Public vs. private benefits: What drives willingness to pay for programmable heating thermostats?

Kathrin Kaestner

RWI - Leibniz Institute for Economic Research, Essen, Germany

EEA Rotterdam, August 27, 2024

Pre-registered at AEA RCT Registry AEARCTR-0011637

Greenhouse gas emissions in the European Union, by sector

Note: Figures for 2021, Source: https://www.statista.com/statistics/1325132/ghg-emissions-shares-sector-european-union-eu/ 🚊 = 🔗 q (~

Kaestner (2024)	WTP Programmable Thermostats	1 / 17
-----------------	------------------------------	--------

Programmable heating thermostats

- Digital devices offer new possibilities to conserve energy
 - through better demand management (Berger et al. 2022)
 - through behavioral interventions (Tiefenbeck et al. 2018)

Programmable heating thermostats

- Digital devices offer new possibilities to conserve energy
 - through better demand management (Berger et al. 2022)
 - through behavioral interventions (Tiefenbeck et al. 2018)

- automatic control of temperature, presetting of heating times
- simulations predict decrease in energy consumption by about 8-19% (Kersken et al. 2018)
- "smart heating controls" as cheapest option for carbon abatement (Lang and Lanz 2022)

< □ ▶ < 君 ▶ < 注 ▶ < 注 ▶ 三 = つへで ts 2/17

Programmable heating thermostats

- Digital devices offer new possibilities to conserve energy
 - through better demand management (Berger et al. 2022)
 - through behavioral interventions (Tiefenbeck et al. 2018)

- automatic control of temperature, presetting of heating times
- simulations predict decrease in energy consumption by about 8-19% (Kersken et al. 2018)
- "smart heating controls" as cheapest option for carbon abatement (Lang and Lanz 2022)
- \rightarrow But: Low adoption rates and thus seemingly low valuation!

Kaestner (2024)

Overview of this paper

Analyze a preregistered incentivized survey experiment with about 10,000 German households eliciting willingness to pay (WTP) for programmable heating thermostats with...

- ... randomized allocation to **"public good"** or **"private good"** information treatment or **"control"** group
 - ...large set of further potential correlates

Overview of this paper

Analyze a preregistered incentivized survey experiment with about 10,000 German households eliciting willingness to pay (WTP) for programmable heating thermostats with...

- ... randomized allocation to **"public good"** or **"private good"** information treatment or **"control"** group
 - ...large set of further potential correlates

Preview of findings

- "Public good" information significantly increases WTP by an average of almost €7
- No significant effect of "private good" treatment
- Some heterogeneity but no strong evidence that prior beliefs, technology openness or technical skills significantly influence households' WTP

Kaestner (2024)

Understanding technology adoption

- Potential users are unfamiliar with associated cost, private and social benefits (Foster and Rosenzweig 2010)
- Information asymmetries often reason for low energy efficiency investments (Jaffe and Stavins 1994, Gerarden et al. 2017)
- Heterogeneous preferences for smart meter adoption (Pepermans 2014, Hmielowski et al. 2019 Mateus et al. 2023) → Informing households about cost and benefits of smart technologies may increase adoption rates

Understanding technology adoption

- Potential users are unfamiliar with associated cost, private and social benefits (Foster and Rosenzweig 2010)
- Information asymmetries often reason for low energy efficiency investments (Jaffe and Stavins 1994, Gerarden et al. 2017)
- Heterogeneous preferences for smart meter adoption (Pepermans 2014, Hmielowski et al. 2019 Mateus et al. 2023) → Informing households about cost and benefits of smart technologies may increase adoption rates
 - Conflicting results on optimal messaging approaches: Make *environmental aspects* (Peters et al. 2018, Gosnell and McCoy 2023) or *economic aspects* (Berger et al. 2022) more salient
 - Unclear how to best promote pro-environmental/pro-social behavior: focus on self-interest (Allcott and Taubinsky 2015; Bollinger et al. 2020) or environmental information (Bolderdijk et al. 2012; Evans et al. 2012)

ntroduction	Data and Experimental Design	Results	Conclusions
0000●	000	0000000	

Research Question

• Is the low adoption rate of programmable heating thermostats a result of incomplete information?

My Contribution

- Improve understanding of households' valuation and determinants of digital technology adoption
- Add to existing, conflicting insights into effective messaging strategies aimed at energy-efficient behavior or investment decisions
- Additional focus on role of prior beliefs, technical skills, and technology openness as potential drivers or barriers to adoption

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

Introduction 00000	Data and Experimental Design ●00	Results 0000000	Conclusions
		Data	

- Experiment part of third survey wave of the German Heating and Housing Panel (GHHP) in May-June 2023
 - Survey designed by *RWI* and *PIK* and conducted by professional survey institute *forsa*
 - 15,000 households: 2/3 homeowners, 1/3 tenants
 - Elicitation of socio-economic and building characteristics, heating infrastructure, heating costs, environmental and psychological control variables
 - All participating households were eligible to participate in experiment: About **10,000 households opted into** incentivized part
 - Elicitation of WTP using a Multiple Price List (MPL) with choice between voucher ranging from €10 to €100 or thermostat

Summary Statistics MPL

Kaestner (2024)

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 三 エ か 9 (*
ts 6 / 17

Experimental Groups

Control Group	Private Good Information Treatment Group	Public Good Information Treatment Group
 General information about programmable heating thermostats 	 Control Group Information Information about potential annual energy and cost savings in percent: 9-14%, average of 10% Example calculation for 4- person household with absolute savings: Cost of 4000 Euros reduced by 400 to 3600 	 Control Group Information Information about heating- related emissions in Germany and emission reduction goals of EU Information about potential emission reductions in Europe if all households were equipped with programmable heating thermostats: 4.75%

Figure: Overview of Control and Treatment Groups.

Prior beliefs

(a) Expected heating cost

(b) Expected change in carbon emissions

Figure: Prior beliefs about potential heating cost changes and emission changes following the installation of programmable heating thermostats.

Interval regression of WTP on treatments

	(1)		(2)		(3)		(4)	
	Coeff.	Std. Err.	Coeff.	Std. Err.	Coeff.	Std. Err.	Coeff.	Std. Err.
Private good info	1.718	(2.256)	2.284	(2.200)	1.646	(2.164)	1.681	(2.143)
Public good info	6.721**	(2.290)	6.771**	(2.236)	6.852**	(2.193)	6.556**	(2.171)
Progr. thermostat=1	-	-	-20.853***	(2.062)	-22.732***	(2.050)	-19.451***	(2.140)
Constant	56.810***	(1.601)	-3.583	(20.929)	-5.888	(20.700)	-26.189	(20.953)
$\ln(\sigma)$	4.253***	(0.016)	4.225***	(0.016)	4.205***	(0.016)	4.193***	(0.016)
Socio-economic controls	N	No		Yes Yes		s	Yes	
Building controls	N	0	No		Yes		Yes	
Further personal controls	N	0	No		No		Yes	
No. of observations	664	41	664	1	664	1	664	1

Note: Robust standard errors in parentheses. ***, ** and * denote statistical significance at the 0.1 %, 1 % and 5 %, level, respectively.

Average WTP - Experimental Groups

Figure: Mean predicted WTP per experimental group, based on interval regression model (1) without further covariates.

Number of observations = 6641

Kaestner (2024)
------------	-------

WTP Programmable Thermostats

Heterogeneity I - Skills

- No significant association of being "handy" with average WTP
- No evidence for stronger response to treatment

<ロト (母ト (言) (言) 王国 のへの s 11/17

Heterogeneity II - Technology openness

Number of observations = 6641

Ka

 No significant association of being open to new technologies with average WTP

estner (2024) WTP Programmable Thermostats	
--	--

12/17

- Significant and increased treatment effect of public good information treatment for households who consider climate protection as important
- No significant treatment effect of private good information treatment for households intending to save energy in the future

More heterogeneity

Kaestner (2024)

13/17

A D F A B F A B F A B F

三日 のへの

Heterogeneity IV - Prior Beliefs

- Positive and significant effects of both treatments for households underestimating the emission reduction potential
- Positive and significant effect of public good info for households who overestimated cost savings

 Priors
 <</th>
 ≥
 <</th>
 ≥
 <</th>
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 ≥
 >
 >
 >
 >
 <</th>
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 ></

Approval with thermostat characteristics

- Agreement on statement on cost saving potential higher in private good treatment group
- Agreement on statement about resource conservation and climate mitigation lower in public good treatment group

Perceptions

Introduction	Data and Experimental Design	Results	Conclusions
00000		0000000	●○

Conclusions

- Stressing the private good feature of programmable heating thermostats increases WTP only for very few sub-groups
- Cost savings perceived as too high or not relevant (motivated reasoning)?
- No evidence that households with higher technology openness or technical skills respond more strongly to information
- Also minor role of prior beliefs for treatment response
- Making the public good feature more salient significantly increases households' WTP for programmable heating thermostats

Introduction	Data and Experimental Design	Results	Conclusions
00000		0000000	○●

Thank you! Questions or comments? Email: kathrin.kaestner@rwi-essen.de

▲ Ξ ► Ξ Ξ < 9 Q Q</p>

Example of Multiple Price List

forsa.omninet

We will now show you 10 choices between a voucher of a certain value and a programmable heating thermostat with the previously described features. Important: This is a single programmable heating thermostat, so you can use it for a single radiator.

Option 8:

Please consider your decision well on the following pages, as it can have real consequences.

Which alternative do you choose for each of the following 10 decisions?

Option A:

O A voucher worth 1006 1: O Programmable heating themostat 2: O Programmable heating themastat A voucher worth 906 ○ A youcher worth 80€ 3: O Promamable heating thempostat 4: O Programmable heating themastat 5: O Programmable heating themostat ○ A voucher worth 60€ 6: O Programmable heating themastat A voucher worth 596 2: O Promanable heating thempostat ○ A votacher worth 40€ 8: O Programmable heating themastat ○ A youcher worth 30€ 9: O Programmable heating themostat ○ A voucher worth 20€ 10. O Programmable heating thermostat ○ A youcher worth 10€

Don't know / No answer

< Previous

Next >

Back

Kaestner (2024)

Treatments

Text for everyone

As a reminder, a programmable radiator thermostat measures the room temperature and controls the radiator valve automatically - you no longer have to turn it. When you ventilate in winter, for example, it automatically regulates the heating down via a "window-open detection" with adjustable setback time. However, if it is too cold or too warm, you can also manually select a different temperature at any time.

On the programmable radiator thermostat, you can also set times for daily or weekly profiles at which heating should take place - for example, only in the morning before and in the evening after work. You can also set the exact temperature. Control can be done on the thermostat itself as well as via app. The programmable radiator thermostat is universally applicable and can be screwed onto all common radiators either directly or with the help of an adapter by unscrewing the old manual thermostat.

Treatments

Information on private good feature

We would now like to give you more information about programmable radiator thermostats. By installing programmable radiator thermostats in your apartment/house, you can save energy and thus heating costs. The exact savings potential depends on your previous heating and ventilation behavior as well as the age and renovation status of your building.

The consumer advice center assumes a savings potential of 9 to 14 percent per year if programmable heating thermostats are installed in all rooms, while Stiftung Warentest assumes a savings potential of around 10 percent per year for an average apartment in an older building.

If we assume that the aforementioned exemplary 4-person household lives in an average old building and has not previously used optimal heating and ventilation, it could reduce its annual heating costs by 10 percent from 4,000 euros to 3,600 euros. This corresponds to a reduction of 400 euros per year.

Treatments

Information on public good feature

We would now like to give you more information about programmable radiator thermostats. Around 15% of energy-related emissions in Germany are caused by heating in private households.

With the EU climate law, the EU is aiming for an emission reduction of 55% for the year 2030 compared to 1990.

By installing programmable radiator thermostats, you can make an important contribution to this goal: According to current calculations, total CO2 emissions in Europe could be reduced by 4.75% if all households in Europe were equipped with programmable thermostats in all rooms.

Back

Experimental Design

Table: Summary Statistics

	Mean	Std. Dev.	Min	Max
Homeowner	0.659	0.474	0.000	1.000
Household size	2.240	1.051	1.000	5.000
Female household head	0.406	0.491	0.000	1.000
Age	56.150	14.573	18.000	94.000
Monthly household net-income, in Euro	3,579	1,338	700	5,950
College degree	0.409	0.492	0.000	1.000
Urban	0.374	0.484	0.000	1.000
Building and heating characteristics				
Multi-family house	0.371	0.483	0.000	1.000
Floor area, in <i>m</i> ²	120.302	55.192	35.000	300.000
Built after 2002	0.166	0.373	0.000	1.000
Energy retrofit conducted since 2000	0.616	0.486	0.000	1.000
Gas heating	0.529	0.499	0.000	1.000
Oil heating	0.180	0.384	0.000	1.000
Heat pump	0.074	0.262	0.000	1.000
District heating	0.149	0.356	0.000	1.000
Other heating	0.068	0.251	0.000	1.000
Annual heating cost, in Euro	1,919	1,202	0.000	7,200
Manual radiator thermostat	0.563	0.496	0.000	1.000
Manual room thermostat	0.144	0.351	0.000	1.000
Digital/Programmable radiator thermostat	0.115	0.319	0.000	1.000
Digital/Programmable room thermostat	0.115	0.319	0.000	1.000
Other devices for heating control	0.054	0.226	0.000	1.000
No heating control	0.009	0.094	0.000	1.000
Digital thermostat is programmed	0.882	0.323	0.000	1.000

◆□▶ ◆□▶ ◆目▶ ◆日▶ ◆□▶ ◆□▶

Kaestner (2024)

Table: Summary Statistics II

	Mean	Std. Dev.	Min	Max
Thermostat-related				
Informed about programmable heating thermostats	0.319	0.466	0.000	1.000
Exp. change in annual heating cost after installation, in %	-25.386	28.785	-99.000	126.150
Exp. change in EU CO2 emissions after installation, in %	-17.087	18.137	-100.000	100.000
Energy saving intentions in future	0.539	0.498	0.000	1.000
Technology and manual skills				
Technology openness	11.995	3.817	$\begin{array}{c} 1.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	20.000
Data protection important with new technologies	0.754	0.431		1.000
Frequently repairing things at home	0.437	0.496		1.000
Fun at repairing things at home	0.499	0.500		1.000
Respondent responsible for repairing things at home	0.546	0.498		1.000
Manual skills required for job	0.119	0.324		1.000
Rather left	0.259	0.438	0.000	1.000
Rather right	0.067	0.250	0.000	1.000
Value on NEP scale	21.492	4.013	0.000	30.000
Importance of climate protection	0.814	0.389	0.000	1.000
Willingness to take risks	4.535	2.055	0.000	10.000
Internal LOC	34.021	8.633	0.000	49.000

Back

Kaestner (2024)

Table: Balancing Experimental Groups

	Control	Private	Public	t-Stats3-2	t-Stats2-1	tStats3-1
Programmable thermostat	0.225	0.234	0.232	-0.153	0.877	0.724
Homeowner	0.663	0.651	0.663	1.046	-1.043	0.006
Household size	2.243	2.223	2.252	1.140	-0.792	0.348
Female household head	0.404	0.419	0.396	-2.004	1.305	-0.703
Age	56.307	55.939	56.203	0.763	-1.061	-0.299
Monthly net-income, in Euro	3,571.921	3,561.427	3,602.890	1.163	-0.297	0.872
College degree	0.405	0.407	0.415	0.599	0.251	0.851
Floor area, in m^2	120.932	118.904	121.067	1.651	-1.543	0.103
Built after 2002	0.171	0.158	0.171	1.429	-1.437	-0.013
Energy retrofit conducted since 2000	0.610	0.616	0.622	0.531	0.579	1.109
Gas heating	0.526	0.534	0.526	-0.711	0.700	-0.012
Oil heating	0.177	0.179	0.184	0.596	0.209	0.809
Heat pump	0.074	0.074	0.075	0.072	0.089	0.161
District heating	0.152	0.150	0.146	-0.442	-0.276	-0.716
Other heating	0.071	0.063	0.069	1.058	-1.413	-0.367
Informed program. thermostats	0.312	0.323	0.323	0.024	0.992	1.016
Exp. change heating cost, in %	-25.309	-25.761	-25.083	0.850	-0.568	0.282
Exp. change CO2 emissions , in %	-17.587	-16.949	-16.723	0.484	1.352	1.839
Future energy saving intentions	0.536	0.538	0.544	0.491	0.172	0.664
Technology openness	11.987	11.986	12.011	0.280	-0.017	0.263
Data protection important	0.760	0.755	0.747	-0.767	-0.448	-1.219
Frequently repairing things at home	0.440	0.427	0.443	1.273	-1.027	0.247
Fut at repairing things at home	0.493	0.494	0.509	1.270	0.081	1.353
Importance of climate protection	0.821	0.809	0.811	0.263	-1.310	-1.044
Rather left	0.269	0.252	0.257	0.485	-1.564	-1.082
Rather right	0.066	0.067	0.068	0.245	0.164	0.410
Willingness to take risks	0.338	0.326	0.338	1.042	-1.090	-0.048
Number of observations	3537	3518	3517			

Kaestner (2024)

WTP Programmable Thermostats

8/14

Heterogeneity I

Figure: Correlation between WTP and different personal characteristics.

Kaestner (2024)

WTP Programmable Thermostats

<ロト < 部 > < 臣 > < 臣 > 王 = うへの ts 9/14

Heterogeneity II

Figure: Heterogeneous treatment effects.

Kaestner (2024)

WTP Programmable Thermostats

Heterogeneity IV - Prior Beliefs I

Figure: Difference between households' prior beliefs and actual information about private and public good features of programmable heating thermostats.

Back

Kaestner (2024)

WTP Programmable Thermostats

<ロト < 部 > < 臣 > < 臣 > 王 = うへの ts 11/14 Table: Interval regression to test for heterogeneous treatment effects w.r.t. prior beliefs with WTP as outcome variable

	Prior beliefs	
	Coeff.	Std. Err.
Private good info	5.575	(6.598)
Public good info	4.763	(6.678)
Underestimation of cost savings	-4.253	(4.663)
Overestimation of cost savings	-3.052	(3.853)
Underestimation of emission reductions	-32.645***	(8.502)
Overestimation of emission reductions	7.301	(4.402)
Private good info $ imes$ Underestimation of cost savings	-1.159	(6.806)
Private good info \times Overestimation of cost savings	-0.978	(5.371)
Public good info \times Underestimation of cost savings	-1.407	(7.031)
Public info \times Overestimation of cost savings	2.149	(5.457)
Private good info \times Underestimation of emission reductions	21.441	(12.040)
Private good info \times Overestimation of emission reductions	-5.127	(6.339)
Public info \times Underestimation of emission reductions	24.803*	(12.057)
Public info $ imes$ Overestimation of emission reductions	-1.079	(6.436)
Constant	55.855***	(4.663)
$\ln(\sigma)$	4.173***	(0.018)
No. of observations	5009	
Socio-economic controls	No	
Building controls	No	
Further determinants	No	

Note: Robust standard errors in parentheses. ***, ** and * denote statistical significance at the 0.1 %, 1 % and 5 %, level, respectively.

< □ ▶ < 圕 ▶ < ≧ ▶ < ≧ ▶ 差目 少へ (> ts 12 / 14

Perception of presented benefits of thermostats

(a) Perception of potential cost savings

30,2

27.2 28,6

5.1

Figure: Households' perceptions of provided benefits of programmable heating thermostats.

Approval with thermostat characteristics I

Figure: Approval with statements about programmable heating thermostats

Back

Kaestner (2024)

WTP Programmable Thermostats