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Abstract

We introduce a novel measure of weather risk implied from weather options’ contracts.

WIVOL captures risks of future temperature oscillations, increasing with climate un-

certainty about physical events and regulatory policies. We find that idiosyncratic

weather risk shocks are priced, worsen firms’ operating performance and increase the

uncertainty about firms’ fundamentals, suggesting that firms, on average, do not fully

hedge exposures to weather risk. We estimate returns’ exposure to WIVOL innovations

and show that more negatively exposed firms are valued at a discount, with investors

demanding higher compensations to hold these stocks. Firms’ exposure to local but

not foreign WIVOL predicts returns, which confirms the geographic nature of weather

risk.
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1 Introduction

The link between financial markets and extreme events stemming from climate-related risks

has been prominently featured in both news reports and academic discussions. Whether

these shocks arise from physical damages caused by extreme weather conditions or regulatory

policies to transition to a less polluting economy, climate change is increasingly associated

to the performance of various asset classes.

If climate change presents a material risk for firms’ cash-flows and stock prices, then

studying their exposure to weather related shocks represents a major challenge not only

for the firms themselves, but also for investors and policy makers. This task is far from

trivial. Existing analyses rely on firms’ disclosures concerning their corporate policies to-

wards an environmentally friendlier economy. The caveat is that these disclosures are mostly

voluntary and can be purposefully misleading, as the Securities and Exchange Commission

(SEC) notes.1 A different perspective centers on the physical risks of climate change, such

as extreme heat events. These events are directional, rare and seasonal in nature. Yet,

conventional metrics like average temperature fail to capture the extent of variability or the

uncertainty surrounding temperature fluctuations, posing inherent challenges for economic

agents. Existing research illustrates that uncertainty diminishes the capacity of economic ac-

tors to strategize and operate efficiently, consequently leading to adverse effects on economic

outcomes.2

Weather risks can significantly impact firms’ operating performance. Unusual temper-

ature patterns, such as warmer-than-normal summers or colder-than-normal winters, can

1According to the SEC, few companies discuss about climate change and its more than a decade old
guideline is in the process of being updated. Moreover, Morningstar notes that most companies do not disclose
emissions data. See, for example, “SEC Opens Review of Corporate Climate Change Disclosures,” Wall
Street Journal, February 24, 2021; “SEC to Hunt for Climate-Friendly Marketing That Misleads Investors,”
Wall Street Journal, March 4, 2021; “Carbon Emissions Data for Investors: Closing the Reporting Gap and
Future-Proofing Estimations,” Morningstar Sustainalytics, February 8, 2023.

2For example, gross domestic product is reduced by government spending volatility, and by exchange-rate
volatility. Food price volatility also reduces agricultural output. Crop yields and human health are negatively
affected by temperature volatility.
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result in unexpected operating costs due to heightened energy demand, disruptions in dis-

tribution channels, and decreased labor and capital productivity. Abnormal temperatures

can influence local power plants, leading to service outages that add to the disruptions faced

by these firms (Shive (2012)).3 Higher chance of experiencing extreme temperatures also

affects firms’ performance by negatively impacting employees’ mental and physical health,

consequently affecting creativity, productivity and decision making abilities (Addoum, Ng

and Ortiz-Bobea (2023)). Even less extreme temperature fluctuations pose a non-trivial risk

for companies. For example, Hewlett Packard Enterprise’s CEO Antonio Neri highlighted

that HPE “projected scenarios for non-extreme weather events, finding than even small tem-

perature increases (below 2 degrees Celsius) are important and could cost $200 million to

the company”.4

In this paper, we employ a new perspective to examine risks associated with climate

change. Rather than focusing only on ex-post extreme weather events, we explore the rel-

evance of ex-ante weather volatility risk for financial markets. Our primary interest is in

understanding investors’ expectations about future temperature fluctuations and the extent

to which firms are exposed to this risk. We use weather option prices to estimate the time

series for the implied weather volatility, since option contracts provide unique insights into

investors’ ex-ante beliefs on weather risk. The weather implied volatility (WIVOL) is es-

timated using weather option contracts traded at the Chicago Mercantile Exchange Group

Inc. (CME), whose payoffs depend on daily deviations (or degree-days) in temperature from

65 degrees Fahrenheit.5 To account for seasonal variations in temperature, the contracts are

further classified into heating degree-days (HDD) and cooling degree-days (CDD) options.

3Increased energy expenses for buildings could also substantially exacerbate higher operating costs. Heat-
ing, Ventilation, and Air Conditioning (HVAC) systems alone account for 38% of buildings’ energy usage,
with almost half of this consumption occurring in non-residential buildings (Gonzalez-Torres, Perez-Lombard,
Coronel, Maestre and Da (2022)).

4“Companies’ Climate Risks Are Often Unknown. Here’s How One Opened Up,” Wall Street Journal,
March 14, 2021

5The 65F benchmark is based on industry conventions for commercial buildings’ management and con-
sidered the most comfortable for normal operations.
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Intuitively, HDD measure the additional heating firms need to maintain normal operations

in colder days during the winter months, and CDD measure the additional cooling firms need

to maintain normal operations in warmer days during the summer months. From January

2005 to July 2021, we estimate WIVOL using option contracts written on temperatures at

the weather station of the LaGuardia airport and uncover significant fluctuations over time.

WIVOL exhibits varying patterns across different seasons and years, increasing at the

onset of heightened uncertainty on physical and transition events. For example, WIVOL

increases with the advent of Hurricane Sandy in 2012 but also during times of abnormally

colder temperatures such as in early 2014 and 2021. WIVOL also changes with consistently

higher than expected temperatures with no risk of physical damages. Notably, we report

an upward shift in WIVOL around mid-2020, which coincides with increased concern from

regulators about climate risks (see, for instance, Ramelli, Wagner, Zeckhauser and Ziegler

(2021)). These findings suggest WIVOL seems to capture not only market expectations

about physical risk events but also reflects the growing concerns about climate-related risks

from federal agencies and policy makers.

Using this novel measure of expected weather volatility, we then study if idiosyncratic

local risk shocks impact firms’ value in equilibrium. Changes in expected oscillations in

temperature measured by WIVOL offer a unique set of features to analyze firm performance

under climate risk, as shocks to WIVOL are exogenous, local, idiosyncratic and unsystematic,

as opposed to disasters type of extreme weather events with a potential systematic reach. We

provide economic foundations to our empirical hypotheses with a dynamic model in which

idiosyncratic weather volatility shocks impact firms’ cash flows and stock returns. Following

Merton (1987), we introduce a weather-specific risk component to the company’s cash-flow

process and show that investors demand an additional compensation to hold companies

exposed to weather volatility.

In the theoretical framework, the value of the security is influenced by changes in expected
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temperature oscillations measured by WIVOL through two key channels. First, the firm’s

value is affected by the anticipated impact of changes in WIVOL on its future cash flows.

The second channel addresses how weather-implied volatility affects the variance of the

firm’s operating performance. An increase in this second component decreases the security’s

value because higher discount rates are applied to future cash flows when calculating their

present value. Consequently, investors require additional compensation to hold stocks of

companies exposed to weather volatility, even if the volatility consists of idiosyncratic shocks,

particularly when investors are unaware of the parameters that govern the security’s return

process.

Our empirical analysis reveals that weather risk impacts firms’ cash-flows and discount

rates. Namely, higher WIVOL leads to an increase in firms’ operating costs while it also

leads to higher uncertainty about their fundamentals. We find that a one-standard deviation

increase in ∆WIVOL results in a 4.4%, 4.8%, 1.4%, and 4.1% quarterly increase in the

absolute changes of the firms’ revenue, cost of goods sold, SG&A expenses, and the total

operating expense, respectively. Additionally, our findings document a tendency among

managers to shift investors’ focus towards firms’ vulnerability to climate change risks. This

inclination becomes evident when WIVOL shocks lead to higher operating costs, as managers

seem to blame it on the weather and attribute these challenges to weather-related events.

We then utilize WIVOL to examine how firms are influenced by market expectations

of weather risk. Specifically, we estimate the exposure (betas) of firms to innovations in

WIVOL and analyze their predictive power for these firms’ future performance. The un-

derlying hypothesis is that firms with more negative exposure to WIVOL innovations are

valued at a discount. The reasoning behind this is that if expectations of larger temperature

fluctuations lead to a higher risk of unexpected costs for the company, then forward-looking

investors might demand compensation for holding stocks with more negative WIVOL beta.

Consequently, this gives rise to a negative relationship between a firm’s beta and its future

stock return. To assess the significance of weather volatility risk, we conduct our empirical
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analysis using the set of firms headquartered in the city of New York.

We test the predictive power of WIVOL beta on stock returns. To this end, we form

portfolios of stocks based on their previous month betas. Employing a long-short strategy

that buys stocks with the most negative previous month WIVOL betas and sells those with

the most positive, we achieve risk-adjusted annualized returns ranging from 7.6% to 9.1%.

Additionally, we test the return effect of WIVOL beta at the individual firm level using

Fama-MacBeth regressions and find a significant negative relation between firms’ betas and

their future stock returns. We obtain consistently significant return predictability excluding

firms in the financial sector or expanding the firm set to headquarters within 100 miles

from the LaGuardia airport. In all, and given that stock prices are determined by ex-

ante discounted cash-flows, these results suggest that the option implied weather volatility

contains value-relevant information that is not encompassed by historical counterparts. By

extracting expectations of future weather volatility, as opposed to relying on realized ex-post

equivalent measures, investors can more effectively gauge the extent of firms’ susceptibility

to weather risks. We investigate the economic channel underlying the effect of WIVOL beta

on future stock returns, and our results indicate that return predictability is not primarily

driven by investor inattention, profitability, or mispricing associated with limits to arbitrage,

but rather by the exposure of firms to weather risks.

It is worth noting that strategies hedging climate risk are largely based on signals derived

from extreme weather events, which are more likely to be associated with the summer months

(e.g., extreme heatwaves, hurricanes). In light of this, we investigate if the performance of

the WIVOL beta strategy is actually, and only, a summer affair. One of the advantages of

the WIVOL beta strategy is that it does not depend on the occurrence of extreme events

that are likely seasonal and infrequent.6 After computing average returns for each month

of the year using the beta long-short strategy, our analysis confirms that the performance

6For example, strategies based on extreme heat events that are likely to be of consideration during the
summer can make the rebalancing of portfolios more challenging. Unlike such strategies, the WIVOL beta
approach is available year-round, and allows for rebalancing every month of the year.
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of the WIVOL beta strategy is not limited to the summer months. Interestingly, we find

that December yields the highest return, followed by the month of April. This observation

suggests that the WIVOL beta strategy’s effectiveness is not confined to a specific season

and can be beneficial across various months of the year.

Finally, and given that WIVOL is a geographic based measure, we expect local firms

to exhibit stronger exposure than non-local firms based in a different state. To explore the

local aspect of WIVOL, we estimate the option implied volatility of weather for the Dallas-

Fort-Worth metroplex, with temperatures recorded at the weather station in the Dallas

Fort-Worth International airport. We find that, as in the case of New York, firms based in

the Dallas Fort-Worth area are significantly exposed to innovations in the WIVOL of Dallas

Forth-Worth. Greater negative exposure of firms to WIVOL predicts higher future returns,

validating our initial hypothesis. Interestingly, our second set of results confirm the local

nature of weather risks. When we estimate New York firms’ betas with respect innovations

in the WIVOL of Dallas Fort-Worth, the predictability of these betas is statistically insignif-

icant. Likewise, estimating Dallas Fort-Worth based firms’ exposure to innovations in the

WIVOL of New York leads to no predictability of future returns. This outcome indicates that

firms are indeed significantly exposed to uncertainty about weather volatility risks specific

to the city in which they are based.

The structure of the papers is as follows. Section 2 discusses the literature related to

the paper. Section 3 presents the main data sets used in the analysis. Section 4 presents

the weather option implied volatility (WIVOL). Section 5 discusses the empirical results.

Section 6 concludes.
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2 Related Literature

While the topic on the interactions between climate events and financial markets is relatively

new, there has been a great amount of interest and research in the field. Giglio, Kelly and

Stroebel (2021) and Hong, Karolyi and Scheinkman (2020) provide an excellent review on

this literature. We next describe the studies most related to our work and then discuss our

contribution.

A growing literature investigates the exposure of different asset classes to climate risks.

The asset classes include stocks, municipal and corporate bonds and real estate, while the

climate risks considered are physical risks, transition risks or a combination of both. To

determine the variable of interest governing these risks dynamics, the literature uses text-

based techniques (e.g., financial statements, news articles, emissions disclosures) or historical

extreme events (e.g., extreme heat, hurricanes, sea level rise).

In equity markets, several studies find substantial effects of climate risk on investors’ de-

cisions and asset returns. Engle, Giglio, Kelly, Lee and Stroebel (2020) develop a text-based

index using climate change news from the Wall Street Journal and find that ESG friendly

stocks outperform with news coverage. Choi, Gao and Jiang (2020) use Google news search

to find that, when temperature levels are abnormally high, investors pay more attention to

global warming and stocks disclosing high levels of CO2 emissions underperform. Bolton

and Kacperczyk (2021) use firms’ voluntary disclosures of CO2 emissions and document

that more polluting firms earn higher future returns, as they are more exposed to regulatory

risks, and consistent with the findings of Hsu, Li and Tsou (2023). Alekseev, Giglio, Maingi,

Selgrad and Stroebel (2022) combine extreme heat shocks with managers’ SEC disclosures

to determine the stocks to buy and sell. Bansal, Kiku and Ochoa (2019) document that

low-frequency variations in temperature carry a positive risk premium. Sautner, van Lent,

Vilkov and Zhang (2023) also develop a text-based approach to determine firms’ exposure

to climate change based on managers earnings calls disclosures.
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Climate risk also affects financial assets beyond equities. In options markets, Ilhan,

Sautner and Vilkov (2021) find that the cost of option protection against downside tail

risk is larger for firms with more carbon-intense business models. Kruttli, Roth Tran and

Watugala (2023) document that firms in a landfall region exhibit large, long-lasting increases

in implied volatility reflecting not only landfall uncertainty but also impact uncertainty. In

fixed income markets, studies have shown that physical climate risk such as heat stress and

sea-level rise is priced in municipal bonds market (e.g., Painter (2020), Acharya, Johnson,

Sundaresan and Tomunen (2022) and Goldsmith-Pinkham, Gustafson, Lewis and Schwert

(2023)).7 In housing and mortgage markets, many of the researchers find empirical evidence

that physical climate risk such as rising sea levels, hurricane and wildfires, directly affect real

estate prices since the value of real estate is tightly linked to the value of the land it is build

on (e.g., Hauer, Evans and Mishra (2016), Murfin and Spiegel (2020), Bernstein, Gustafson

and Lewis (2019)).8

This paper complements previous empirical findings on the impact of climate risk on

economic fundamentals. For example, Baker, Bloom and Terry (2023) use natural disasters

around the world as an instrument for the second moment shocks and reveal a negative

impact of uncertainty on growth. Pankratz, Bauer and Derwall (2023) and Addoum, Ng

and Ortiz-Bobea (2023) examine the impact of extreme temperatures on individual firms’

and industries’ operating performance, respectively. Extreme temperatures also reduce labor

working hours (Graff Zivin and Neidell (2014)) and labor productivity in heat sensitive

sectors (Somanathan, Somanathan, Sudarshan and Tewari (2021)). Barrot and Sauvagnat

(2016) show that natural disaster shocks to suppliers propagate in production network by

imposing permanent output losses on their customer firms. More broadly, our findings

support for papers documenting economic, financial or political uncertainty-averse investors

7Huynh and Xia (2021) document that corporate bonds with positive covariance with a climate news
index have lower average returns.

8Investors’ attention and local beliefs in climate change can also play an important role (e.g., Baldauf,
Garlappi and Yannelis (2020) and Giglio, Maggiori, Rao, Stroebel and Weber (2021)).
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demand extra compensation to hold stocks exposed to those uncertainty shocks (Bali, Brown

and Tang (2017), Baker, Bloom and Davis (2016) and Kelly, Pastor and Veronesi (2016)).

Our study also contributes to literature studying the weather derivatives market. Pur-

nanandam and Weagley (2016) show that the introduction of weather derivatives contracts

improve the accuracy of temperature measurement at the underlying weather stations. Wea-

gley (2018) emphasis that financial sector’s risk sharing capacity affects price movements of

weather derivative contracts. Perez-Gonzales and Yun (2013) and Armstrong, Glaeser and

Huang (2022) present empirical evidence that active risk management policies following the

introduction of weather derivatives lead to increase in firm value and decrease in corpo-

rate executive compensation, respectively. Schlenker and Taylor (2021) show that prices of

weather derivatives predict future temperatures better than existing climate models.

Overall, this paper makes the following contributions to the literature on climate risk.

First, instead of extreme weather risk, we study the impact of innovations to temperature

volatility on firms. We find that a rise in weather uncertainty increases the probability

of experiencing temperatures colder than expected in winter or warmer than expected in

summer, resulting in unforeseen costs for the firm and ultimately impacting its performance.

Second, we introduce a novel measure of weather risk by estimating the time series for the

volatility of temperature implied by weather option prices. We find that firms with more

positively exposed to innovations to the weather implied volatility exhibit lower expected

returns. Third, we study, and confirm, the local nature of weather volatility. We find that

firms are exposed to the volatility of weather in the area in which they are based only, a

result that highlights the importance in distinguishing between global and local weather risk.
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3 Data and Methodologies

We obtain data on weather derivatives from the Chicago Mercantile Exchange Group In-

corporated (CME). CME weather derivatives are exchange-traded contracts whose payoff

depends on the evolution of a weather-related variable for a specific geographic location and

period of time. The contracts are in the form of futures and options on futures, while the

weather variable is an index based on daily temperature.9 We next define the variables used

in the computation of the derivatives’ payoff.

The daily temperature (in Fahrenheit degrees) is measured for a specific weather station

and the weather index is in degree-days, which is the daily temperature deviation from

65 Fahrenheit degrees. We consider two degree-days cases. Heating degree-days (HDD)

measures the deviation below 65 degrees, while cooling degree-days (CDD) measures the

deviation above 65 degrees. Intuitively, HDD measure the additional heating firms need to

maintain normal operations during colder days (below 65F). CDD measure the additional

cooling firms need to maintain normal operations during warmer days (over 65F).

Option contracts written on futures contracts are based on the degree-days index, and so

is their strike price. The futures contracts are written on the cumulative degrees days over

a specific period of time. HDD call and put options payoff with strike price K and with T

days to maturity respectively take the form

CHDD
T = max

(
T∑
t=1

max (65− Ft, 0)−K, 0

)
(1)

PHDD
T = max

(
K −

T∑
t=1

max (65− Ft, 0) , 0

)
(2)

Likewise, CDD call and put options payoff with strike price K and with T days to maturity

9Alternative weather variables include rainfall, snowfall and frost.
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respectively take the form

CCDD
T = max

(
T∑
t=1

max (Ft − 65, 0)−K, 0

)
(3)

PCDD
T = max

(
K −

T∑
t=1

max (Ft − 65, 0) , 0

)
(4)

We focus on monthly HDD and CDD contracts, for which both futures and options on

futures expire on the second business day after the futures contract month. The CME lists

HDD contracts for the months of November, December, January, February and March plus

the transition months of October and April. CDD contracts are listed for the months of May,

June, July, August and September plus the transition months of October and April. For

each trading day, we collect data on the contract expiration date, option price, futures price,

strike price and option implied volatility. Using these inputs and U.S. Treasury bill rates,

we confirm the contracts’ option implied volatility following Black (1976) and discard obser-

vations violating the put-call parity and outside the 0-200 percent range (see, for example,

Goyal and Saretto (2009) and Chabi-Yo, Doshi and Zurita (2023)).

To study market expectations of localized weather volatility, we focus our analysis on

future weather oscillations for the city of New York given that it represents the most liquid

contract (Schlenker and Taylor (2021)). Therefore, the degree-days are with respect to the

Weather Bureau Army station located at the LaGuardia airport (WBAN 14732). In order

to generate a time series for the monthly weather option implied volatility, we utilize option

contracts that are at-the-money and with maturity closest to 30 days. In addition, we

compute the average implied volatility between HDD and CDD contracts for the transition

months of October and April. We follow this procedure for each day from January 2, 2005 to

July 31, 2021, and then take the monthly average. The resulting variable is the one-month,

at-the-money, weather option implied volatility (WIVOL) that we discuss in next Section.

Data with respect to firms’ is obtained from CRSP and Compustat. We collect monthly

12



observations on firms’ stock price, market capitalization and corporate headquarter location

(matching the firm’s city, state and zip code) from CRSP. We collect quarterly accounting

data from Compustat. For the period between January 2005 to July 2021, the sample

contains 2,386 New York based firms, with an average (median) of 833 (790) firms per

month. We discard stocks with a price per share less than $5 and firms with less than 24

monthly returns.

4 Weather Option Implied Volatility

Figure 1 plots the time series for WIVOL, the weather option implied volatility based on the

temperature recorded at the LaGuardia airport in the city New York. The sample period is

from January 2005 to July 2021. To construct the time series, we use closest to one month

to maturity option contracts that are at-the-money. The time series reports the average

monthly observation from daily traded contracts. The series exhibits an average of 26.1%

(median of 23%) implied volatility of weather throughout the sample.

[Insert Figure 1 Here]

The time series exhibits substantial time variation. WIVOL, given its link to the second

distributional moment of a random variable, captures expected future oscillations due to

both large and small shocks. We observe major oscillations in times of uncertainty about

hurricanes in the summer season and snowstorms in the winter season. In 2005, while New

York was not directly impacted by major developments in the Atlantic ocean, including

Hurricane Katrina, local weather developments impacted WIVOL. June of 2005 was des-

ignated the warmest June on record, with WIVOL reaching 58%. October 2005 was the

wettest month on record, with almost double the amount of rain recorded in any October

and causing local flooding. WIVOL climbed to 52.9%.
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In 2010, WIVOL peaked to 80.4% for what would end up being New York’s hottest

summer on record. Interestingly, in this record-breaking season there was no cataclysm that

defined the period but a consistently higher than expected temperature. A combination of

record breaking heat combined with a strong backdoor cold front approaching the region

from the northeast helped to provide a very unstable environment. Flooding disrupted New

England, with stretches of Interstate 95, the main route linking Boston to New York, closed

for days. Hurricane Earl generated most of the uncertainty in October 2010 but ultimately

did not impact the area. However, the city Power Authority was criticized for excessive

spending on emergency crews, which led increased power rates for New York buildings.

WIVOL reached its maximum value of 81.7% in September of 2012, preceding the arrival

of hurricane Sandy in the following month. Large parts of the city and surrounding areas

lost electricity for several days as a result of the storm, which killed 43 people in New York

City. Rehse, Riordan, Rottke and Zietz (2019) document that increased uncertainty about

material physical risks like the impact of Hurricane Sandy lowers market liquidity. The

winter of 2014 also generated an increase in WIVOL, with utilities asking customers to cut

power use in early January and natural gas prices soaring as a snowstorm brought freezing

temperatures to the northeast of the country.

We continue to observe time variation throughout the sample, with an upward shift in

mid-2020. The increase in WIVOL can be related to climate policies and regulations for

the city, as the New York State Department of Financial Services urged New York-based

insurance companies to better manage the risks they face from climate change.10 Moreover,

the agency states that it would start asking insurers in 2021 what steps they have taken as

part of its examination process. This local policy event, combined with discussions at the

federal level regarding a stronger stance from regulators towards climate change could have

impacted WIVOL given the increased demand for hedging climate risks.11 In 2021, WIVOL

10“New York Regulator Pushes Insurers on Climate Change,” Wall Street Journal, September 22, 2020.
11A recent survey by Stroebel and Wurgler (2021) finds that investors identify regulatory risk as the most

important climate risk to business in the short-term.
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drastic increase in February of 2021 is consistent with local and national weather events

during this month, the latter mostly driven by the Texas power crisis caused by the winter

storm. New York experienced one of the snowiest Februaries on record, with the National

Weather Service registering three significant weather events for New York. Winter weather

emergency declaration restricted all non-emergency travel in early February as well as all

flights cancellation in LaGuardia airport.

When we contrast WIVOL with other risks measures, the findings suggests it is related

to weather specific risks, which are location specific in nature. Table 1 reports results from

time-series regressions in which the change in the weather option implied volatility, WIVOL,

is regressed on various variables including the climate change news index from Engle, Giglio,

Kelly, Lee and Stroebel (2020), the intermediary capital ratio and intermediary risk factor

of He, Kelly, and Manela (2017), the change in the political uncertainty index from Baker,

Bloom, and Davis (2016), the change in financial, macro, and real uncertainty of Jurado,

Ludvigson, and Ng (2015), and the change in the implied volatility of the S&P 500 index.

We find that WIVOL is not statistically significantly associated with climate change news

and proxies of macro and financial uncertainties, and intermediary capital constraints.12 The

lack of significance suggests that the dynamic of WIVOL is not mainly driven by capital con-

straints of financial institutions, nor is it driven by other financial and macro uncertainties.

Instead, it is guided by weather uncertainty, which arises exogenously from the financial

markets.

[Insert Table 1 Here]

Overall, we observe that WIVOL seems to capture future temperature oscillations, with

peaks before or at the onset of important physical weather risks. It also seems to be related

to regulatory or transition risks, as the increased levels from the mid-2020 suggests.

12The coefficients on WIVOL is also statistically insignificant for other variables including the total new
privately owned housing starts, the change in term spread, the change in the civilian unemployment rate,
and the price-earnings ratio and the return of the S&P 500 index.
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5 Weather Volatility and Asset Pricing

In this section, we investigate the relevance of weather volatility shocks for firms’ cash-

flows and expected returns. We first motivate the empirical analysis by discussing the main

results of the dynamic model derived in the Appendix, where idiosyncratic weather risk

impacts firms’ value in equilibrium.

Classical work of Sharpe (1964) and Lintner (1965) predicts that variables other than the

market factor exposure do not affect security prices. Merton (1987) deviates from standard

asset pricing models and demonstrates that idiosyncratic risk can be priced in equilibrium

if some investors are underdiversified and do not hold the market portfolio. In the same

vein, our model features a Merton (1987) economy with the firm’s cash-flows subject to

systematic and unsystematic risk. We introduce an idiosyncratic, locally sourced climate risk

friction into an otherwise friction-less economy and show that weather risk shocks impact

operating performance and expected returns in equilibrium. Weather risk shocks lower firms’

market value by decreasing cash flows while increasing discount rates, and ultimately increase

expected returns.

In a friction-less economy, firm k value V ∗
k is subject to only a systematic common factor

risk. The introduction of an idiosyncratic weather risk component σ2
k into the firm’s cash-

flow will alter its value to Vk. In the Appendix, we show that the presence of weather risk

lowers firm value Vk compared to the standard case V ∗
k

Vk =
V ∗
k

1 +
[
(φ2

k + σ2
k)

(1−qk)xkδ
qkRf

] (5)

The presence of idiosyncratic weather risk σ2
k increases expected excess returns

E(R̃k)−Rf = ηkηδ +
δxk(φ

2
k + σ2

k)

qk
(6)
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with η, φ, q, x, and δ defined in the Appendix.

In the following sections, we study whether shocks to idiosyncratic weather volatility

are priced. Weather risk shocks are local and idiosyncratic in nature. For example, an

increase in expected oscillations in temperature for the city of New York is likely to be of

more importance for the operating performance of firms based in the city of New York than

in the city of Dallas. Moreover, changes in expected oscillations in temperature measured

by WIVOL offer a unique set of features to analyze firm performance under climate risk,

as shocks to WIVOL are exogenous, local, idiosyncratic and unsystematic, as opposed to

disasters type of extreme weather events with a potential systematic reach.

5.1 WIVOL and Operating Performance

Weather is considered a key driver for buildings’ energy consumption since it affects energy

demand for heating, ventilation, and air conditioning (HVAC). Furthermore, other weather

dependent conditions, such as daylight and humidity have a great impact on the use of

equipment and on the number of hours indoors (Gonzalez-Torres, Perez-Lombard, Coronel,

Maestre and Da (2022)). In the U.S., large office buildings account for 65% of the total elec-

tricity use and 36% of total energy use, with heating and cooling building services generating

15% of worldwide greenhouse-gas emissions. Larger oscillations in temperature around nor-

mal levels can therefore have non-trivial effects on firms’ cash-flows. And this also includes

non-disaster events.

Given that WIVOL measures expectations of future temperature oscillations around nor-

mal levels, we study the extent to which firms’ operating performance is impacted by in-

novations to WIVOL. Weather risk can directly impact firms, as temperatures outside the

normal range increases operating costs due to higher demand for energy. But it also does it

indirectly, impacting power plants in the area which during outages cannot supply services

to these firms, creating further disruptions (Shive (2012)). To implement our empirical anal-
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ysis, we obtain firm-level data from Compustat. Table 2 reports the summary statistics for

WIVOL innovations and quarterly firm-level characteristics.

[Insert Table 2 Here]

Following Petersen (2009), we implement quarterly panel predictive regressions where the de-

pendent variables are various proxies form firm-level operating costs and revenue. The main

explanatory variable is lagged quarterly innovations in WIVOL. We use as control variables

the logarithm of the firm’s market capitalization (Size), the book-to-market ratio (Book-to-

Market), the gross profitability (Profitability) as in Novy-Marx (2013), the logarithm of the

number of months since a listing date (Age), the book leverage (Leverage) defined as short-

and long-term debt, scaled by the total debts and common equity, the average number of

shares traded over the previous three months scaled by shares outstanding (Share Volume),

the logarithm of the price (Price), the cumulated past performance in the previous year by

skipping the most recent month (Momentum), and the earnings to price ratio (Earnings-

to-Price). We compute t-statistics controlling for firm and year fixed effect and clustering

standard errors at the firm level to account for potential serial correlation in the residuals.

Table 3 presents the panel regression results.

[Insert Table 3 Here]

For the proxies of operating costs, we use the logarithm of the cost of goods sold (Column

1), the selling, general and administrative expense (Column 2), the total operating expense

(Column 3), the inventory costs (Column 4). The coefficients for ∆WIVOL are positive and

statistically significant for all four proxies, indicating that positive innovations to WIVOL

lead to higher operating costs in the following quarter. The economic significance is high:

a one-standard deviation increase in ∆WIVOL results in a 0.45% increase in the level of

total operating costs. This finding is consistent with Somanathan, Somanathan, Sudarshan

and Tewari (2021), who show that temperatures outside expected intervals can generate
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unexpected costs. WIVOL measures precisely the risk of temperatures falling below 65

degrees Fahrenheit in the winter months or exceeding 65F degrees in the summer months,

with the 65 figure based on industry conventions for normal building operations. Addoum,

Ng and Ortiz-Bobea (2020) find that extreme weather events have insignificant effects on

firms’ establishment sales, suggesting that large corporations have the resources to withstand

physical damages. In the case of firms’ exposure to innovations in WIVOL, these shocks

include also non-extreme events that can still impact firms due to unexpected operational

costs. In column 5 and 6, we further investigate the effect of the weather implied volatility

on the firms’ revenue and earnings forecasts and report that innovations to WIVOL have

no significant effect on firms’ sales but negatively impact analysts’ earnings estimate for the

next fiscal quarter, scaled by lagged stock price. These results on the relevance of weather

shocks are consistent with Brown, Gustafson and Ivanov (2021), who document that severe

winter weather has no impact on firms’ sales but reduces firms’ cash-flows by increasing

operating costs. Unlike severe winter weather shocks, WIVOL innovations encompass both

extreme and non-extreme events and seem to be prevalent during all seasons.

5.2 WIVOL and Fundamental Uncertainties

In the theoretical framework, the value of the security is influenced by changes in expected

temperature oscillations measured by WIVOL through two key components. First, the firm’s

value is affected by the anticipated impact of changes in WIVOL on its future cash flows.

The second component addresses how weather-implied volatility affects the variance in the

firm’s operating performance. An increase in this second component decreases the security’s

value because higher discount rates are applied to future cash flows when calculating their

present value. Consequently, investors require additional compensation to hold stocks of

companies exposed to weather volatility, even if the volatility consists of idiosyncratic shocks,

particularly when investors are unaware of the parameters that govern the security’s return
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process. In this section, we explore whether the changes in WIVOL has a meaningful impact

on the firms’ fundamental uncertainties.

[Insert Table 4]

In Table 4, we report the emprical results from the panel regression investigating the effect

of the weather implied volatility on the firms’ fundamental uncertainties. The firms’ fun-

damental uncertainties are measured by taking the absolute values of the quarterly changes

in the following values: the firm’s revenue (column 1), the cost of goods sold (column 2),

the selling, general, and administrative expense (column 3), and the total operating expense

(column 4). All four variables are scaled by the last quarter’s total asset. The panel regres-

sion results show that the coefficients for ∆WIVOL are positive and statistically significant

for all four proxies, indicating that positive innovations to WIVOL not only lead to higher

operating costs but also higher uncertainties in those values in the following quarter. Eco-

nomically, one-standard deviation increase in ∆WIVOL results in a 4.4%, 4.8%, 1.4%, and

4.1% increase in the absolute changes in the revenue, the cost of goods sold, the general and

administrative expense, and the total operating expense, respectively. These results are in

line with Irvine and Pontiff (2009), who document that higher volatility of fundamental cash

flows is linked to higher idiosyncratic volatility, and with Wei and Zhang (2006), who report

that idiosyncratic volatility is linked to a decrease in corporate earnings and an increase in

earnings volatility.

Beyond the uncertainty measures based on accounting statements, we also investigate the

effect of the weather implied volatility on other proxies of the firms’ fundamental uncertain-

ties. First, we explore whether managers tend to blame firms’ prospective poor performance

on the weather. The significant effect of weather volatility on firms’ future costs and uncer-

tainties associated with those suggest that managers should consider this risk as non-trivial.

To investigate this matter, we explore the relevance of WIVOL on managers’ discussions con-

cerning risk associated with the climate change during firms’ upcoming earnings calls. We
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employ the company-level measure of exposure to climate change risk developed by Sautner,

van Lent, Vilkov and Zhang (2023) as a proxy for the level of attention managers dedicate to

climate change risk. We anticipate that positive shocks to WIVOL will lead to an increase

in discussions about climate change risk in the future. This mirrors the case observed when

considering the firm’s operating cost and its uncertainty.

[Insert Table 5 Here]

Note that this analysis examines whether there is an increased focus from managers

about firms’ climate change exposure subsequent to positive shocks to the WIVOL metric,

regardless of whether these managers implement policies to mitigate the said exposure. In

Table 5, columns 1 and 2 show that innovations to WIVOL result in increased discussions

about climate change risk among managers and greater earnings surprises for firms, respec-

tively. The standardized earnings surprises are calculated by subtracting the mean analyst

expected earnings from the actual earnings and then scaling by the standard deviation of

the analyst forecasts. The result imply that, following an episode of weather-related uncer-

tainty shock, managers redirect the attention of investors toward their firms’ susceptibility to

risks arising from climate uncertainty. This is a means to explain the negative repercussions

of these shocks on the companies’ fundamentals in the future. This pattern also suggests

that managers attribute potential underperformance of the firm to the impact of uncertainty

stemming from weather shocks, thereby safeguarding their own professional standing.

Furthermore, we analyze the response of option traders by examining the first difference

of call option implied volatility with 30 days of maturity and delta of 0.5 (column 3), the

first difference of put option implied volatility with 30 days of maturity and delta of -0.5

(column 4), and the implied volatility of put option with moneyness closest to but above

1 minus that of call option with moneyness closest to but below 1 (column 5) of Table 5.

These results demonstrate that option traders react positively to news of positive shocks to

weather uncertainty by increasing the prices of both call and put equity options. Notably,
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the price increase is more pronounced for put options, leading to higher skewness in the

equity option market following the positive weather uncertainty shocks.

Taken together, the results in this section confirm our hypothesis that an increase in mar-

ket expectations about future temperature volatility leads to an increase in firms’ operating

costs and uncertainties associated with those fundamentals, with managers acknowledging

the importance of weather risks. In Table A.1 in the appendix, we also show that our baseline

results are not driven by a particular sector by adding an sector-specific interaction term.13

5.3 Firm-level Exposure and Expected Returns

Having established that idiosyncratic weather risk shocks not only lead to higher operating

costs but also higher uncertainties in those values, an implication derived from the model’s

first order conditions, we next study if weather risk exposure is priced in the cross section of

expected returns. Weather risk shocks, proxied by innovations to WIVOL, provide a unique

set of features to study climate risk and stock returns, given their local, exogenous and

unsystematic nature.

Do firms’ exposures (betas) to innovations in WIVOL help predict these firms’ future

returns? Intuitively, firms with more negative exposure to weather risks will perform poorly

as WIVOL increases, and therefore investors demand a higher compensation to invest in these

firms. Conversely, firms with more positive exposure provide a good hedge against weather

risks, and therefore investors are willing to pay higher prices and accept lower future returns

for them. If this reasoning manifests over time, then a strategy buying stocks with most

negative exposure while selling stocks with most positive exposure will exhibit positive and

statistically significant returns.

We thus estimate the exposure of firms to weather option implied volatility innovations.

13We analyze the manufacturing, transportation, wholesale, retail, finance and service sectors based on
firms’ SIC numbers.
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Specifically, each month t and for each firm i, we estimate the β∆WIV OL of individual stocks

using monthly rolling regressions of excess stock returns on ∆WIVOL

Ri,t = αi,t + β∆WIV OL
i,t ∆WIV OLt + βX

i,tXt + εi,t (7)

where Ri,t is the excess return of firm i in month t, ∆WIVOL is the innovation in weather

option implied volatility and X is a set of controls. The controls impose for the loading

β∆WIV OL to be orthogonal to the stock market excess return and the historical temperature

volatility.14 We use a 36-month window in the estimation of β∆WIV OL. The first set of betas

are obtained using the sample from January 2005 to December 2007. We then use these

monthly betas to predict stock returns in the following month (January 2008) and repeat

this exercise until July 2021.

To construct the long-short strategy, we form quintile portfolios by sorting individual

stocks based on their previous-month betas. The portfolio quintile 5 (high) contains stocks

with the highest (most positive) β∆WIV OL during the previous month, while the portfolio

quintile 1 (low) contains stocks with the lowest (most negative) β∆WIV OL during the previ-

ous month. The difference portfolio (low minus high) results from holding a long position

in the low β∆WIV OL portfolio and a short position in the high β∆WIV OL portfolio. We im-

plement and rebalance the long-short strategy on a monthly basis and for the sample period

from January 2008 to July 2021. Table 6 reports the results for value-weighted portfolios.

Specifically, the Table reports the average betas as well as annual raw returns and abnormal

returns for each quintile portfolio and long-short strategy. By construction, since the portfo-

lios are formed by ranking stocks on previous month exposures, quintile betas monotonically

decrease from 0.29 for portfolio 5 to -0.37 for portfolio 1. For the long-short strategy, the

average return difference between quintile 1 (Low) and quintile 5 (High) is statistically sig-

14We proxy for the historical volatility of temperature with the standard deviation of the year-over-year
change in temperature in the last 36 months. Using alternative definitions for the computation of the
historical volatility produces similar results. The historical volatility is based on NOAA daily temperatures
for the LaGuardia airport.
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nificant and equal to 0.72% per month with a five-lags Newey and West (1987) corrected

t-statistic of 2.44. This result indicates that stocks in the lowest beta quintile generate 8.76%

higher annual returns compared to stocks in the highest beta quintile.

[Insert Table 6 Here]

We investigate the possibility that return predictability generated by β∆WIV OL decreases

once we incorporate well established risk factors. We therefore account for the excess market

return, the three factors of Fama and French (1994), the Carhart (1997) momentum factor,

the five factors of Fama and French (2015) and the four factors of Hou, Xue and Zhang (2014).

In columns 3 to 7 of Table 6, each entry reports the intercept (alpha) from the regression

of the portfolio returns on a constant and a risk factor model. In all cases, the long-short

strategy yields economically and statistically significant returns, with alphas ranging from

7.68% to 9.12% annual, even after controlling for different risk factors.

These results suggest that sorting equity portfolios based on firms exposure to WIVOL

innovations seems to provide significantly positive returns. In addition, the β∆WIV OL strat-

egy provides diversification benefits, given the correlation between WIVOL and VIX and

the global warming news index from Engle, Giglio, Kelly, Lee and Stroebel (2020), as we

document in Section 4. Strategies that hedge climate risks based on extreme events can be

challenging to rebalance frequently. This is the case since extreme events can be rare and

also seasonal, such as the case of extreme hot temperatures or hurricanes, usually during the

summer months. Firms, however, are exposed to uncertainty about temperature volatility

year-round. The long-short β∆WIV OL strategy provides an alternative that can be imple-

mented every month of the year. However, a valid concern is if the β∆WIV OL strategy is a

summer affair. If its performance is mostly driven by extreme, seasonal events during the

summer, we expect for its return to originate mostly in the summer months. To test this

hypothesis, we compute the average return for each month of the year during our sample.

Figure 2 confirms that the performance of the strategy is not a summer affair, with Decem-
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ber (106 monthly basis points) representing the month with largest return, followed by the

month of April (86 monthly basis points).

[Insert Figure 2 Here]

We further look into the return effect of β∆WIV OL at the individual instead of portfolio

level. We examine the cross-sectional relation between expected returns and lagged betas

at the stock level using Fama and MacBeth (1973) regressions. We compute the time-series

averages of the slope coefficients from the regressions of one-month-ahead stock returns on

the beta. The average slopes provide standard Fama-MacBeth tests for determining if the

explanatory variable has, on average, nonzero premium. Table 7 reports the time-series aver-

ages of the slope coefficients and the Newey-West t-statistics in parentheses. The univariate

regression results reported in column 1 indicate a negative and statistically significant rela-

tion between the beta and the cross-section of future stock returns. Column 2 controls for

the firm’s size (log of market capitalization) and also reports a significant loading with the

expected sign. In line with results at the portfolio level, firms with lower β∆WIV OL exhibit

higher future returns. Sautner, van Lent, Vilkov and Zhang (2023b) document that man-

agers discussions on climate change do not seem to predict the realized future return of these

firms. Their non-result could be an indication that, despite managers’ discussing on climate

change, they seem to blame it on the weather instead of implementing hedging policies. This

is also consistent with the significant return effect of β∆WIV OL, since its relevance suggests

that managers do not fully hedge weather risk exposure.

[Insert Table 7 Here]

We conduct several robustness checks in our analysis. Initially, we investigate alternative

specifications concerning firm-level exposure to weather uncertainty shocks. Specifically, in

Table A.2, we recalibrate each firm’s beta, as defined in Equation 7, employing various sets of

controls: without any controls (Panel A), with control for the market factor MKT (Panel B),
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and with control for historical weather volatility (Panel C). Notably, we observe statistically

significant average return disparities between quintile 1 (Low) and quintile 5 (High) across

all three specifications. Correspondingly, in Table A.3, employing cross-sectional regressions,

we find persistent robustness in the significance of the beta return effect. Subsequently, we

exclude firms within the financial sector, as determined by their SIC code (60-67 Finance,

Insurance, and Real Estate), and construct quintile portfolios based on the previous month’s

β∆WIV OL. Table A.4 demonstrates that our long-short strategy yields economically and

statistically significant returns, with alphas ranging from 12.36% to 15.84% annually after

accounting for various risk factors. In another robustness check, we broaden our selection

criteria beyond firms based solely in New York City, opting instead for firms headquartered

within 100 miles from LaGuardia airport. The results in Table A.5 reinforce the robustness

of our empirical findings.

Overall, we find significant results for the return effect of β∆WIV OL. The negative link

between firms’ beta and their future returns at the portfolio and individual level is consistent

with an investors’ intertemporal hedging motive. On the one hand, stocks with negative

betas correlate negatively with increases in expected weather volatility; hence, investors

demand extra compensation in the form of higher expected return to hold these stocks. On

the other hand, stocks with positive betas correlate positively with increases in expected

weather volatility. Since stocks with positive beta would be viewed as relatively safer assets

at times of increased volatility, investors are willing to pay higher prices and accept lower

expected returns.

5.4 Firm Characteristics and Return Predictability

Examining the economic source of return predictability, we investigate the role of firm vis-

ibility, profitability, and limits to arbitrage on the extent of the negative relation between

firms’ WIVOL beta and their future returns.
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[Insert Table 8 Here]

First, we assess whether our findings are driven by investor inattention, suggesting a

lack of awareness among investors regarding the impact of weather volatility on firm fun-

damentals. If limited investor attention proves to be significant, we posit that the returns

of less visible stocks exhibit greater sensitivity to changes in local weather uncertainty. To

examine this hypothesis, we conduct independent double sorts based on firms’ WIVOL beta

and their characteristics. We then assess the performance of the long-short (Low minus

High) WIVOL beta strategy within each group. Regarding firm visibility characteristics,

we utilize the log of monthly market value of equity (size) and the log of two-month lagged

trading volume times two-month lagged price (volume). Panel A of Table 8 shows that there

are no economically meaningful difference in abnormal returns of the long-short WIVOl beta

sorted portfolios between the two groups. Furthermore, the average returns of the long-short

portfolio are statistically significant only within the large size and high volume groups. This

evidence suggests that our results are not mainly driven by investors’ limited attention bias.

Second, we evaluate the performance of the long-short based on proxies of firm profitabil-

ity. Those proxies include operating profit (OperProf), defined as revenue minus cost minus

administrative expenses minus interest expenses, scaled by book value of equity and exclud-

ing the smallest size tercile. Additionally, we consider return on equity (RoE), calculated

as net income over book value of equity. The analysis reveals no significant differences in

abnormal returns between the two groups of long-short WIVOl beta-sorted portfolios and

statistically significant abnormal returns are observed only within more profitable groups.

This empirical observation indicates that our findings are not mainly driven by risk premium

embedded in common variations in stock returns among constrained firms due to shocks

to the macroeconomic environment, credit conditions, intermediary capital constraints, or

monetary policy (Lamont, Polk and Saa-Requejo (2001), He, Kelly, and Manela (2017)). Al-

ternatively, to the extent that more profitability face reduced financial constraints to adapt,
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our results are not driven by financial frictions that prevent the firm from implementing risk

mitigation strategies.

Third, we examine whether the WIVOL predictability is related to mispricing associated

with limits to arbitrage. To address this question, we rely on two proxies of limits to

arbitrage: idiosyncratic volatility (IdioVol), denoting the standard deviation of residuals from

Fama-French three factor regressions using the past month of daily data (value weighted),

and bid-ask spread (BidAsk), representing the effective bid ask spread scaled by stock price.

We expect that abnormal returns would be more pronounced for stocks that are costlier

to arbitrage if the cross-predictability is driven by mispricing due to inefficient process of

information about the impact of weather uncertainty-induced shocks to firm fundamentals.

However, we again find that there are no economically meaningful difference in abnormal

returns between the two groups of long-short WIVOl beta-sorted portfolios and abnormal

returns are statistically significant only within the low idiosyncratic and low bid-ask spread

groups. This lends support to the hypothesis that the return predictability is not attributable

to mispricing but rather to exposure to the risk of weather uncertainty.

Overall, in this section, we investigate the role of firm visibility, profitability, and limits to

arbitrage on the negative relationship between firms’ WIVOL beta and their future returns.

The results suggest that the observed return predictability is not primarily driven by investor

inattention, profitability, or mispricing associated with limits to arbitrage, but rather by the

exposure to the risk of weather uncertainty.

5.5 Firms Exposure to Foreign Weather Risk

Section 4 documents that WIVOL moves along with local physical and regulatory weather

risks, while Section 5.3 finds that local firms exhibit significant exposure to innovations

in WIVOL. We therefore expect for local firms to exhibit stronger WIVOL exposure than

non-local firms, which are based in a different geographic location.
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We test this local exposure hypothesis next. We implement a similar exercise but this

time use option prices based on the temperatures recorded in the metro area of Dallas Fort-

Worth (DFW) in the state of Texas.15 As in the case of WIVOL for the city of New York,

we collect CME data on prices for options, futures, strikes, expiration dates and implied

volatilities. To generate the time-series for the weather option implied volatility WIVOL,

we use closest to one month maturity contracts that are at-the-money. We then compute

the exposure of local firms to WIVOL DFW. We restrict the set to firms headquartered only

in the cities of Dallas and Fort-Worth, based on a firm’s city, state and zip code attributes.

For the sample period of January 2005 to July 2021 this generates a total of 441 firms, with

an average (median) of 101 (105) firms per month. We then estimate the exposure of DFW

firms to WIVOL DFW and test its predictive power. Following the argument of Section 5.3,

the long-short strategy entails buying stocks with most negative betas while simultaneously

selling stocks with most positive betas. We find that the long-short strategy generates

positive and statistically significant returns, even after controlling for well established risk

factors. We also test the significance of the beta return effect at the individual firm level

with Fama-MacBeth predictive regressions and find a negative and statistically significant

coefficient, indicating that, on average, firms with lower exposure to WIVOL exhibit higher

future returns. These results, reported in Table A.6 and Table A.7 respectively, support the

hypothesis that the exposure of local firms to innovations in local weather risk is significant

and helps predict firms’ future performance.

Several studies find that measures that track global weather events have a significant

impact on geographically dispersed entities (see, for instance, Engle, Giglio, Kelly, Lee and

Stroebel (2020) and Huynh and Xia (2021)). The local nature of WIVOL (based on the

temperature of a geography specific weather station) provides an interesting tool to test the

extent to which firms based in one area are impacted by innovations in weather volatility of

15Specifically, the contract’s payoff is with respect to the temperature (in degree-days) measured at the
Dallas Fort-Worth International (DFW) airport station (WBAN 03927).
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a different area. Therefore, we next test whether market expectations of weather volatility

for New York (Dallas) contain significant information about the future performance of firms

based in Dallas (New York). Specifically, we link WIVOL measured for the city of New

York to firms based in the Dallas Forth-Worth area. This produces betas for DFW firms

with respect to innovations in the weather volatility of New York, which we use to predict

future stock returns of firms in DFW. Likewise, we estimate betas for New York based firms

using innovations in the weather volatility of the Dallas Fort-Worth area. We use these

betas to predict the future stock returns of firms based in New York. If we find significant

exposure, then the local risk hypothesis does not hold, as both measures of risk become

indistinguishable.

We test this argument by sorting quintile portfolios, buying stocks with most negative

exposure (quintile 1) and selling stocks with most positive exposure (quintile 5). Interest-

ingly, we find insignificant return predictability in both cases. Betas constructed using New

York weather volatility do not predict the future return of firms based in the Dallas Fort-

Worth metro area. Likewise, betas estimated using DFW weather volatility do not predict

the future return of New York based firms. We report these results in Table 9. This finding

supports the argument that, while firms can be subject to global climate risks, local firms

are more exposed to local weather risk than non-local firms. Tuzel and Zhang (2017) find

that firms location affect firms risk through local factor prices such as real estate and labor,

while Kruttli, Roth Tran and Watugala (2023) find that firms located in hurricane prone

area exhibit higher volatility of returns. Our findings are of first order, as local firms with

more negative exposure to local weather risk exhibit higher future returns.

[Insert Table 9 Here]
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6 Conclusion

We investigate on the relevance of weather volatility for firms’ performance. To the best of

our knowledge, this is the first study using investors’ expectations about weather risks, which

can only be extracted using weather option prices. We denote this new, forward-looking

variable WIVOL, the weather option implied volatility. We find that WIVOL captures

markets expectations about future shocks to weather risk, increasing with the likelihood of

physical events such as hurricanes and with discussions about regulations to transition to an

environmentally friendlier economy.

We find that firm-level exposure to idiosyncratic weather risk shocks impact expected

returns, a result we theoretically motivate with a dynamic model where firms’ cash-flows

change with weather volatility when investors are unaware of the parameters governing the

return process of the security. We document that innovations to WIVOL increase operat-

ing costs and uncertainties associated with those fundamentals. Firms with more negative

exposure to WIVOL innovations are valued at a discount because expectations of larger oscil-

lations in temperatures lead to a higher risk of unexpected costs for the company. Investors,

therefore, demand a weather risk compensation to hold these stocks. We find that weather

volatility risks are priced, a long-short strategy that buys stocks with more negative exposure

and sells stocks with more positive exposure generates significant returns after controlling

for different risk factors. Moreover, unlike strategies based on extreme events that are likely

seasonal, the WIVOL strategy can be implemented year-round. We also confirm that firms

are significantly exposed to the volatility of weather of the area in which they operate only,

as innovations to weather volatility of a different area do not predict their future returns.
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Appendix: Expected Returns and Weather Risk: A Dy-

namic Model

We first describe the stochastic process for firm k cash-flows, followed by the constrained

optimization problem for investor j. We then aggregate across all investors to derive the

market equilibrium return for the firm, which depends on its idiosyncratic weather risk. The

model follows Merton (1987). Kruttli, Roth Tran and Watugala (2023) extend Merton (1987)

with an additional weather rare-event type of risk. Unlike rare-events, weather volatility risk

is a continuous random variable that does not rely on the preocurrence of a rare-event with

potential systematic reach.

The end of period cash flow for firm k is

C̃k = Ik

[
ak + bkỸ + sk ϵ̃k + ukυ̃k

]
(A.1)

where a tilde denotes a random variable, with E(x̃) = 0 and E(x̃2) = 1 for x = (Ỹ , ϵ̃k, υ̃k).

Cash-flows are impacted by independent oscillations in the market factor Ỹ , the idiosyncratic

random variable ϵ̃k and the firm-specific weather risk variable υ̃k.

The end of period return on firm k is

R̃k = µk + ηkỸ + φk ϵ̃k + σkυ̃k (A.2)

with firm value Vk and R̃k ≡ C̃k/Vk, µk ≡ akIk/Vk, ηk ≡ bkIk/Vk, φk ≡ skIk/Vk, σk ≡
ukIk/Vk.

The portfolio optimization problem for investor j involves the selection of securities. The

weight wk,j is the fraction of wealth investor j allocates in security k. There are n firms in

the economy and n+ 2 securities. The two additional securities are a forward contract with

cash-settlement on the market factor and return R̃n+1 = µn+1+ Ỹ , and the risk free security

with return Rf .

The portfolio return and risk exposures for investor j are

R̃j = µj + ηjỸ + φj ϵ̃j + σj υ̃j (A.3)

ηj =
n∑

k=1

wk,jηk + wn+1,j (A.4)
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φ2
j =

n∑
k=1

w2
k,jφ

2
k (A.5)

σ2
j =

n∑
k=1

wk,jσ
2
k (A.6)

The expected return and variance of the portfolio for investor j are

E(R̃j) = Rf + ηj(µn+1 −Rf )−
n∑

k=1

wk,j∆k (A.7)

V ar(R̃j) = η2j +
n∑

k=1

wk,j(φ
2
k + σ2

k) (A.8)

with ∆k ≡ Rk −Rf − ηk(µn+1 −Rf ).
16 The optimization problem for investor j is

Max
ηj ,wj

[
E(R̃j)−

δj
2
V ar(R̃j)−

n∑
k=1

wk,jλk,j

]
(A.9)

The last term in equation (A.9) introduces a friction to an otherwise standard mean-

variance optimization for a risk-averse investor. The additional constraint relates to the

investor’s knowledge about firm k′s parameters (µk, ηk, φ
2
k, σ

2
k) in equation (A.2). If investor

j knows about firm k then the Khun-Tucker multiplier λk,j = 0. Conversely, if investor j

does not know about firm k, wk,j = 0. Known firms by investor j belong to the set Sk, while

unknown firms belong to the set Sc
k.

The first order conditions for ηj and wj are

0 = µn+1 −Rf − δjηj (A.10)

0 = ∆k − δjwk,j(φ
2
k + σ2

k)− λk,j (A.11)

16We use the result that wn+2,j = 1−
∑n+1

k=1 wk,j
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The common factor exposure and portfolio weights for each security are

ηj =
µn+1 −Rf

δj
(A.12)

wk,j =
∆k

δj(φ2
k + σ2

k)
, for k ∈ Sk (A.13)

wk,j = 0, for k ∈ Sc
k (A.14)

wn+1,j = ηj −
n∑

k=1

wk,jηk (A.15)

wn+2,j = 1− ηj −
n∑

k=1

wk,j(ηk − 1) (A.16)

We next aggregate across all investors to determine the optimal demand for each security.

There are N investors in the economy with identical preferences and initial wealth, δj = δ

and Wj = W, with the equilibrium total market wealth M ≡ NW. Therefore, each investor

exhibits identical market factor exposure. From equation (A.12)

µn+1 = Rf − δη (A.17)

The aggregate demand for security k is Dk , determined by the set of investors Nk that know

about the security. Using the weights in equation (A.13)

Dk = NkW
∆k

δ(φ2
k + σ2

k)
(A.18)

In addition, the aggregate demand for the market factor and risk-free security are zero in

equilibrium.17 Denote the proportion of investors that know about firm k as qk ≡ Nk

N
. The

proportion of firm k relative to the market is xk ≡ Vk

M
and in equilibrium Dk = Vk. Therefore,

using equation (A.18)

xk =
qk∆k

δ(φ2
k + σ2

k)
(A.19)

Using equations (A.12), (A.17) and (A.19), the equilibrium expected excess return for secu-

rity k is

E(R̃k)−Rf = ηkηδ +
δxk(φ

2
k + σ2

k)

qk
(A.20)

The elasticity of the expected excess return of security k with respect to its firm-specific

17Dn+1 = NWη −
∑n

k=1 Dkηk and Dn+2 = NWη −
∑n+1

k=1 Dk.

34



weather risk
d log(E(R̃k)−Rf )

d log(σ2
k)

=
xk(σ

2
k)

qkηkη + xk(φ2
k + σ2

k)
(A.21)

which indicates that idiosyncratic weather risk shocks increase expected returns.

To investigate the impact of weather risk on firm value Vk, we use equation (A.2) together

with equation (A.20)

Vk =
Ik
Rf

[
ak − δηbk −

δ(s2k + u2
k)Ik

qkM

]
(A.22)

The value of firm k is lower compared to the case of no idiosyncratic risk in place V ∗
k

Vk = V ∗
k − (s2k + u2

k)
(1− qk) δ

qkRfM
(A.23)

Therefore, the impact on firm value Vk is analogous to cash-flows being discounted at a

higher rate in the presence of idiosyncratic weather risk

Vk =
V ∗
k

1 +
[
(φ2

k + σ2
k)

(1−qk)xkδ
qkRf

] (A.24)
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Figure 1: Weather Option Implied Volatility

We plot the time-series for WIVOL, the option implied volatility using weather options on
futures contracts based on the temperature registered at the LaGuardia Airport in the city
of New York. The time-series is constructed using one month to maturity contracts for at-
the-money options. We report monthly average values. The sample period is from January
2005 to July 2021.

40



Figure 2: Average Return Strategy By Month

We plot average monthly returns for the long-short β∆WIV OL strategy. The strategy buys
stocks with most negative β∆WIV OL and sells stocks with most positive β∆WIV OL. The bar
represents the average return (in basis points) in each month and for the sample period
January 2008 to July 2021.
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Table 1: WIVOL and Financial, Macro, and Real Indicators

This table reports results from time-series regressions in which the change in the weather
option implied volatility, ∆WIV OL, is regressed on variables noted in the column ID. CC is
the climate change news index from Engle, Giglio, Kelly, Lee and Stroebel (2020), HOUST
is the total new privately owned housing starts, FEDFUNDS is the change in effective
Federal Fund Rate, TS denotes the change in term spread (10 year minus 3 month rates),
Inter cap ratio and Inter risk factor are intermediary capital ratio and intermediary risk
factor of He, Kelly, and Manela (2017), respectively, UNRATE denotes the change in the
civilian unemployment rate, INDPRO is the growth rate of the industrial production index,
SP PE ratio and SP500 represent the price-earnings ratio and the return of the S&P 500
index, respectively. EPU denotes the change in the political uncertainty index of Baker,
Bloom, and Davis (2016), Fuh, Muh, and Ruh are the change in financial, macro, and real
uncertainty of Jurado, Ludvigson, and Ng (2015), respectively, and VIX is the change in the
implied volatility of the S&P 500 index. We report the Newey-West corrected t-statistics.

ID Coefficient t-stat Description Group R-Square
CC 1.88 0.58 Climate Change News Index Climate News 0.00
HOUST 0.00 -0.08 Housing Starts growth Housing 0.00
FEDFUNDS 0.12 0.81 Fed Funds Rate change Interest Rates 0.00
TS 0.08 0.31 Term Spread change Interest Rates 0.00
Inter cap ratio -0.18 -1.00 Intermediary Capital Ratio change Intermediary Capital 0.00
Inte risk factor -0.01 -0.82 Intermediary Factor return Intermediary Capital 0.00
UNRATE -0.01 -0.34 Unemployment change Labor Market 0.00
INDPRO -0.04 -0.89 IP growth Output and Income 0.00
SP PE ratio -0.01 -0.27 PE ratio change Stock Market 0.00
SP500 -0.01 -0.77 Stock Market Return Stock Market 0.00
EPU 0.29 1.12 Policy Uncertainty change Uncertainty - Economic Policy 0.01
Fuh 0.63 0.46 Financial Uncertainty change Uncertainty - Financial 0.00
Muh 0.83 0.45 Macro Uncertainty change Uncertainty - Macro 0.00
Ruh 1.69 0.84 Real Uncertainty change Uncertainty - Real 0.00
VIX 0.02 1.10 VIX change Uncertainty - Stock Market 0.01
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Table 2: Summary Statistics

This table reports the summary statics of variables used in the paper. The variables include:
the changes in the weather option implied volatility (∆WIVOL), the logarithm of the firm’s
market capitalization (Size), the book-to-market ratio (Book-to-Market), the gross protabil-
ity (Profitability) as in Novy-Marx (2013), the logarithm of the number of months since a
listing date (Age), the book leverage (Levearge) defined as short- and long-term debt, scaled
by the total debts and common equity, the aveverage number of shares tradedF over the
previous three months scaled by shares outstanding (Share Volume), the logarithm of the
price (Price), the cumulated past performance in the previous year by skipping the most
recent month (Momentum), and the earnings to price ratio (Earnings-to-Price), the loga-
rithm of the cost of goods sold (ln(COGS)), the selling, general and administrative expense
(ln(XSGA)), the total operating expense (ln(XOPR)), the inventory costs (ln(INV T )), the
revenue (ln(SALES)), the monthly change in the mean earnings estimate for the next fiscal
quarter, scaled by lagged stock price (Revision), the absolute values of the quarterly changes
in the firm’s revenue scaled by the last quarter’s total asset (|∆SALES|), the cost of goods
sold (|∆COGS|), the selling, general, and administrative expense (|∆XSGA|), and the total
operating expense (|∆XOPR|), the absolute values of the standardized unexpected earnings
(|SUE|), the first difference of call option implied volatility with 30 days of maturity and
delta of 0.5 (∆ImpV olCall), put option implied volatility with delta of -0.5 (∆ImpV olPut),
and the implied volatility of put option with moneyness closest to but above 1 minus that
of call option with moneyness closest to but below 1 (SKEW ).

Variable Name Mean STDEV p10 p25 p50 p75 p90
∆WIVOL 0.005 0.157 -0.133 -0.064 0.008 0.090 0.157
Size 13.827 2.445 10.609 12.017 13.852 15.620 17.057
Book-to-Market 0.599 0.542 0.117 0.246 0.477 0.784 1.192
Profitability 0.066 0.087 0.000 0.013 0.054 0.108 0.167
Age 4.910 1.001 3.434 4.205 5.056 5.689 6.176
Leverage 0.426 0.393 0.000 0.091 0.387 0.635 0.863
Share Volue 1.941 2.087 0.263 0.706 1.368 2.403 4.143
Price 2.742 1.442 0.732 1.847 2.970 3.758 4.343
Momentum -0.042 0.554 -0.678 -0.246 0.037 0.250 0.485
Earnings-to-Price -2.970 0.806 -3.926 -3.371 -2.893 -2.501 -2.143
ln(SALES) 5.299 2.595 2.035 3.696 5.496 7.190 8.318
ln(COGS) 4.706 2.437 1.472 3.020 4.893 6.415 7.840
ln(XSGA) 3.863 2.252 0.917 1.984 3.964 5.649 6.609
ln(XOPR) 4.927 2.440 1.679 3.107 5.043 6.792 7.983
ln(INVT) 4.835 3.068 0.644 2.991 5.115 6.738 7.802
|∆SALES| 0.060 1.424 0.001 0.003 0.013 0.040 0.093
|∆COGS| 0.049 1.344 0.000 0.002 0.008 0.025 0.068
|∆XSGA| 0.023 0.129 0.000 0.001 0.005 0.016 0.042
|∆XOPR| 0.062 1.362 0.001 0.003 0.012 0.038 0.101
| SUE | 2.354 2.668 0.200 0.667 1.500 3.000 5.208
∆ImpVolCall 0.011 0.198 -0.106 -0.032 0.012 0.055 0.139
∆ImpVolPut 0.014 0.193 -0.105 -0.031 0.011 0.056 0.132
SKEW 0.067 0.072 0.017 0.033 0.051 0.078 0.131
Revision 0.003 0.228 -0.044 -0.008 0.002 0.011 0.035
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Table 3: WIVOL and Firm Fundamentals

This table reports the effect of the weather implied volatility on the firms’ fundamental
levels using panel regressions. The dependent variables are the logarithm of the cost of
goods sold (Column 1), the selling, general and administrative expense (Column 2), the
total operating expense (Column 3), the inventory costs (Column 4), the revenue (Column
5), the monthly change in the mean earnings estimate for the next fiscal quarter, scaled by
lagged stock price (Column 6). The main explanatory variable is ∆WIVOL, the changes
in the weather option implied volatility. The control variable includes the logarithm of the
firm’s market capitalization (Size), the book-to-market ratio (Book-to-Market), the gross
protability (Profitability) as in Novy-Marx (2013), the logarithm of the number of months
since a listing date (Age), the book leverage (Levearge) defined as short- and long-term
debt, scaled by the total debts and common equity, the aveverage number of shares traded
over the previous three months scaled by shares outstanding (Share Volume), the logarithm
of the price (Price), the cumulated past performance in the previous year by skipping the
most recent month (Momentum), and the earnings to price ratio (Earnings-to-Price). We
report in parentheses the t-statistics controlling for firm and year fixed effects and clustering
standard errors at the firm level. All explanatory variables are one-quarter lagged.

Dependent Variable ln(COGS) ln(XSGA) ln(XOPR) ln(INVT) ln(SALES) Revision
(1) (2) (3) (4) (5) (6)

Intercept -0.793*** -0.628* -0.523** -0.241 -1.170*** 2.371
(-2.65) (-1.93) (-2.11) (-0.70) (-2.92) (1.11)

∆WIVOL 0.053** 0.069*** 0.063** 0.135*** 0.018 -0.381**
(2.04) (2.97) (2.37) (2.84) (0.70) (-2.31)

Size 0.092*** 0.086*** 0.076*** 0.067** 0.170*** -0.348*
(3.45) (3.08) (3.60) (2.29) (3.59) (-1.66)

Book-to-Market 0.107*** 0.165*** 0.119*** 0.061 0.138*** 0.298
(2.93) (3.49) (3.88) (1.33) (3.05) (0.66)

Profitability 2.083*** 1.233*** 1.782*** -1.164*** 3.628*** 5.501***
(4.00) (4.49) (4.14) (-3.96) (4.71) (4.90)

Age 0.066* 0.031 0.027 0.031 0.022 -0.211
(1.90) (1.11) (1.15) (0.91) (0.69) (-1.31)

Leverage 0.092 0.128* 0.079 0.075 0.183* 0.276
(1.34) (1.85) (1.41) (1.13) (1.84) (1.14)

Share Volume -0.003 -0.000 -0.000 0.011** -0.007 -0.145**
(-0.54) (-0.02) (-0.09) (2.15) (-1.17) (-2.49)

Price -0.008 0.020 0.001 0.020 -0.039 0.858**
(-0.32) (0.65) (0.07) (0.89) (-1.31) (2.27)

Momentum -0.036** -0.019 -0.026* -0.014 -0.015 0.702***
(-2.33) (-1.44) (-1.94) (-0.71) (-0.99) (3.40)

Earnings-to-Price -0.007 -0.001 -0.006 -0.007 -0.005 -0.131
(-0.75) (-0.15) (-0.87) (-1.00) (-0.53) (-1.65)

Lagged Dependent 0.798*** 0.769*** 0.835*** 0.831*** 0.723*** 0.821***
(13.87) (20.01) (18.94) (30.49) (7.50) (37.85)

R2
Adj 0.982 0.988 0.986 0.988 0.980 0.709

N 4935 3468 5043 3272 4968 13015
Firm Fixed Yes Yes Yes Yes Yes Yes
Year Fixed Yes Yes Yes Yes Yes Yes
Frequency Quarterly Quarterly Quarterly Quarterly Quarterly Monthly
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Table 4: WIVOL and Fundamental Uncertainty

This table reports the effect of the weather implied volatility on the firms’ fundamental
uncertainties using panel regressions. The dependent variables are the absolute values of
the quarterly changes in the firm’s revenue (Column 1), the cost of goods sold (Column
2), the selling, general, and administrative expense (Column 3), and the total operating
expense (Column 4). All dependent variables are scaled by the last quarter’s total asset.
The main explanatory variable is ∆WIVOL, the changes in the weather option implied
volatility. The control variable includes the logarithm of the firm’s market capitalization
(Size), the book-to-market ratio (Book-to-Market), the gross protability (Profitability) as in
Novy-Marx (2013), the logarithm of the number of months since a listing date (Age), the
book leverage (Levearge) defined as short- and long-term debt, scaled by the total debts and
common equity, the aveverage number of shares traded over the previous three months scaled
by shares outstanding (Share Volume), the logarithm of the price (Price), the cumulated
past performance in the previous year by skipping the most recent month (Momentum), and
the earnings to price ratio (Earnings-to-Price). We report in parentheses the t-statistics
controlling for firm and year fixed effects and clustering standard errors at the firm level.
All explanatory variables are one-quarter lagged.

Dependent Variable |∆SALES| |∆COGS| |∆XSGA| |∆XOPR|
(1) (2) (3) (4)

Intercept 0.080 0.026 0.055** 0.049
(0.72) (0.28) (2.38) (0.50)

∆WIV OL 0.017** 0.015** 0.002* 0.016**
(2.22) (2.12) (1.67) (2.21)

Size -0.003 -0.001 -0.002 -0.001
(-0.32) (-0.08) (-1.42) (-0.15)

Book-to-Market 0.005 0.008 -0.006*** 0.006
(0.56) (1.11) (-2.84) (0.74)

Profitability 0.013 0.051 -0.035** 0.012
(0.19) (1.14) (-2.03) (0.22)

Age -0.005 -0.003 -0.003 -0.003
(-1.28) (-1.27) (-1.48) (-1.30)

Leverage -0.001 -0.004 0.009** -0.002
(-0.08) (-0.33) (2.53) (-0.19)

Share Volume 0.001 0.001 -0.000 0.001
(1.11) (1.40) (-0.16) (1.06)

Price 0.002 0.000 -0.002* -0.000
(0.16) (0.02) (-1.75) (-0.03)

Momentum 0.002 0.005 -0.001* 0.003
(0.24) (0.50) (-1.70) (0.37)

Earnings-to-Price 0.002 0.000 0.000 0.001
(1.10) (0.34) (1.04) (0.82)

Lagged Dependent 0.652*** 0.668*** 0.370*** 0.663***
(21.10) (35.78) (12.89) (29.53)

R2
Adj 0.549 0.571 0.529 0.564

N 4353 4355 2969 4355
Firm Fixed Yes Yes Yes Yes
Year Fixed Yes Yes Yes Yes
Frequency Quarterly Quarterly Quarterly Quarterly
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Table 5: WIVOL and Fundamental Uncertainty using Alternative Measures

This table reports the effect of the weather implied volatility on the firms’ fundamental
uncertainties using panel regressions. The dependent variables are the firms’ climate change
risk exposure, measured by managers’ discussion on climate change risk during earnings calls
(Column 1), the absolute values of the standardized unexpected earnings, calculated as the
actual earnings minus the mean analyst expected earnings, scaled by the standard deviation
of the analyst forecasts (Column 2), the first difference of call option implied volatility with
30 days of maturity and delta of 0.5 (Column 3), the first difference of put option implied
volatility with 30 days of maturity and delta of -0.5 (Column 4), and the implied volatility of
put option with moneyness closest to but above 1 minus that of call option with moneyness
closest to but below 1 (Column 5). The main explanatory variable is ∆WIVOL, the changes
in the weather option implied volatility. All regressions include control variables described in
Table 3 and 4 of the paper. We report in parentheses the t-statistics controlling for firm and
year fixed effects and clustering standard errors at the firm level. All explanatory variables
are one-quarter lagged.

Dependent Variable CCRisk | SUE | ∆ImpVolCall ∆ImpVolPut SKEW
(1) (2) (3) (4) (5)

Intercept -1.798 4.795 -0.032 -0.036 0.085*
(-1.31) (1.60) (-0.74) (-0.83) (1.83)

∆WIVOL 0.234** 0.824** 0.032*** 0.033*** 0.007*
(1.98) (2.52) (3.85) (3.88) (1.75)

Size 0.066 -0.196 0.001 0.000 -0.001
(0.76) (-0.76) (0.26) (0.04) (-0.34)

Book-to-Market 0.126 -0.310 -0.006 -0.004 -0.005
(0.75) (-1.02) (-1.09) (-0.62) (-1.10)

Profitability 0.545 0.754 -0.023 -0.028 -0.025
(0.74) (0.45) (-0.47) (-0.44) (-0.92)

Age -0.010 0.143 0.005* 0.005* 0.000
(-0.09) (0.69) (1.74) (1.67) (0.01)

Leverage 0.242 -0.221 0.004 -0.003 -0.005
(0.70) (-0.62) (0.68) (-0.55) (-0.77)

Share Volume -0.001 -0.018 -0.003*** -0.002 0.000
(-0.07) (-0.39) (-2.71) (-1.61) (0.18)

Price 0.225 -0.075 -0.000 0.005 -0.005
(1.58) (-0.23) (-0.06) (1.15) (-1.64)

Momentum -0.003 0.210 0.033*** 0.026*** -0.003
(-0.05) (0.82) (8.08) (7.04) (-0.89)

Earnings-to-Price -0.007 -0.060 0.000 0.000 0.001
(-0.34) (-0.72) (0.60) (0.42) (0.64)

Lagged Dependent 0.179*** 0.076*** -0.406*** -0.365*** 0.263***
(3.79) (2.83) (-17.10) (-13.32) (8.73)

R2
Adj 0.116 0.109 0.155 0.128 0.247

N 4063 3641 12389 12389 8608
Firm Fixed Yes Yes Yes Yes Yes
Year Fixed Yes Yes Yes Yes Yes
Frequency Quarterly Quarterly Monthly Monthly Monthly
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Table 6: Portfolio Returns

We report the annualized returns for the value-weighted portfolios using common stocks in
the NYSE, Amex, and Nasdaq exchanges for firms based in the city of New York. Each
month, quintile portfolios are formed by sorting individual stocks based on their previous
month β∆WIV OL . Quintile 5 (High) contains stocks with the highest β∆WIV OL during the
previous month. Quintile 1 (Low) contains stocks with the lowest β∆WIV OL during the
previous month. The bottom row (Low-High) reports the differences between portfolio 1
and portfolio 5. The columns report the betas, returns and abnormal returns (alphas).
Column 1 reports the average β∆WIV OL per quintile. Column 2 reports the raw excess
returns. Column 3 reports the abnormal returns αMKT controlling for the market factor
MKT. Column 4 reports the abnormal returns αFF3 controlling for the three factors in
Fama and French (1993). Column 5 reports the abnormal returns αC4 controlling for the
three factors in Fama and French (1993) and the Carhart (1997) factor. Column 6 reports
abnormal returns αFF5 controlling for the five factors in Fama and French (2015). Column
7 reports abnormal returns αHXZ4 controlling for the four factors in Hou, Xue and Zhang
(2014). We report in parentheses the Newey-West corrected t-statistics. The sample period
is from January 2008 to July 2021.

β∆WIV OL Return αMKT αFF3 αC4 αFF5 αHXZ4

(1) (2) (3) (4) (5) (6) (7)
High 0.29 2.88 2.16 1.44 0.72 1.92 0.72

(0.55) (0.33) (0.19) (0.10) (0.26) (0.09)
Q4 0.03 6.84 5.52 3.84 3.48 3.72 2.88

(1.44) (0.96) (0.61) (0.51) (0.59) (0.43)
Q3 -0.03 4.92 4.08 1.92 2.04 2.52 2.64

(0.93) (0.79) (0.34) (0.34) (0.45) (0.44)
Q2 -0.09 13.56 12.60 11.16 10.92 10.92 9.96

(2.80) (3.02) (2.45) (2.34) (2.43) (2.33)
Low -0.37 11.64 10.68 9.12 8.76 10.08 9.84

(2.25) (1.89) (1.45) (1.38) (1.51) (1.52)
Low-High 8.76 8.52 7.68 8.04 8.04 9.12

(2.44) (2.32) (2.01) (2.05) (2.13) (2.28)
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Table 7: Firm-level WIVOL Exposure and Return Predictability

We report the Fama-MacBeth cross-sectional regressions using common stocks in the NYSE,
Amex, and Nasdaq exchanges for firms based in the city of New York. The dependent
variable is the firm’s monthly stock return. Column 1 reports the univariate regression
using the benchmark explanatory variable, the firm’s weather volatility exposure β∆WIV OL.
Column 2 controls for the firm’s size defined as the log of the firm’s market capitalization.
All explanatory variables are one-period lagged. We report in parentheses the Newey-West
corrected t-statistics. The sample period is from January 2008 to July 2021.

Dependent Variable Firm Return
(1) (2)

Intercept 0.66 0.65
(1.94) (2.39)

β∆WIV OL -1.47 -1.45
(-2.59) (-2.65)

Size 0.00
(0.06)

R2
Adj 0.03 0.04

N 108,426 108,426

48



Table 8: Firm Characteristics and Return Predictability

We report the annualized returns from independent double sorts between firms’ WIVOL beta and alternative firms’ character-
istics. For each firm characterisitc, the columns group above median (High) and below median (Low) firms. The rows then
group firms with most positive WIVOL beta quintile (High) and most negative WIVOL beta quintile (Low). The bottom
rows report the returns from the long-short (Low minus High) WIVOL beta strategy and the the intercept from the long-short
stategy onto the market factor. Panel A reports on visibitlity characteristics. Size is the log of monthly market value of equity
(abs(prc)*shrout)). Volume is the log of two-month lagged trading volume (vol) times two-month lagged price (prc). Panel B
reports on profitability characteristics. OperProf is revenue (revt) minus cost (cogs) - administrative expenses (xsga) - interest
expenses (xint), scaled by book value of equity (ceq) and excluding the smallest size tercile. RoE is Net income (ni) over book
value of equity (ceq). Panel C reports on limits to arbitrage characteristics. IdioVol is the standard deviation of residuals from
Fama-French three factor regressions using the past month of daily data (value weighted). BidAsk is the effective bid ask spread
based on Corwin-Schulz scaled by stock price. We report in parentheses the Newey-West corrected t-statistics. The sample
period is from January 2008 to July 2021.

Panel A. Visibility Panel B. Profitability Panel C. Limits to Arbitrage
Size Volume OperProf RoE IdioVol BidAsk

High Low High Low High Low High Low High Low High Low
High 2.81 17.37 2.61 11.73 2.02 6.41 4.52 8.14 10.37 3.89 7.97 1.59

(0.48) (2.38) (0.45) (1.46) (0.38) (0.95) (0.75) (1.16) (1.26) (0.66) (0.93) (0.28)
Low 12.73 20.48 12.46 19.92 13.01 16.05 12.92 14.77 16.21 10.79 15.96 12.30

(2.32) (2.66) (2.27) (2.60) (2.08) (2.46) (2.48) (1.45) (1.86) (2.04) (1.82) (2.19)
Low - High 9.92 3.11 9.84 8.20 10.99 9.65 8.40 6.64 5.84 6.90 7.99 10.71

(2.56) (0.45) (2.52) (1.22) (1.93) (1.50) (2.02) (0.67) (0.65) (1.76) (0.87) (2.78)
αMKT 9.57 5.38 9.49 9.63 11.80 10.14 8.13 6.78 5.46 6.71 8.65 10.35

(2.68) (0.89) (2.62) (1.76) (2.07) (1.84) (2.16) (0.72) (0.67) (1.82) (1.00) (2.81)
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Table 9: Exposure to Foreign Weather and Return Predictability

We report the annualized returns for the value-weighted portfolios using common stocks in
the NYSE, Amex, and Nasdaq exchanges. Panel A estimates the exposure of firms based
in the city of New York with respect to ∆WIVOL for the metro area of Dallas Fort-Worth.
Panel B estimates the exposure of firms based in the metro area of Dallas Fort-Worth with
respect to ∆WIVOL for the city of New York. Quintile 5 (High) contains stocks with
the highest β∆WIV OL during the previous month. Quintile 1 (Low) contains stocks with
the lowest β∆WIV OL during the previous month. The bottom row (Low-High) reports the
differences between portfolio 1 and portfolio 5. The columns report the betas, returns and
abnormal returns (alphas). Column 1 reports the average β∆WIV OL per quintile. Column
2 reports the raw excess returns. Column 3 reports the abnormal returns αMKT controlling
for the market factor MKT. Column 4 reports the abnormal returns αFF3 controlling for
the three factors in Fama and French (1993). Column 5 reports the abnormal returns αC4

controlling for the three factors in Fama and French (1993) and the Carhart (1997) factor.
Column 6 reports abnormal returns αFF5 controlling for the five factors in Fama and French
(2015). Column 7 reports abnormal returns αHXZ4 controlling for the four factors in Hou,
Xue and Zhang (2014). We report in parentheses the Newey-West corrected t-statistics. The
sample period is from January 2008 to July 2021.

β∆WIV OL Return αMKT αFF3 αC4 αFF5 αHXZ4

(1) (2) (3) (4) (5) (6) (7)
Panel A. New York firms exposure to Dallas Fort-Worth ∆WIVOL

High 0.21 5.88 5.28 5.28 5.40 5.28 5.16
(3.28) (2.64) (2.56) (2.70) (2.46) (2.40)

Low -0.18 5.04 4.68 4.44 4.32 4.56 4.20
(2.98) (3.21) (2.69) (2.52) (2.72) (2.43)

Low-High -0.84 -0.72 -0.84 -1.08 -0.72 -0.96
(-0.45) (-0.35) (-0.36) (-0.51) (-0.29) (-0.41)

Panel B. Dallas Fort-Worth firms exposure to New York ∆WIVOL
High 0.40 5.52 5.76 5.52 6.24 5.64 6.00

(3.04) (3.24) (2.95) (3.08) (2.69) (2.91)
Low -0.38 5.28 5.16 5.16 5.04 4.92 4.56

(2.95) (2.80) (2.72) (2.72) (2.69) (2.38)
Low-High -0.24 -0.48 -0.36 -1.20 -0.60 -1.44

(-0.09) (-0.24) (-0.16) (-0.53) (-0.26) (-0.59)
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Table A.1: WIVOL and Fundamentals: Sector Effect

This table reports the effect of the weather implied volatility on the firms’ fundamental levels and uncertainties using panel
regressions. The dependent variables are the logarithm values and the absolute quarterly change values the following variables:
the cost of goods sold (ln(COGS) and |∆COGS|), the selling, general and administrative expense (ln(XSGA) and |∆XSGA|),
the total operating expense (ln(XOPR)) and |∆XOPR|, the firms’ revenue (ln(SALES) and |∆SALES|). The absolute change
values are scaled by the last quarter’s total asset. The main explanatory variable is ∆WIV OL, the changes in the weather option
implied volatility. All regressions include the sector dummy, the interaction term between the sector dummy and ∆WIV OL
(i Sector), lagged dependant variable and all other control variables described in Table 3 and 4 of the paper. We report in
parentheses the t-statistics controlling for firm and year fixed effects and clustering standard errors at the firm level.

Dependent Variable ln(COGS) ln(XSGA)
Sector Dummy Manuf Transp Whole Retail Finance Service Manuf Transp Whole Retail Finance Service
∆WIV OL 0.023 0.061** 0.050* 0.064** 0.065** 0.063** 0.030 0.059** 0.069*** 0.085*** 0.077*** 0.081***

(0.89) (2.14) (1.92) (2.34) (2.10) (2.22) (1.26) (2.36) (2.91) (3.34) (3.06) (3.13)
i Sector 0.145** -0.063 0.074 -0.109* -0.041 -0.056 0.134*** 0.058 0.007 -0.116*** -0.106** -0.060

(2.29) (-1.37) (0.82) (-1.92) (-0.74) (-1.17) (2.87) (0.92) (0.10) (-3.64) (-2.35) (-1.24)

ln(XOPR) ln(SALES)
Manuf Transp Whole Retail Finance Service Manuf Transp Whole Retail Finance Service

∆WIV OL 0.040 0.048* 0.061** 0.074** 0.084** 0.075** -0.018 0.015 0.017 0.022 0.046 0.024
(1.34) (1.94) (2.24) (2.59) (2.58) (2.49) (-0.73) (0.53) (0.66) (0.82) (1.61) (0.87)

i Sector 0.108** 0.107 0.061 -0.113** -0.070 -0.075* 0.164*** 0.022 0.029 -0.041 -0.096* -0.038
(1.99) (0.95) (0.88) (-2.28) (-1.21) (-1.68) (2.97) (0.75) (0.33) (-0.89) (-1.90) (-0.87)

|∆COGS| |∆XSGA|
Manuf Transp Whole Retail Finance Service Manuf Transp Whole Retail Finance Service

∆WIV OL 0.010 0.018** 0.015** 0.016** 0.011 0.018** 0.002 0.003** 0.003* 0.003* 0.002 0.002
(1.49) (2.26) (2.07) (2.07) (1.64) (2.24) (1.26) (2.06) (1.66) (1.73) (1.51) (1.37)

i Sector 0.022 -0.021*** -0.005 -0.007 0.013 -0.019** 0.002 -0.006*** -0.004 -0.002 0.001 0.004
(1.06) (-2.75) (-0.33) (-0.83) (0.87) (-2.24) (1.00) (-2.81) (-0.60) (-0.67) (0.35) (1.11)

|∆XOPR| |∆SALES|
Manuf Transp Whole Retail Finance Service Manuf Transp Whole Retail Finance Service

∆WIV OL 0.011 0.019** 0.016** 0.017** 0.012* 0.018** 0.011 0.020** 0.018** 0.019** 0.015* 0.020**
(1.63) (2.41) (2.18) (2.18) (1.72) (2.24) (1.49) (2.30) (2.22) (2.25) (1.88) (2.21)

i Sector 0.021 -0.025*** -0.007 -0.008 0.013 -0.015 0.029 -0.020** -0.016 -0.014 0.010 -0.015
(1.00) (-3.03) (-0.37) (-0.73) (0.86) (-1.62) (1.26) (-2.27) (-0.81) (-0.87) (0.59) (-1.37)
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Table A.2: Estimation Robustness: Portfolio Returns

We report the annualized returns for the value-weighted portfolios using common stocks in the
NYSE, Amex, and Nasdaq exchanges for firms based in the city of New York. Each month, quintile
portfolios are formed by sorting individual stocks based on their previous month β∆WIV OL. Each
firm’s beta is estimated using alternative controls specifications in the estimation of equation (5.1).
In Panel A, β∆WIV OL is estimated with no controls (specification 1). In Panel B, β∆WIV OL

is estimated controlling for the market factor MKT (specification 2). In Panel C, β∆WIV OL is
estimated controlling for the historical weather volatility (specification 3). In each panel, Quintile
5 contains stocks with the highest β∆WIV OL during the previous month. Quintile 1 contains stocks
with the lowest β∆WIV OL during the previous month. The bottom row reports the returns from
the long-short (Low - High) strategy, which buys stocks with most negative betas and sells stocks
with most positive betas. The columns report the betas, returns and abnormal returns (alphas).
Column 1 reports the average β∆WIV OL per quintile. Column 2 reports the raw excess returns.
Column 3 reports the abnormal returns αMKT controlling for the market factor MKT. Column 4
reports the abnormal returns αFF3 controlling for the three factors in Fama and French (1993).
Column 5 reports the abnormal returns αC4 controlling for the three factors in Fama and French
(1993) and the Carhart (1997) factor. Column 6 reports abnormal returns αFF5 controlling for the
five factors in Fama and French (2015). Column 7 reports abnormal returns αHXZ4 controlling
for the four factors in Hou, Xue and Zhang (2014). We report in parentheses the Newey-West
corrected t-statistics. The sample period is from January 2008 to July 2021.

β∆WIV OL Return αMKT αFF3 αC4 αFF5 αHXZ4

(1) (2) (3) (4) (5) (6) (7)

Panel A. WIVOL beta specification 1

High 0.22 3.96 2.88 2.28 1.56 2.52 1.08
(0.81) (0.50) (0.36) (0.23) (0.38) (0.17)

Low -0.41 13.08 12.24 10.80 10.44 11.76 11.16
(2.36) (2.09) (1.67) (1.60) (1.74) (1.72)

Low-High 9.12 9.36 8.52 8.88 9.12 9.96
(2.34) (2.49) (2.14) (2.20) (2.38) (2.55)

Panel B. WIVOL beta specification 2

High 0.31 2.52 1.68 0.60 0.00 1.20 -0.36
(0.46) (0.26) (0.08) (0.00) (0.16) (-0.06)

Low -0.38 11.40 10.44 8.76 8.28 9.84 9.00
(1.95) (1.62) (1.24) (1.15) (1.32) (1.27)

Low-High 8.88 8.76 8.16 8.28 8.64 9.48
(2.18) (2.11) (1.91) (1.92) (2.03) (2.21)

Panel C. WIVOL beta specification 3

High 0.26 4.08 2.76 2.52 1.32 2.88 0.00
(0.86) (0.51) (0.41) (0.21) (0.45) (0.00)

Low -0.43 12.72 11.76 10.08 9.72 11.28 10.56
(2.33) (2.02) (1.57) (1.49) (1.69) (1.63)

Low-High 8.64 9.00 7.56 8.40 8.52 10.56
(2.26) (2.60) (2.04) (2.22) (2.31) (2.87)
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Table A.3: Estimation Robustness: Firm-level Exposure and Return Predictability

We report the Fama-MacBeth cross-sectional regressions using common stocks in the NYSE,
Amex, and Nasdaq exchanges for firms based in the city of New York. The dependent
variable is the firm’s monthly stock return. The main explanatory is the firm’s exposure to
innovation in weather volatility risk β∆WIV OL. Each firm’s beta is estimated using alternative
controls specifications in the estimation of equation (5.1). In columns 1 and 2, β∆WIV OL is
estimated with no controls. In columns 3 and 4, β∆WIV OL is estimated controlling for the
market factor MKT. In columns 5 and 6, β∆WIV OL is estimated controlling for the historical
weather volatility. All explanatory variables are one-period lagged. We report in parentheses
the Newey-West corrected t-statistics. The sample period is from January 2008 to July 2021.

Dependent Variable Firm Return
(1) (2) (3) (4) (5) (6)

Intercept 0.59 0.55 0.66 0.66 0.58 0.59
(2.15) (2.35) (1.93) (2.40) (1.84) (2.27)

β∆WIV OL -1.65 -1.64 -1.43 -1.42 -1.54 -1.58
(-2.01) (-2.06) (-2.38) (-2.43) (-2.32) (-2.42)

Size 0.01 0.00 0.00
(0.16) (0.04) (-0.02)

R2
Adj 0.04 0.05 0.03 0.04 0.04 0.05

N 108,426 108,426 108,426 108,426 108,426 108,426
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Table A.4: Portfolio Returns (Non-Financials)

We report the annualized returns for the value-weighted portfolios using common stocks in
the NYSE, Amex, and Nasdaq exchanges for firms based in the city of New York. The
sample exclude firms in the financial sector based on the firm’s SIC code (60-67 Finance,
Insurance, Real Estate). Each month, quintile portfolios are formed by sorting individual
stocks based on their previous month β∆WIV OL. Quintile 5 (High) contains stocks with
the highest β∆WIV OL during the previous month. Quintile 1 (Low) contains stocks with
the lowest β∆WIV OL during the previous month. The bottom row (Low-High) reports the
differences between portfolio 1 and portfolio 5. The columns report the betas, returns and
abnormal returns (alphas). Column 1 reports the average β∆WIV OL per quintile. Column
2 reports the raw excess returns. Column 3 reports the abnormal returns αMKT controlling
for the market factor MKT. Column 4 reports the abnormal returns αFF3 controlling for
the three factors in Fama and French (1993). Column 5 reports the abnormal returns αC4

controlling for the three factors in Fama and French (1993) and the Carhart (1997) factor.
Column 6 reports abnormal returns αFF5 controlling for the five factors in Fama and French
(2015). Column 7 reports abnormal returns αHXZ4 controlling for the four factors in Hou,
Xue and Zhang (2014). We report in parentheses the Newey-West corrected t-statistics. The
sample period is from January 2008 to July 2021.

β∆WIV OL Return αMKT αFF3 αC4 αFF5 αHXZ4

(1) (2) (3) (4) (5) (6) (7)
High 0.51 5.64 4.08 0.96 0.60 2.40 1.08

(0.75) (0.54) (0.11) (0.08) (0.28) (0.13)
Q4 0.10 10.08 8.88 8.40 7.68 7.80 6.36

(1.99) (1.85) (1.63) (1.45) (1.44) (1.20)
Q3 -0.01 15.60 14.76 13.92 13.80 15.48 12.84

(2.84) (2.61) (2.20) (2.10) (2.39) (2.14)
Q2 -0.13 8.04 6.72 5.40 4.68 4.08 3.36

(1.49) (1.10) (0.81) (0.68) (0.57) (0.46)
Low -0.57 18.00 17.28 16.32 16.44 16.80 15.60

(2.16) (2.20) (1.93) (1.89) (1.86) (1.77)
Low-High 12.36 13.20 15.36 15.84 14.28 14.52

(1.91) (2.79) (3.02) (3.07) (2.68) (2.97)
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Table A.5: Portfolio Returns (Radius 100)

We report the annualized returns for the value-weighted portfolios using common stocks in
the NYSE, Amex, and Nasdaq exchanges. The sample includes firms with headquarters
within 100 miles from the LaGuardia airport. Each month, quintile portfolios are formed
by sorting individual stocks based on their previous month β∆WIV OL. Quintile 5 (High)
contains stocks with the highest β∆WIV OL during the previous month. Quintile 1 (Low)
contains stocks with the lowest β∆WIV OL during the previous month. The bottom row (Low-
High) reports the differences between portfolio 1 and portfolio 5. The columns report the
betas, returns and abnormal returns (alphas). Column 1 reports the average β∆WIV OL per
quintile. Column 2 reports the raw excess returns. Column 3 reports the abnormal returns
αMKT controlling for the market factor MKT. Column 4 reports the abnormal returns αFF3

controlling for the three factors in Fama and French (1993). Column 5 reports the abnormal
returns αC4 controlling for the three factors in Fama and French (1993) and the Carhart
(1997) factor. Column 6 reports abnormal returns αFF5 controlling for the five factors in
Fama and French (2015). Column 7 reports abnormal returns αHXZ4 controlling for the four
factors in Hou, Xue and Zhang (2014). We report in parentheses the Newey-West corrected
t-statistics. The sample period is from January 2008 to July 2021.

β∆WIV OL Return αMKT αFF3 αC4 αFF5 αHXZ4

(1) (2) (3) (4) (5) (6) (7)
High 0.87 6.96 6.72 5.88 5.52 6.72 5.16

(1.49) (1.21) (0.95) (0.85) (1.07) (0.80)
Q4 0.06 8.88 8.04 7.32 7.44 8.40 7.44

(1.96) (1.64) (1.34) (1.31) (1.49) (1.37)
Q3 -0.02 11.04 9.96 8.88 7.92 9.00 7.56

(2.37) (2.09) (1.66) (1.46) (1.63) (1.48)
Q2 -0.10 8.28 7.56 6.84 6.60 7.20 6.60

(1.78) (1.55) (1.27) (1.18) (1.28) (1.18)
Low -0.94 23.28 22.08 18.24 17.28 20.52 19.44

(2.68) (2.42) (2.20) (2.25) (2.26) (2.31)
Low-High 16.32 15.36 12.36 11.76 13.92 14.28

(2.15) (2.23) (2.27) (2.57) (2.18) (2.56)
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Table A.6: Portfolio Returns (DFW)

We report the annualized returns for the value-weighted portfolios using common stocks in
the NYSE, Amex, and Nasdaq exchanges for firms based in the metro area of Dallas Fort-
Worth. Each month, quintile portfolios are formed by sorting individual stocks based on
their previous month β∆WIV OL. Quintile 5 (High) contains stocks with the highest β∆WIV OL

during the previous month. Quintile 1 (Low) contains stocks with the lowest β∆WIV OL

during the previous month. The bottom row (Low-High) reports the differences between
portfolio 1 and portfolio 5. The columns report the betas, returns and abnormal returns
(alphas). Column 1 reports the average β∆WIV OL per quintile. Column 2 reports the raw
excess returns. Column 3 reports the abnormal returns αMKT controlling for the market
factor MKT. Column 4 reports the abnormal returns αFF3 controlling for the three factors
in Fama and French (1993). Column 5 reports the abnormal returns αC4 controlling for the
three factors in Fama and French (1993) and the Carhart (1997) factor. Column 6 reports
abnormal returns αFF5 controlling for the five factors in Fama and French (2015). Column
7 reports abnormal returns αHXZ4 controlling for the four factors in Hou, Xue and Zhang
(2014). We report in parentheses the Newey-West corrected t-statistics. The sample period
is from January 2008 to July 2021.

β∆WIV OL Return αMKT αFF3 αC4 αFF5 αHXZ4

(1) (2) (3) (4) (5) (6) (7)
High 0.40 -0.12 -0.12 -0.60 -0.72 -0.12 -0.84

(-0.07) (-0.08) (-0.35) (-0.40) (-0.05) (-0.46)
Q4 0.10 6.12 5.76 5.76 6.24 6.24 6.60

(3.12) (2.83) (2.74) (3.00) (2.90) (3.07)
Q3 0.01 6.96 6.96 6.84 6.84 6.36 6.36

(2.94) (3.06) (2.98) (2.97) (2.64) (2.67)
Q2 -0.07 2.64 2.16 3.24 3.00 3.24 2.64

(1.10) (0.92) (1.42) (1.35) (1.43) (1.15)
Low -0.34 3.48 3.12 3.12 3.24 3.96 3.84

(1.88) (1.94) (2.00) (2.04) (2.48) (2.16)
Low-High 3.60 3.24 3.72 3.96 4.08 4.80

(2.02) (1.98) (2.01) (2.14) (2.15) (2.45)
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Table A.7: Firm-level Exposure and Return Predictability (DFW)

We report the Fama-MacBeth cross-sectional regressions using common stocks in the NYSE,
Amex, and Nasdaq exchanges for firms based in the in the metro area of Dallas Fort-Worth.
The dependent variable is the firm’s monthly stock return. Column 1 reports the univariate
regression using the benchmark explanatory variable, the firm’s weather volatility exposure
β∆WIV OL. Column 2 controls for the firm’s size defined as the log of the firm’s market
capitalization. All explanatory variables are one-period lagged. We report in parentheses
the Newey-West corrected t-statistics. The sample period is from January 2008 to July 2021.

Dependent Variable Firm Return
(1) (2)

Intercept 0.12 -0.28
(1.35) (-3.66)

βWIV OL -0.28 -0.29
(-2.07) (-2.04)

Size 0.07
(3.88)

R2
Adj 0.02 0.04

N 17,959 17,959
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