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Golden Rule for Randomizing?

Figure 1: Distribution of randomization methods for 104 RCTs in top-5 journals (2019-2023)
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Why Balancing?

However, using available information (e.g., stratifying) allows to:

1. Improve precision of treatment effect estimates

2. Improve balance between the treatment and control groups (ex-post randomization checks)

Evidence of p-hacking and/or publication bias on ex-post balancing tests:

Figure 2: Distribution of 2,981 p-values of balancing checks in ‘pure’ RCTs
Source: Snyder and Zhuo (2018)
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Research Questions

Is it possible to improve balancing using pre-randomization information?

↪→ Introduce the cube method to the RCT framework

How does the cube method compare to other randomization techniques?

↪→ The cube method outperforms existing randomization methods on many dimensions!
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Literature Review

1. The cube method (Chauvet and Tillé, 2006; Deville and Tillé, 2004, 2005; Tillé, 2011, 2022;
Tillé and Favre, 2004, 2005).
↪→ Extend the scope of the cube method, a sampling algorithm, and formalize precision gains

2. Covariate-adaptive randomization and its benefits
• Stratification (Bugni, Canay, and Shaikh, 2018; R. A. Fisher, 1926; S. R. A. Fisher, 1935)
• Matched pairs and local stratification (Bai, 2022; Bai, Romano, and Shaikh, 2022; Cytrynbaum,

2023; Greevy et al., 2004; Higgins, Sävje, and Sekhon, 2016; Imai, King, and Nall, 2009)
• Re-randomization (Li and Ding, 2017; Li, Ding, and Rubin, 2018; Morgan and Rubin, 2012)
• Gram-Schmidt Walk Design (Harshaw et al., 2023)

↪→ Compare the performance of such methods as the number of balanced covariates increases
↪→ Introduce the cube method and inference methods to achieve greater precision gains

3. Practical implications for randomistas (Athey and Imbens, 2017; Bai, Shaikh, and
Tabord-Meehan, 2024; Bruhn and McKenzie, 2009)
↪→ Discuss benefits arising from the cube method
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Roadmap

1. Setup

2. The Cube Method

3. Results

4. Simulations

5. Empirical Application

6. Practical Implications

Davezies, Hollard & Vergara Merino Revisiting Randomization with the Cube Method EEA 2024 - 6



Data Generating Process

We consider the Neyman-Rubin causal framework, where nature generates for individual
i ∈ {1, . . . , n}

▶ Yi (1) the potential outcome when treated

▶ Yi (0) the potential outcome when untreated

▶ Xi a vector of p baseline characteristics

Assumption 1 (iid-ness+2nd moment).

(Yi (0),Yi (1),Xi ) are iid across i and E
(
Y (0)2 + Y (1)2 + ||X ||2

)
< ∞

The empiricist only observes (X1, . . . ,Xn) before the experiment.
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Assignment Design

Empiricists want to allocate treatment to n units according to a design Π.

Di takes value 1 if i is treated, and 0 if untreated.

Empiricists choose Π, a probability distribution for (Di )i=1,...,n|(Xi )i=1,...,n.

Assumption 2 (Restriction on the design Π).

▶ (Di )i=1,...,n ⊥⊥ (Yi (0),Yi (1))i=1,...,n|(Xi )i=1,...,n

▶ PΠ(Di = 1|X1, ...,Xn) = p(Xi ) ∈ [c, 1 − c], ∀i ∈ {1, . . . , n}
with p a function chosen by the empiricist and for c ∈ (0, 1/2)

We note πi := p(Xi )

After the experiment, she observes Yi = DiYi (1) + (1 − Di )Yi (0).
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Estimands and Estimators

We focus here in estimating the population average treatment effect (PATE):

θ∗0 = E [Yi (1)− Yi (0)] .

via the Horvitz-Thompson estimator

θ̂HT =
1
n

n∑
i=1

Å
YiDi

πi
− Yi (1 − Di )

1 − πi

ã
.

In the paper, we also show the results for the sample average treatment effect (SATE) and the
Hájek estimator.
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Perfect Balance

Definition.
A design Π is perfectly-balanced over X = (X1, ...,Xp)

′ if for (Di )i=1,...,n sampled in Π we always have
for any j = 1, ..., p:

▶ Balance in the treatment group:

1
n

n∑
i=1

XjiDi

πi
=

1
n

n∑
i=1

Xji

▶ Balance in the control group:

1
n

n∑
i=1

Xji (1 − Di )

1 − πi
=

1
n

n∑
i=1

Xji
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Balancing Approximations

Remark.
If (πi )i=1,...,n are heterogeneous, the set of constraints is defined as:

1
n

n∑
i=1

Z1iDi

πi
=

1
n

n∑
i=1

Z1i , with Z1i =

Å
1,

πi

1 − πi
, πi ,X

′
i ,

X ′
i πi

1 − πi

ã′
.

Perfectly balanced designs are not always attainable!

For instance, if n is odd and πi =
1
2 , then

∑n
i=1 πi =

n
2 is a non-integer, so

n∑
i=1

Di ̸=
n∑

i=1

πi

However, it is sufficient to have asymptotic balance:

1
n

n∑
i=1

Z1iDi

πi
=

1
n

n∑
i=1

Z1i + op

Å
1√
n

ã
Optimal balancing
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Random Assignment as a Geometrical Problem

Treatment assignment can be seen as a random walk in a n-cube {0, 1}n. For n = 3:

•

•
π(0)

π(1)

π(2)

(0,0,0) (1,0,0)(1,0,0)

(0,0,1)

(0,1,0)

(0,1,1) (1,1,1)(1,1,1)

(1,0,1)(1,0,1)= π(3)

π(0) ≡ (πi )i=1,...,n
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Random Assignment with Constraints

Imagine we want to balance the amount of savings. Let X1 = X2 = 1000 and X3 = −500. We
set πi = 2/3 (i.e., two treated units on average).

s1

s2

s3

•

••

•
π(0)

π(1)

π(2)

(0,0,0) (1,0,0)(1,0,0)π(2) =(1,0,0)

(0,0,1)

(0,1,0)

(0,1,1) (1,1,1)

(1,0,1)π(3) =(1,0,1)

(1,1,0)

Red Area =

ß
s ∈ [0, 1]3

∣∣ s1 + s2 −
1
2
s3 = 1

™
Example balance constraints
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Asymptotically-balancing Design

Proposition 1 (Balancing approximations with the cube method).

Let

∆Π
j,n =

1
n

n∑
i=1

XjiDi

πi
− Xji (1 − Di )

1 − πi

If Assumptions 1 and 2 hold, then

∆Cube
j,n = op

Å
q√
n

ã
,

where q is the number of constraints.

In practice, balance tests become irrelevant for variables balanced with the cube method.

Full Proposition
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Simulations with X1j Independently Uniform

Figure 3: Impact of additional covariates on balance tests
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Curse of Dimensionality and Balance Quality

Assumption 3.

πi = 1/2, n is a positive even number, and Xi are some i .i .d random vectors of dimension p such that
X1 admits a density fX with respect to the Lebesgue measure on [0, 1]p and there exists some positive
constants C and C (independent of p) such that for any x ∈ [0, 1]p, C < fX (x) < C .

Measure of imbalance:

||Bn,p(X )||2 =

p∑
j=1

(
2
n

n∑
i=1

XjiDi − Xji (1 − Di )

)2
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Simulations with X1j Independently Uniform

Figure 4: Impact of additional covariates on balance quality

0.00

0.02

0.04

0.06

0.08

1 5 10 15 20 25 30
Number of covariates

E
(|

|B
n,

p(
X

)|
|2 )

Bernoulli randomization
Complete randomization

Stratification (median)
Stratification (quartiles)

Matched pairs
Cube method

Davezies, Hollard & Vergara Merino Revisiting Randomization with the Cube Method EEA 2024 - 19



Comparison with Other Methods

These results hold in general under Assumption 3.

Expected imbalances E
[
||Bn,p(X )||2

]
grow asymptotically at a rate:

▶ p2/n2 under the cube method Proposition

▶ p/n under SoA designs (stratification, matched pairs, . . . ) Proposition

This difference emerges from two perspectives on balancing:

▶ Moment approach: Trying to balance selected moments of X between treatment and control

▶ Distribution approach Trying to balance the joint density of X between treatment and control
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Conjecture and Assumptions

Assumption 4 (Linearity).

For d = 0, 1,
Yi (d) = Z ′

diβd + εi (d)

with E[εi (d)|Zdi ] = 0

Conjecture (Poisson approximation).

For any k ∈ N∗ we have with probability one:

lim
n→∞

sup
i1,...,ik

∣∣∣∣∣∣E
(

k∏
j=1

(
Dij − πij

) ∣∣X1, ...,Xn

)∣∣∣∣∣∣ = 0
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Asymptotic Normality

Proposition 3 (Asymptotic normality).

Let Assumptions 1, 2 and 3, and Conjecture 1 hold, the cube method yields for any πi ∈ [c, 1 − c],
c > 0, √

n
Ä
θ̂ − θ∗0

ä
d−→ N (0,V ∗

0 ) .

for V ∗
0 = V(Z ′

1β1 − Z ′
0β0) + E

ï
εi (1)2

πi

ò
+ E
ï
εi (0)2

1 − πi

ò
V ∗

0 is equal to the semiparametric efficiency bound from Hahn (1998).

Sketch of the proof

Davezies, Hollard & Vergara Merino Revisiting Randomization with the Cube Method EEA 2024 - 22



Asymptotic-Based Inference

Using the expression for V ∗
0 we can perform inference in the following steps:

1. Regress Y on Z0 for the control group. Store coefficients β̂0 and residuals ε̂(0).

2. Regress Y on Z1 for the treatment group. Store coefficients β̂1 and residuals ε̂(1).

3. Compute

V̂ =
1
n

[
V̂((Z ′

1β̂1 − Z ′
0β̂0) +

1
n

n∑
i=1

ε̂i (1)2Di

π2
i

+
1
n

n∑
i=1

ε̂i (0)2(1 − Di )

(1 − πi )2

]

4. Compute (1 − α)-confidence intervals based on θ̂ ± Φ−1 (1 − α
2

)»
(V̂ ).

Randomization-based inference
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Data Generating Process

We consider a simple DGP with non-linearities and a null ATE.
For k ∈ {1, . . . ,K}, we simulate

▶ Yik(0) = 1 + (Xik − 1/2)′β0 + εik(0)

▶ Yik(1) = 1 + (Xik − 1/2)′β1 + (Xik − 1/2)′A(Xik − 1/2) + εik(1)

with
▶ Xjik ∼ 2 × (Beta(2, 2)− 1/2)

▶ εik(d) ∼ 0.1 ×N (0, 1)

▶ A = (1/20)× (11′ − diag(1))

and
β0 = (1, 0, . . . , 0) and β1 = 2β0
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Design Effect on RMSE

Figure 5: Impact of additional covariates on sd
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Effective Sample Size

We use Gerber et al. (2020) who investigate the effect of polls on beliefs and voting behavior.

Figure 6: # of observations giving the same precision as in CR
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Coverage Rate

Figure 7: Coverage rate of 95% confidence intervals
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Practical Implications

Apart from being able to balance more covariates, the cube method provides benefits across
many other dimensions:

Distribution Approach Moment Approach Either Approach
Stratified Matched Pairs Local Rand. GS Walk Cube Method Re-randomization

Curse of dim. ✗✗ ✗✗ ✗✗ ✗ ✗ ✗✗ or ✗

C 0 covariates ✗ ✓ ✓ ✓ ✓ ✓

Inference ✓ ✓ ✓ ✓ ✓ ✗ or ✓

Prob. ̸= 1/2 ✓ ✗ ✓ ✓ ✓ ✓

Het. prob. ✓ ✗ ✓ ✓ ✓ ✓

No tuning par. ✓ ✓ ✓ ✗ ✓ ✗
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Conclusion

Whereas there is a large consensus about the importance of collecting baseline information,
how this information is used varies a lot across experiments.
This paper presents a randomization design that allows to further exploit this information for
precision gains and avoiding publication bias. By comparing with other methods, we introduce
new nontrivial questions concerning randomization.
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Optimal Balancing

Let m0(X ) = E(Y (0)|X1, ...,Xp) and m1(X ) = E(Y (0)|X1, ...,Xp) and consider estimating the
SATE or PATE.

▶ If m0 and m1 were known, a random assignment balancing mj(X ) for j = 0, 1 will:
• eliminate bias created by any unlucky imbalances
• minimize the variance of the estimator
• m0 and m1 are the "optimal moments" to balance on

▶ But m0 and m1 are unknown.
▶ Balancing some known moment functions (fk)k=1,...,K , E(fk(X )|D = 1) = E(fk(X )|D = 0) such

that

min
bj

E

Ñ(
mj (X )−

K∑
k=1

bjk fk (X )

)2é
for j = 0, 1 are “small” will mimic the balancing on m0, m1.
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Optimal Balancing

Balancing on m0(X ) and m1(X )

▶ eliminates bias created by any imbalances in the sense that

E
Ä
θ̂HT |(Di ,Xi )i=1,...,n

ä
=

1
n

n∑
i=1

m1(Xi )Di

πi
− m0(Xi )(1 − Di )

1 − πi

(balancing →) =
1
n

n∑
i=1

m1(Xi )−m0(Xi )

= E

(
1
n

n∑
i=1

Yi (1)− Yi (0)
∣∣∣∣(Xi′)i′=1,...,n

)
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Optimal Balancing

Balancing on m0(X ) and m1(X )

▶ minimizes the variance of the estimator in the sense that if Pr(Di = 1|X1, ...,Xn) = πi and
(Yi (0),Yi (1))i=1,...,n ⊥⊥ (Di )i=1,...,n|(Xi )i=1,...,n we have:

V
Ä
θ̂HT |(Di ,Xi )i=1,...,n

ä
=

1
n2

n∑
i=1

V(Yi (1)|Xi )Di

π2
i

+
V(Yi (0)|Xi )(1 − Di )

(1 − πi )2

and next by variance decomposition

V
Ä
θ̂HT |(Xi )i=1,...,n

ä
≥ 1

n2

n∑
i=1

V(Yi (1)|Xi )

πi
+

V(Yi (0)|Xi )

1 − πi

with equality if and only if E
Ä
θ̂HT |(Di ,Xi )i=1,...,n

ä
does not depend on (Di )i=1,...,n but only on

(Xi )i=1,...,n which is ensured by balancing on m0 and m1.

Back
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Balancing Constraints: an Example

We want to balance the number of female participants in the treatment and control groups.

Let Xi = 1{i is female}. Individuals 1 and 2 are women and individual 3 is a man, so
(X1,X2,X3) = (1, 1, 0).

Every unit has the same probability πi = 1/2 of being treated.

Let s = (s1, s2, s3) ∈ [0, 1]3 be any point in the unit cube. Then, the set of points satisfying the
balancing constraints are: {

s ∈ [0, 1]3
∣∣∣ 1

3

3∑
i=1

Xi si
πi

=
1
3

3∑
i=1

Xi

}

i.e. {
s ∈ [0, 1]3

∣∣ s1 + s2 = 1
}
.
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Balancing Constraints: Graphical Representation

Graphically, if we balance female units, we have

s1

s2

s3

•
π(0)

(0,0,0) (1,0,0)

(0,0,1)

(0,1,0)

(0,1,1) (1,1,1)

(1,0,1)

(1,1,0)

Figure 8: Balancing constraint with πi = 1/2 and X1 = X2 = 1 − X3 = 1

Red Area =
{
s ∈ [0, 1]3

∣∣ s1 + s2 = 1
}
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Imperfect Balance : Graphical Representation

However, if we balance male units, we have Xi = 1 {i is male} and

s1

s2

s3

•
π(0)

(0,0,0) (1,0,0)

(0,0,1)

(0,1,0)

(0,1,1) (1,1,1)

(1,0,1)

(1,1,0)

Figure 9: Balancing constraint with πi = 1/2 and 1 − X1 = 1 − X2 = X3 = 1

Red Area =

ß
s ∈ [0, 1]3

∣∣ s3 =
1
2

™
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Random Assignment with Fixed Group Size

π(0)

(1,1,0)

(0,0,0) (1,0,0)

(0,0,1)

(0,1,0)

(0,1,1) (1,1,1)

(1,0,1)= π(2)

π(1)

Red Area =
{
s ∈ [0, 1]3

∣∣ s1 + s2 + s3 = 2
}

Back
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Proposition 1 (Balancing approximations with the cube method).

Let

∆Π
j,n =

1
n

n∑
i=1

XjiDi

πi
− Xji (1 − Di )

1 − πi

If Assumptions 1 and 2 hold, then

∆Cube
j,n = op

Å
q√
n

ã
.

Moreover,

▶ if E [|Xj1|r ] < ∞ for r ≥ 2, then ∆Cube
j,n = op

Ä
q

n1−1/r

ä
▶ if Xj1 is sub-Gaussian, then ∆Cube

j,n = Op

Å
q
√

ln(n)

n

ã
▶ if Xj1 has a bounded support, then

∣∣∆Cube
j,n

∣∣ < Kq
cn

for K such that |Xj1| < K .

Back
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Proposition 2.a (Imbalance under the cube method).

Suppose Assumption 3 holds.
Under the cube method using linear programming with positive-definite matrix M for the landing
phase, we have

E
î
||Bn,p(X )||2

ó
≤ 4

(p + 1)2

n2
λmax(M)

λmin(M)

for λmax(M) and λmin(M) the largest and the smallest eigenvalues of M.

Back
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Proposition 2.b (Imbalance under other designs).

Suppose Assumption 3 holds.

1. Under Bernoulli randomization:
4C
3

p

n
≤ E
î
||Bn,p(X )||2

ó
=

4
n

p∑
k=1

E
î
X 2

k1

ó
≤ 4C

3
p

n

2. Under complete randomization:
C

3
p

n
≤ E
î
||Bn,p(X )||2

ó
=

4
n

p∑
k=1

V
Ä
X 2

k1

ä
≤ C

3
p

n

3. Under stratification with ℓ-quantiles:

3.1 if nℓ−p → ∞: ||Bn,p(X )||2 = B2
1 + op

(p
n

)
, with

C

6ℓ2C
p

n
(1 − o (1)) ≤ E

î
B2

1

ó
≤

4
n

p∑
k=1

V(Xk1)

3.2 if f nℓ−p → 0: ||Bn,p(X )||2 = B2
2 + op

(p
n

)
, with E

î
B2

2

ó
=

4
n

p∑
k=1

E
î
X 2
k1

ó
4. Under matched-pairs desing: p

n

Å
1
3 −

√
2 ln(n−1)+4 ln C

p

ã
≤ E

[
||Bn,p(X )||2

]
≤ 4

n

p∑
k=1

V(X1k)

Back
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Randomization-Based Inference

We can also perform randomization-based inference by running the cube method B times and
computing θ̂b, for b = {1, . . . , n}. Then, we define

ϕrand
n = 1

¶∣∣θ̂∣∣ > cn(1 − α)
©

with

cn(1 − α) = inf

{
t ∈ R :

1
B

B∑
b=1

1{
∣∣θ̂b∣∣ ≤ t} ≥ 1 − α

}
.

Proposition 4.

Under Assumptions 1 and 2, and the null hypothesis H0 : (Yi (1),Xi )
d
= (Yi (0),Xi ),

E
î
ϕrand
n

ó
≤ α.

Back

Davezies, Hollard & Vergara Merino Revisiting Randomization with the Cube Method EEA 2024 - 44



Sketch of Proof for Proposition 2

1. Assumptions 1, 2 and 3, and Conjecture 1 ensure that, conditional on (Xi )i≥1, by the moment
convergence theorem in Takacs (1991),

1√
n

n∑
i=1

fi + giDi
d−→ N

Ä
0, σ2

1

ä
for any functions f and g such that for fi = f (εi (1), εi (0),Xi ) and gi = g(εi (1), εi (0),Xi ) we
have E(f 2

i + g2
i ) < ∞ and E(fi |Xi ) + E(gi |Xi ) = 0.

2. Let us consider a function h, such that for hi = h(Xi ) we have, 1√
n

∑n
i=1 hi

d−→ N
(
0, σ2

2
)
. Then,

by Theorem 2 in Chen and Rao (2007),

1√
n

n∑
i=1

hi + fi + giDi
d−→ N

Ä
0, σ2

1 + σ2
2

ä
3. Both

√
n(θ̂HT − θ0) and

√
n(θ̂HT − θ∗0) can be decomposed as 1√

n

∑n
i=1 hi + fi + giDi .

Back
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Methodology

We use Gerber et al. (2020) who investigate the effect of polls on beliefs and voting behavior.

We create a superpopulation from the observed data:
▶ LASSO of Y on all X (+ interactions and squared values), separately for treated and control

units. Gives models f1(.) and f0(.) and estimators for σ2
1 = Var(Y − f1(X )|D = 1) and

σ2
0 = Var(Y − f0(X )|D = 0).

▶ Draw (X )i=1,...,5e4 with replacement from the observed data.

▶ Impute Yi (1) = f1(Xi ) + εi (1) and Yi (0) = f0(Xi ) + εi (0), with (ε1, ε0) ∼ N (0,Σ) and

Σ =

Å
σ̂2

1 0.5σ̂1σ̂0

0.5σ̂1σ̂0 σ̂2
0

ã
.

We draw n observations without replacement and estimate treatment effects 10, 000 times
under different allocation designs.

Back
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