- Qian, J. and Strahan, P. E. (2007). How laws and institutions shape financial contracts: The case of bank loans. *Journal of Finance*, 62(6):2803–2834.

### Reference IV

Shousha, S. (2021). International Reserves, Credit Constraints, and Systemic Sudden Stops. *mimeo.*