Zero fare, cleaner air? The causal effect of Luxembourg's free public transportation policy on carbon emissions

Tobias Eibinger¹ & Sachintha Fernando²

¹University of Graz, AT

²University of Halle-Wittenberg, DE

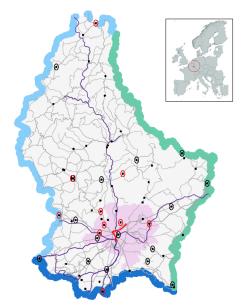
EEA Rotterdam

August 27, 2024

Introduction

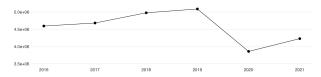
- In March 2020, Luxembourg became the first country to implement free public transport for everybody across all modes
 - ---- Intention: reduce car density and associated negative externalities
- RQ: What are the effects of this policy on transport CO2 emissions?
- Identification challenges:
 - 1. Luxembourg is special
 - 2. COVID-19 and associated variation in mobility patterns
- Data on CO2 emissions: IPCC-sector 1.A.3.b Grided CO2 emission data from EDGAR
- Unit of analysis: NUTS 2 level
- Method: Synthetic Difference in Differences (SDID) (Arkhangelsky et al., 2021)
- **Results**: ATT of around -6.1% CO2 road transport emissions

Public Transport in Luxembourg

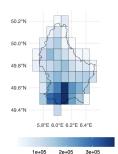


Evolution of road transport emissions from LU

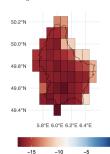
(a) Annual CO2 Emissions in Luxembourg



(b) Average Emissions 2016-2019



(c) %-Change 2016-2019 vs. 2020-2021



Luxembourg is special

Size: 2,586.4 km²

• Population: ≈ 660,000

GDP/capita: ≈ 140,000 USD (highest in EU)

Car density: ≈ 700 cars per 1,000 inhabitants (highest in EU)

Challenge:

- difficult to meet the parallel trend assumption for DiD
- SC assumes comparable pre-treatment levels

Solution:

- Unit of analysis: NUTS 2 level
- Use SDID, which combines characteristics of both SC and DID. Advantage: Does not assume comparable levels in any stage

Potential Confounding

Main threat: COVID-19

Has mobility behavior in LU changed differently compared to other regions?

- COVID-19 cases
- Commuting
- · Working from home

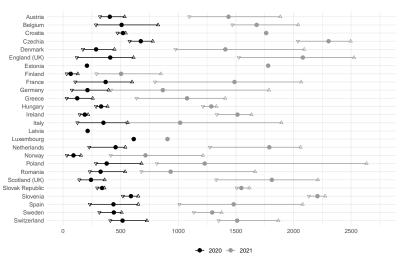
Other threats

Fuel prices, energy efficiency of new vehicles, freight volume

Consider bad comparisons and spillovers

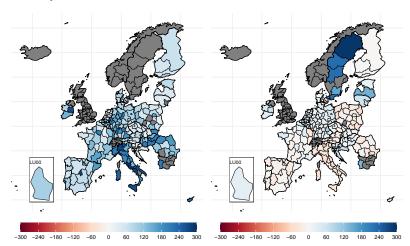
COVID - 19

Cumulative COVID cases per 10,000 pop - 2020 and 2021



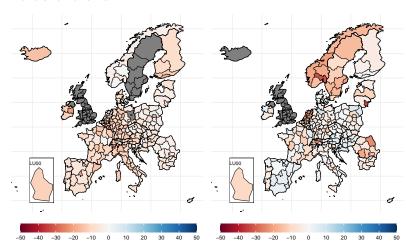
COVID - 19 cont ...

Change (%) people usually WFH with workplace in NUTS2 region and residency in the same country: 2019-2020 and 2020-2021



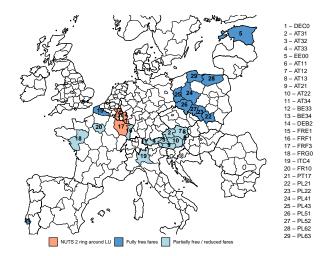
COVID - 19 cont...

Change (%) overall commuting inflow irrespective of residency: 2019-2020 and 2020-2021



Bad comparisons and spillovers (2016-2021)

- Exclude NUTS 2 ring around LU
- Exclude regions that introduced fully free fares during sample period (2016-2021)



Synthetic DiD

We apply synthetic DiD to emissions adjusted for covariates

Synthetic DiD combines features of both DiD and SC methods.

- Like DiD, it is invariant to additive unit-level shifts
- Like SC, it weighs and matches pre-treatment trends to reduce reliance on parallel-trends assumption

Synthetic DiD re-weighs both units and time periods.

- Unit weights to match pre-treatment trends between exposed and unexposed units.
- Time weights assign higher weights to pre-treatment time periods that are more similar to post-treatment time periods for unexposed units.

Synthetic DiD

$$\left(\widehat{\tau}^{sdid}, \widehat{\mu}, \widehat{\alpha}, \widehat{\beta}\right) = \mathop{\arg\min}_{\tau, \mu, \alpha, \beta} \left\{ \sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - \mu - \alpha_i - \beta_t - W_{it}\tau)^2 \widehat{\omega}_i^{sdid} \widehat{\lambda}_t^{sdid} \right\}$$

▶ weights

Synthetic Control

$$\left(\widehat{\tau}^{sc}, \widehat{\mu}, \widehat{\beta}\right) = \underset{\tau, \mu, \beta}{\arg\min} \left\{ \sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - \mu - \beta_t - W_{it}\tau)^2 \widehat{\omega}_i^{sc} \right\}$$

DiD

$$\left(\widehat{\tau}^{did}, \widehat{\mu}, \widehat{\alpha}, \widehat{\beta}\right) = \underset{\tau, \mu, \alpha, \beta}{\operatorname{arg \, min}} \left\{ \sum_{i=1}^{N} \sum_{t=1}^{T} (Y_{it} - \mu - \alpha_i - \beta_t - W_{it}\tau)^2 \right\}$$

Placebo Inference

 $\widehat{ au}^{sdid}$ is asymptotically normal \longrightarrow conventional CIs can be used if the asymptotic variance can be consistently estimated. $au \in \widehat{ au}^{sdid} \pm z_{\alpha/2} \sqrt{\widehat{V}_{ au}}$.

With $N_{tr}=1$, we can use placebo based inference:

- Replace the exposed unit with unexposed units
- Randomly assign those units to a placebo treatment
- Compute a placebo ATT
- Repeat many times to obtain a vector of placebo ATTs

Event-study inference can be conducted by estimating:

$$d_t = (\bar{Y}_t^1 - \bar{Y}_t^0) - (\bar{Y}_{base}^1 - \bar{Y}_{base}^0).$$

Confidence bands around these estimates can be generated with a placebo-based approach (Arkhangelsky et al., 2021; Clarke et al., 2023). • esplacebo

Handling covariates

Handling covariates in this setting is treated as a **pre-modelling approach**. Model with fixed effects is estimated only for **control regions** as suggested by Kranz (2022):

$$Y_{it}^{co} = \alpha_i + \gamma_t + X_{it}^{co}\beta + u_{it}, \tag{1}$$

$$\widehat{Y}_{it}^{adj} = Y_{it} - X_{it}\widehat{\beta}. \tag{2}$$

- log of real GDP/CAP (regional)
- asinh of daily COVID cases (regional)
- asinh commuting inflow (regional) scatter
- asinh working from home (regional)
- log of emission intensity of new vehicles (national)
- diesel and super prices in real terms (national)
- log of total freight goods loaded (regional)

Three specifications

- No covariates.
- Adjusted for COVID-19 related covariates.

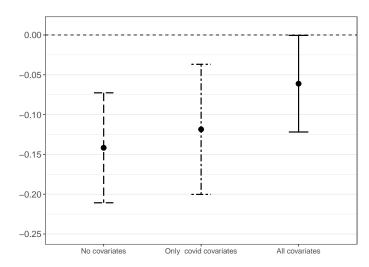
$$log(CO2/cap)_{it}^{co} = \alpha_i + \gamma_t + \beta_1 asinh(cases)_{it}^{co} + \beta_2 asinh(nvrwfh)_{it}^{co} + \beta_3 asinh(wfh)_{it}^{co} + u_{it},$$

3. Full set of covariates (main specification)

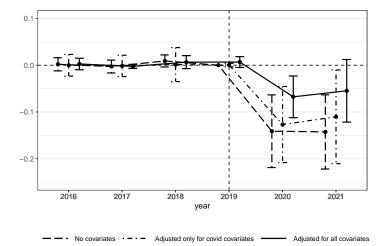
$$log(CO2/cap)_{it}^{co} = \alpha_i + \gamma_t + \beta_1 asinh(cases)_{it}^{co} + \beta_2 asinh(nvrwfh)_{it}^{co} + \beta_3 asinh(wfh)_{it}^{co} + \beta_4 log(gdp)_{it}^{co} + \beta_5 log(ei)_{it}^{co} + \beta_6 diesel_{it}^{co} + \beta_7 petrol_{it}^{co} + \beta_8 log(frt)_{it}^{co} + u_{it}.$$

Results - ATT

• ATT of -6.1% (specification with all covariates) • Unit weights • Time weights



Results - Event Study



Robustness

- Pre-trend with sdid weights Pre-trend
- In-time placebo: 2018 treatment in-time placebo
- Different specifications of the specifications
 - → exclude freight
 - → exclude wfh
 - → exclude commuting
- Restricted sample: Drop all regions that introduced free / reduced fares in our sample period Imited sample
- Relative fuel prices (fuel tourism) rel fuel fig rel fuel tab

Back of the envelope calculations

1. Effect size discussion

- Following Bigi et al. (2023), let us assume a modal split for private vehicles and public transport of around 80% and 15%
- Assume emission reduction is due to a modal change from private vehicles to public transport
 - \longrightarrow Estimated increase of public transport: $(\hat{\tau}80\%/15\%) \approx 32\%$.
- In line with LuxMobile survey: 30% increase in public transport usage due to the free-fare policy

2. Marginal abatement cost of carbon

- Foregone revenue from ticket sales of around 41 Mio. Euros
- Compare to CO2 emissions abated according to our estimates: $(CO2_t^{pre}\hat{\lambda}_t)\hat{\tau}$
 - ---> EUR 140 per tonne of carbon.

Recap

- We study the effect of free public transport on transport CO2 emissions.
- We use SDID to create a comparable counterfactual to Luxembourg
- · We control for potential confounders
 - $\,\rightarrow\,$ COVID, working from home, commuting, fuel prices, emission intensity of new vehicles, freight transport
- We estimate an ATT of around −6.1%
- · Results hold against robustness checks
- · Framework to study other policies during Covid

Thank you

Questions, comments, and suggestions are welcome

tobias.eibinger@uni-graz.at sachintha.fernando@wiwi.uni-halle.de

References

- Arkhangelsky, D., Athey, S., Hirshberg, D. A., Imbens, G. W., & Wager, S. (2021). Synthetic difference-in-differences. *American Economic Review*, *111*(12), 4088–4118. https://doi.org/10.1257/aer.20190159
- Bigi, F., Schwemmle, N., & Viti, F. (2023). Evaluating the impact of free public transport using agent-based modeling: The case-study of luxembourg.
- Clarke, D., Pailañir, D., Athey, S., & Imbens, G. (2023). Synthetic difference in differences estimation. https://arxiv.org/abs/2301.11859
- Kranz, S. (2022). Synthetic difference-in-differences with time- varying covariates. technical report. https://github.com/skranz/xsynthdid/blob/main/paper/synthdid%20with%20covariates.pdf

Unit weights are computed to align pre-treatments trends between treated and control units:

$$\left(\widehat{\omega}_0, \widehat{\omega}^{sdid}\right) = \underset{\omega_0 \in \mathbb{R}, \omega \in \Omega}{\operatorname{arg\,min}} \sum_{t=1}^{T_{pre}} \left(\omega_0 + \sum_{i=1}^{N_{co}} \omega_i Y_{it} - \frac{1}{N_{tr}} \sum_{i=N_{co}+1}^{N} Y_{it}\right)^2 + \zeta^2 T_{pre} ||\omega||_2^2.$$

Time weights are computed to align pre- and post-treatment periods of control units:

$$\left(\widehat{\lambda}_0, \widehat{\lambda}^{sdid}\right) = \underset{\lambda_0 \in \mathbb{R}, \lambda \in \Lambda}{\operatorname{arg\,min}} \sum_{i=1}^{N_{co}} \left(\lambda_0 + \sum_{t=1}^{T_{pre}} \lambda_t Y_{it} - \frac{1}{T_{post}} \sum_{t=T_{pre}+1}^{T} Y_{it}\right)^2 + \zeta^2 N_{co} ||\lambda||^2.$$

- N_{co} and N_{tr} are the number of untreated and treated units.
- T_{pre} and T_{post} are the number of pre- and post-treatment periods.
- ζ is a regularization parameter to increase dispersion and ensure unique weights as defined in Arkhangelsky et al. (2021)

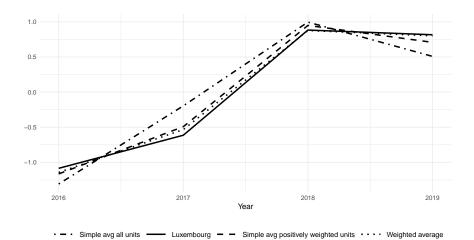
Covariates - Projected

	(1)		(2)	
	Estimate	Std. Error	Estimate	Std. Error
asinh(cases)	-0.0284***	(0.0049)	-0.0119	(0.0072)
asinh(nvrwfh)	0.0789***	(0.0264)	0.1217**	(0.0480)
asinh(wfh)	-0.0148**	(0.0062)	-0.0459***	(0.0101)
log(gdp)	0.3613***	(0.0731)		
log(ei)	0.2219***	(0.0418)		
diesel	-0.7463***	(0.0919)		
petrol	0.2765**	(0.113)		
log(frt)	0.0148	(0.0097)		
Obs	816		816	
N	136		136	
T	6		6	

Notes: Dependent variable is lco2cap, standard errors are clustered at the regional level.

^{***}p < 0.01; **p < 0.05; *p < 0.10

Trend comparisons - normalized

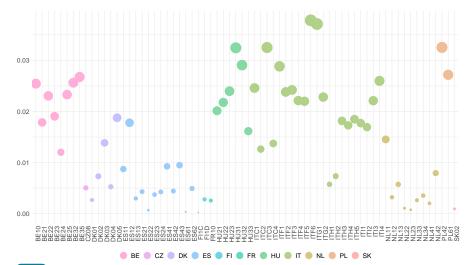


Placebo Inference

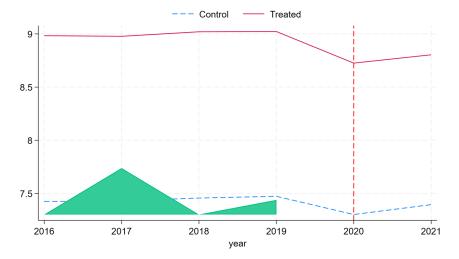
Confidence bands around the estimated d_t 's are generated with a placebo-based approach in the following sequence:

- 1. Exclude the treated unit (in our case Luxembourg) from the sample
- 2. Randomly assign treatment to a unit (from the remaining units, which are all controls units)
- 3. Calculate the outcome adjusted for covariates, i.e., \hat{Y}_{it}^{adj} .
- 4. Compute d_t and store the result
- 5. Repeat 2-4 many times (e.g., 1,000 times)
- 6. Obtain the 5% quantile from the sample distribution of the stored results for each time period *t*.

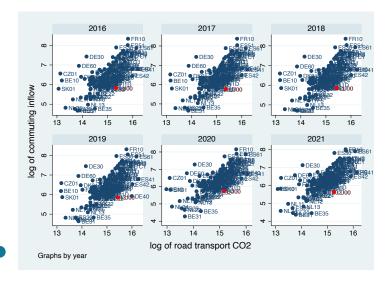
Unit weights - all covariates



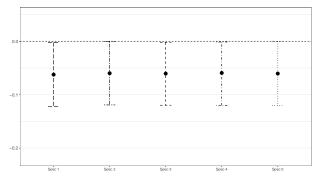
Time weights - all covariates



Commuting inflow scatter plot

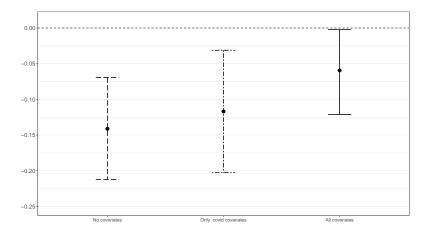


Robustness tests - ATTs across different specifications

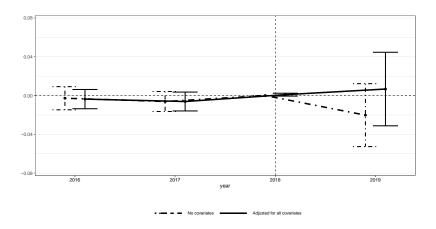


Notes: Spec 1 excludes controls for freight transport; Spec 2 excludes controls for working from home; Spec 3 excludes controls for both freight and working from home, Spec 4 excludes controls for commuting (never working from home); Spec 5 excludes controls for both freight and commuting

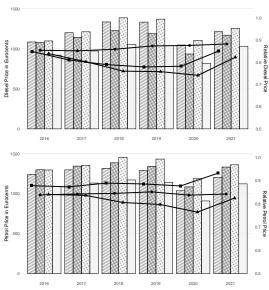
ATTs using restricted sample

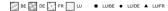


In-time placebo



Relative fuel prices





Relative fuel prices

Table: Pre- and post-treatment averages of relative fuel prices for Luxembourg

	Diesel		Petrol	
	Pre-Avg	Post-Avg	Pre-Avg	Post-Avg
BE	0.8010	0.8186	0.8765	0.9065
DE	0.8575	0.8794	0.8448	0.8401
FR	0.7892	0.7844	0.8253	0.7965

Note: Relative fuel prices of LU with respect to its neighboring countries. Pre-Avg are relative fuel prices based on time-weighted pre-treatment fuel prices, where time weights are taken from the SDiD main specification. Post-Avg are relative fuel prices based on post-treatment fuel prices.

