Household Belief Formation in Uncertain Times

Luca GemmiRoxana MihetHEC LausanneSFI at HEC Lausanne, CEPR

August 26th 2024

EEA Rotterdam

UNCERTAINTY IS THE THEME OF THE DECADE

• "If I had to identify a theme at the outset of the new decade, it would be increasing uncertainty." (Kristalina Georgieva, IMF, Jan 2020)

UNCERTAINTY IS THE THEME OF THE DECADE

- "If I had to identify a theme at the outset of the new decade, it would be increasing uncertainty." (Kristalina Georgieva, IMF, Jan 2020)
- Lately, significant increase in household uncertainty about the economy

Median 3-year ahead inflation uncertainty

Note: data from Survey of Consumer Expectations by the Federal reserve Bank of New York

How do households form beliefs in uncertain times?

• Research question: How does uncertainty affect household belief formation?

How do households form beliefs in uncertain times?

- Research question: How does uncertainty affect household belief formation?
- What we do:
 - Estimate belief rigidity on survey of consumer expectations
 - i.e., how much HH rely on new vs existing info when forming beliefs
 - Use this novel measure to disentangle between uncertainty sources:
 - 1. Uncertainty (noise) of information
 - 2. Uncertainty about fundamentals
 - Explore relationship b/ uncertainty and belief rigidity in time series & cross section

RESULTS

- 1. Document a reversal in correlation between uncertainty and rigidity
 - ► COVID: ↑ uncertainty, ↓ rigidity
 - $\rightarrow~$ Update beliefs $\it more$ but more uncertain
 - ► *Post-COVID:* ↑ **uncertainty**, ↑ **rigidity**
 - $\rightarrow~$ Update beliefs less and more uncertain

RESULTS

- 1. Document a reversal in correlation between uncertainty and rigidity
 - COVID: \uparrow uncertainty, \downarrow rigidity
 - $\rightarrow~$ Update beliefs more but more uncertain
 - ▶ *Post-COVID:* ↑ **uncertainty**, ↑ **rigidity**
 - $\rightarrow~$ Update beliefs less and more uncertain

- 2. Belief updating model to distinguish between uncertainty sources
 - \uparrow *New info* noise \Rightarrow \uparrow belief rigidity
 - ▶ \uparrow *Fundamental* uncertainty $\Rightarrow \downarrow$ belief rigidity
- 3. Document strong empirical support for the model's implications in survey data

CONTRIBUTION TO THE LITERATURE

• Macro uncertainty: impact of uncertainty on macroeconomy and asset prices (Bloom et al. '12, Bruno and Shin, '15, Orlik and Veldkamp '15, Bianchi et al. '23, Gambetti et al '23)

 \rightarrow Contribution: provide statistics to distinguish between fundamental & information uncertainty

CONTRIBUTION TO THE LITERATURE

• Macro uncertainty: impact of uncertainty on macroeconomy and asset prices (Bloom et al. '12, Bruno and Shin, '15, Orlik and Veldkamp '15, Bianchi et al. '23, Gambetti et al '23)

 \rightarrow Contribution: provide statistics to distinguish between fundamental & information uncertainty

• **Information experiments:** Bayesian framework for inflation belief updating consistent with experimental behavior

(Armantier et al. '16, Cavallo et al. 17, Ciubion et al. '18, Barron '20)

 \rightarrow Contribution: use <code>naturally occurring</code> variation and confirm results outside RCT

Data

- SCE core survey, monthly with rotating panel \approx 1,200 HH heads, 2013-2023
- Consider inflation expectations 3 years ahead
 - Robustness with 1-year horizon of inflation and house prices
- Posteriors: 3-year ahead expectations in current month t
 - Mean: point forecast
 - Uncertainty: variance of density forecast OF
- **Priors** 3-year ahead expectations in previous month t 1
 - Horizon differs by 1 month, but small compared to horizon
- Socioeconomic controls: gender, age, race, education, income, numeracy, tenure

GENERAL FRAMEWORK

• HH in t form belief $E_t^i[x_{t+h}]$ about inflation in t + h using signal

$$s_t^i = x_{t+h} + e_t^i, \qquad e_t^i \sim N(0, \sigma_{e,t}^2)$$
(1)

the noise can be partly private and common

• Assume HH posterior mean follows

$$E_t^i[x_{t+h}] = (1 - G_t)E_{t-1}^i[x_{t+h}] + G_t s_t^i$$
(2)

- This setting embeds different models, among which the Bayesian RE
- We define $1 G_t$ as belief rigidity

Belief rigidity

• Under this general framework, we can recover the rigidity with

(Goldstein 23, Gemmi & Valchev 23, Benhima & Bolliger 23)

$$For_{i,t} = \alpha_t + \beta_t Prior_{i,t} + \Theta_{i,t} + err_t^i$$
(3)

 \triangleright $\Theta_{i,t}$: age, gender, race, income, education, tenure fixed effects (Kim & Binder 23)

 \triangleright γ_t : year-month fixed effect (in the subsample regression, otherwise 0)

Belief rigidity

• Under this general framework, we can recover the rigidity with

(Goldstein 23, Gemmi & Valchev 23, Benhima & Bolliger 23)

$$For_{i,t} = \alpha_t + \beta_t Prior_{i,t} + \Theta_{i,t} + err_t^i$$
(3)

 $\triangleright \Theta_{i,t}$: age, gender, race, income, education, **tenure** fixed effects (Kim & Binder 23)

 \triangleright γ_t : year-month fixed effect (in the subsample regression, otherwise 0)

- β_t is an unbiased estimator of the belief rigidity 1 G
 - **Intuition:** \uparrow belief rigidity $\Rightarrow \uparrow$ corr(posterior beliefs, prior beliefs), $\uparrow \hat{\beta}_t$
- Identification relies on *cross-sectional* variation \rightarrow run each month to get $\hat{\beta}_t, \forall t$
 - Previous methods require long time series (Coibion & Gorodnishenko 12, 15)

INFLATION BELIEF RIGIDITY

Figure: Cross-sectional regression by month

Figure: Panel regression by subsample

Table 1-year House prices Robustness Heterogeneity

TAKING STOCK

- 1. COVID outbreak: \uparrow uncertainty, \downarrow belief rigidity
- $\,\hookrightarrow\,$ Consumers update beliefs more but more uncertain
 - ▶ Lockdown policies effect akin to lower cost of information, ↓ uncertainty, ↓ rigidity
 - $\rightarrow\,$ Contributed to lowering belief rigidity, but not the whole story

Lockdown

- 2. *Post-COVID period:* \uparrow **uncertainty**, \uparrow **belief rigidity**
- $\,\hookrightarrow\,$ Consumers update beliefs less and more uncertain
- \Rightarrow We interpret this evidence through the lens of a model of belief formation

Model of belief formation with 2 uncertainty sources

• General framework assume earlier

$$E_t^i[x_{t+h}] = (1 - G_t)E_{t-1}^i[x_{t+h}] + G_t s_t^i$$
(4)

• Posterior uncertainty:

$$\Sigma_{t+h,t} = (1 - G_t)^2 \Sigma_{t+h,t-1} + G_t^2 \sigma_{e,t}^2$$
(5)

- 1. New information from signal $s_t^i = x_{t+h} + e_t^i$, where $e_t^i \sim N(0, \sigma_{e,t}^2)$
 - $\sigma_{e,t}^2$ is the new information quality (noise)

Model of belief formation with 2 uncertainty sources

• General framework assume earlier

$$E_t^i[x_{t+h}] = (1 - G_t)E_{t-1}^i[x_{t+h}] + G_t s_t^i$$
(4)

• Posterior uncertainty:

$$\Sigma_{t+h,t} = (1 - G_t)^2 \Sigma_{t+h,t-1} + G_t^2 \sigma_{e,t}^2$$
(5)

- 1. New information from signal $s_t^i = x_{t+h} + e_t^i$, where $e_t^i \sim N(0, \sigma_{e,t}^2)$
 - $\sigma_{e,t}^2$ is the new information quality (noise)
- 2. Assume fundamental follows an AR(1) per Coibion & Gorodnishenko, (2015): $x_t = \rho x_{t-1} + u_t$, w/ $u \sim N(0, \sigma_{u,t}^2)$ then

$$\Sigma_{t+h,t-1} = \rho^2 \Sigma_{t+h-1,t-1} + \sigma_{u,t}^2$$
(6)

- $\sigma_{u,t}^2$ is the fundamental uncertainty, which increases prior uncertainty $\Sigma_{t+h,t-1}$

DIFFERENT IMPACT ON RIGIDITY

• Assume Bayesian updating, i.e. Rational Expectation

$$1 - G_t^{RE} = \frac{\sigma_{e,t}^2}{\sigma_{e,t}^2 + [\rho^2 \Sigma_{t+h-1,t-1} + \sigma_{u,t}^2]}$$

(7)

DIFFERENT IMPACT ON RIGIDITY

• Assume Bayesian updating, i.e. Rational Expectation

$$1 - G_{t}^{RE} = \frac{\sigma_{e,t}^{2}}{\sigma_{e,t}^{2} + [\rho^{2} \Sigma_{t+h-1,t-1} + \sigma_{u,t}^{2}]} \sum_{t+h,t-1}$$

- 1. Increase in new information noise $\uparrow \sigma_{e,t}^2 \to \uparrow 1 G_t^{RE}$
 - \blacktriangleright E.g. \uparrow cost of collecting info or \downarrow supply of info from newspaper or television
 - Empirically it fits the post-COVID period

(7)

DIFFERENT IMPACT ON RIGIDITY

• Assume Bayesian updating, i.e. Rational Expectation

$$1 - G_{t}^{RE} = \frac{\sigma_{e,t}^{2}}{\sigma_{e,t}^{2} + \underbrace{[\rho^{2} \Sigma_{t+h-1,t-1} + \sigma_{u,t}^{2}]}_{\Sigma_{t+h,t-1}}}$$

- 1. Increase in new information noise $\uparrow \sigma_{e,t}^2 \to \uparrow 1 G_t^{RE}$
 - ▶ E.g. \uparrow cost of collecting info or \downarrow supply of info from newspaper or television
 - Empirically it fits the post-COVID period
- 2. Increase in fundamental uncertainty $\uparrow \sigma_{u,t}^2 \rightarrow \downarrow 1 G_t^{RE}$
 - \blacktriangleright E.g. \uparrow volatility of fundamental shock that makes current information obsolete
 - Empirically it fits the initial COVID outbreak period
- \Rightarrow Results shared also by large class of behavioral models (DE, overconfidence, $\dots)$

(7)

TESTING THE MODEL

- Model's implications
 - \uparrow *New info* noise \Rightarrow \uparrow belief rigidity
 - \uparrow *Prior* uncertainty $\Rightarrow \downarrow$ belief rigidity
- Comparison with findings in experimental literature
 - × House price and labor market, opposite effect or no effect

(Armona et al 2019, Conlon et al 2018, Fuster et al 2022)

 ✓ Inflation and abstract experiments support the model (Armantier et al 2016, Cavallo et al 2017, Coibion et al 2018, Coutts 2019, Barron 2020)

- \Rightarrow We test it using *naturally occurring* variation \rightarrow no external validity concerns
- \Rightarrow New info noise not observed: we use 3 different proxies

1. Uncertainty and belief rigidity: posterior uncertainty

· Proxy new info noise with posterior uncertainty controlling for prior uncertainty

• Add interactions with prior and posterior uncertainty in previous regression

$$\begin{aligned} & \textit{For}_{i,j,t} = \alpha + \beta_1 \textit{Prior}_{i,j,t} + \begin{bmatrix} \textit{Prior Uncert}_{i,j,t} \times \textit{Prior}_{i,j,t} \\ \textit{Post Uncertainty}_{j,t} \times \textit{Prior}_{i,j,t} \end{bmatrix}' \begin{bmatrix} \beta_2 \\ \beta_3 \end{bmatrix} + \\ & + Z'_{i,j,t} \Gamma + \gamma_t + \textit{err}_{i,j,t} \end{aligned}$$

where $Z_{i,t}$ include the non-interacted variables

1. Uncertainty and belief rigidity: posterior uncertainty

· Proxy new info noise with posterior uncertainty controlling for prior uncertainty

• Add interactions with prior and posterior uncertainty in previous regression

$$\begin{aligned} & \textit{For}_{i,j,t} = \alpha + \beta_1 \textit{Prior}_{i,j,t} + \begin{bmatrix} \textit{Prior Uncert}_{i,j,t} \times \textit{Prior}_{i,j,t} \\ \textit{Post Uncertainty}_{j,t} \times \textit{Prior}_{i,j,t} \end{bmatrix}' \begin{bmatrix} \beta_2 \\ \beta_3 \end{bmatrix} + \\ & + Z'_{i,j,t} \Gamma + \gamma_t + \textit{err}_{i,j,t} \end{aligned}$$

where $Z_{i,t}$ include the non-interacted variables

- Our hypotheses
 - $\beta_2 < 0$: belief rigidity decreases in prior uncertainty
 - $\beta_3 > 0$: **belief rigidity** increases in **info noise**

EVIDENCE CONSISTENT WITH THE THEORY AND QUANT. LARGE

- $\beta_2 < 0$: **belief rigidity** decreases in **prior uncertainty** (left panel)
- $\beta_3 > 0$: **belief rigidity** increases in **new info noise** (right panel)

2. Uncertainty and belief rigidity: extracted noise

• A concern with the previous proxy: G_t depends on prior uncert and new info noise

- We proceed in two steps
 - 1. Divide in J = 24 subsamples by socioeconomic characteristics and estimate \hat{G}_t^j

$$For_{i,j,t} = \alpha_{j,t} + \beta_{j,t} Prior_{i,t} + err_{i,j,t}, \qquad \hat{G}_t^j = 1 - \beta_{j,t}$$

2. For each subsample, recover new info noise as

$$\widehat{\sigma}_{e,t}^{j} = \sqrt{\frac{\sum_{t+h,t}^{j} - (1 - \widehat{G}_{t}^{j})^{2} \sum_{t+h,t-1}^{j}}{(\widehat{G}_{t}^{j})^{2}}}$$

SIMILAR RESULTS, CONSISTENT WITH THEORY

- $\beta_2 < 0$: **belief rigidity** decreases in **prior uncertainty** (left panel)
- $\beta_3 > 0$: **belief rigidity** increases in **new info noise** (right panel)

3. Uncertainty and belief rigidity: newspaper uncertainty

- Proxy for new info noise with Economic Policy Uncertainty (EPU) index by Baker et al (2022).
 - \blacktriangleright For each US state-month, from local to wide-ranging state newspapers, \sim 3500 tot
 - Share of newspaper articles containing terms similar to 'economic' and 'uncertain'
 - Three indexes: national policies, state policies, and composite
- Take first-log difference in *national* EPU to isolate innovation and add to regression

SIMILAR RESULTS, CONSISTENT WITH THEORY

- $\beta_2 < 0$: belief rigidity decreases in prior uncertainty
- $\beta_3 > 0$: belief rigidity increases in new info noise

Table 18 / 21

IMPLICATIONS

- Our finding in line with **Bayesian belief** updating:
 - HH update beliefs more when their prior is more uncertain
 - HH update beliefs less when new information is more uncertain
- Two important take-aways
 - 1. Similar results in recent RCT \rightarrow confirm that this result has **external validity**
 - 2. Belief rigidity as statistic to distinguish between fundamental and new information uncertainty

INFORMATION FRICTIONS HAVE MACROECONOMIC CONSEQUENCES

• Derive the Phillips Curve with information frictions

- ↓ belief rigidity, prices more responsive to shocks → PC steeper
- ↑ belief rigidity, prices *less* responsive to shocks → PC flatter
- Opposite estimates in literature (Cerrato & Gitti, 2022; Gudmundsson et al., 2024)
 - Possible dumpening effect

CONCLUSIONS

- Document a reversal in belief rigidity in the uncertain post-pandemic economy
- Use **belief rigidity** to distinguish sources of uncertainty
 - COVID outbreak: \u2255 belief rigidity due to \u2255 *fundamental* uncertainty and lockdown policies
 - ▶ Post-COVID: ↑ belief rigidity due to ↑ *new information* noise
- Consumers belief updating empirically consistent with the theory
- Belief rigidity affects the Phillips Curve's slope \rightarrow different policy implications

Appendix

Q9c

And in your view, what would you say is the percent chance that, **over the 12-month period between August 2015 and August 2016** ...

Instruction H4.

the rate of inflation will be 12% or higher percent chance the rate of inflation will be between 8% and 12% percent chance the rate of inflation will be between 4% and 8% percent chance the rate of inflation will be between 2% and 4% percent chance the rate of inflation will be between 0% and 2% percent chance the rate of deflation (opposite of inflation) will be between 0% and 2% percent chance the rate of deflation (opposite of inflation) will be between 2% and 4% percent chance the rate of deflation (opposite of inflation) will be between 4% and 8% percent chance the rate of deflation (opposite of inflation) will be between 8% and 12% percent chance the rate of deflation (opposite of inflation) will be 12% or higher percent chance Total 100

Figure: SCE Question 24 from which we retrieve the uncertainty distribution

1 YEARS INFLATION BELIEF RIGIDITY

Figure: Cross-sectional regression by month

Figure: Panel regression by subsample

Back Table

HOUSING PRICES BELIEF RIGIDITY

Figure: Cross-sectional regression by month

Figure: Panel regression by subsample

Back Table

RIGIDITY OF INFLATION BELIEFS: 3 YEARS

	(1) For 3y	(2) For 3y	(3) For 3y
Prior 3y	0.515*** (0.011)	0.486*** (0.011)	0.474*** (0.011)
$\textit{Covid}{=}1 \times \textit{Prior } 3y$		-0.084*** (0.028)	-0.088*** (0.026)
$\textit{Post} - \textit{Covid}{=}1 \times \textit{Prior } 3y$		0.082*** (0.019)	0.065*** (0.018)
Constant	1.960*** (0.049)	2.039*** (0.037)	2.106*** (0.037)
Year-Month FEs	Y	Y	Y
Age, Gender, Race FEs	Y	Y	Y
Tenure FEs	Y	Y	Y
Adjusted R-squared	0.33	0.33	0.31
Observations	83405	83405	80402

Table: Belief rigidity

RIGIDITY OF INFLATION BELIEFS: 1 YEAR

	(1) For 1y	(2) For 1y	(3) For 1y
Prior 1y	0.518*** (0.011)	0.493*** (0.012)	0.477*** (0.012)
$\textit{Covid}{=}1 \times \textit{Prior } 1y$		-0.016 (0.035)	-0.015 (0.034)
$\textit{Post} - \textit{Covid}{=}1 \times \textit{Prior } 1y$		0.072*** (0.019)	0.060*** (0.020)
Constant	2.067*** (0.047)	2.101*** (0.041)	2.186*** (0.043)
Year-Month FEs Age, Gender, Race FEs Tenure FEs Adjusted R-squared Observations	Y Y Y 0.39 82815	Y Y V 0.39 82815	Y Y 9.37 79378

Table: Belief rigidity

RIGIDITY OF INFLATION BELIEFS: HOUSING PRICES

	(1)	(2)	(3)
	For H	For H	For H
Prior H	0.548***	0.542***	0.535***
	(0.010)	(0.009)	(0.009)
$\textit{Covid}{=}1 \times \textit{Prior H}$		-0.053* (0.031)	-0.058* (0.032)
$\textit{Post}-\textit{Covid}{=}1 \times \textit{Prior}~\textit{H}$		0.040* (0.021)	0.027 (0.020)
Constant	2.378***	2.376***	2.423***
	(0.054)	(0.044)	(0.044)
Year-Month FEs	Y	Y	Y
Age, Gender, Race FEs	Y	Y	Y
Tenure FEs	Y	Y	Y
Adjusted R-squared	0.38	0.38	0.36
Observations	76724	76724	74807

Table: Belief rigidity

INFORMATION COST: THE CASE OF LOCKDOWNS

- Movement restrictions policy \Rightarrow lower marg cost of collecting info
- Qualitative data on state-level restriction policy intensity (OxCGRT database)
- Sample: Jan 2020 Dec 2022
- Control using state-level Covid *cases* and *death* per capita

INFORMATION COST AND BELIEF RIGIDITY

• We test how lockdown policies affect belief rigidity

 $\begin{aligned} \textit{For}_{i,t} = & \alpha + \beta_1 \textit{Prior}_{i,t} + \beta_2 \textit{Prior}_{i,t} \times \textit{LockdownIndex}_{j,t} + \beta_3 \textit{LockdownIndex}_{j,t} \\ \textit{Prior}_{i,t} \times \textit{CovidImpact}'_{j,t} \Pi + \textit{CovidImpact}'_{j,t} \Gamma + \gamma_t + \textit{err}_t^i \end{aligned}$

- β₂: impact of lockdown on belief rigidity
- $\Rightarrow \ \widehat{\beta}_2 < 0 \text{: lockdown lowered belief} \\ \text{rigidity} \\$

Impact of lockdown measures on Belief Rigidity

Estimates of β_2 for different indicators

INFORMATION COST AND UNCERTAINTY

- We test how lockdown policies affect belief uncertainty
- Regress average state-level belief uncertainty on lockdown

	(1)	(2)	(3)	(4)
	ln(Uncertainty3y)	ln(Uncertainty3y)	ln(Uncertainty3y)	ln(Uncertainty3y)
Lockdown	-0.181^{***}	-0.188^{***}	-0.208^{***}	-0.090^{*}
	(0.031)	(0.031)	(0.032)	(0.048)
ln(DeathsCOVID)			$0.001 \\ (0.013)$	$\begin{array}{c} 0.012 \\ (0.023) \end{array}$
ln(CasesCOVID)			-0.005 (0.016)	-0.021 (0.028)
EPUComposite			$0.006 \\ (0.007)$	-0.003 (0.007)
Constant	1.201^{***}	1.205^{***}	1.181^{***}	1.075^{***}
	(0.032)	(0.019)	(0.092)	(0.130)
State FEs	N	Y	Y	Y
Sample	Mar20-May23	Mar20-May23	Mar20-May23	Mar20-Jun21
Adjusted R-squared	0.10	0.31	0.31	0.29
Observations	1715	1715	1705	799

Figure: Impact of lockdown restrictions on uncertainty

 Consistent with increased reading habits, social media news demand, and TV viewership during Covid (Reuters Institute at UOxford, Nielsen, eMarketer, etc.)

Robustness

- $\sqrt{}$ Including commuting zone fixed effects
- $\sqrt{}$ Considering only consumers with high numeracy
- $\sqrt{}$ Considering only non-zero revisions (intensive margin)

EXTENSIVE MARGIN

Share of non-zero revisions a bit different (extensive margin)

Figure: Monthly share of non-zero revisions

RIGIDITY AND UNCERTAINTY: POSTERIOR UNCERTAINTY

	(1)	(2)	(3)	(4)
	For	For	For	For
PriorFor	0.534***	0.526***		0.548***
	(0.023)	(0.016)		(0.024)
$PriorFor \times PriorUncert$	-0.124***		-0.131***	-0.125***
	(0.015)		(0.016)	(0.016)
PriorFor × PostUncert	0.116***		0.109***	0.113***
	(0.014)		(0.015)	(0.015)
PriorFor $ imes$ Prior Uncert 3y IQR		-0.014***		
		(0.003)		
PriorFor × Post Uncert 3v IQR		0.010***		
		(0.003)		
Constant	0.501***	1.000***	2.793***	0.454***
	(0.095)	(0.082)	(0.083)	(0.098)
Year-Month FEs	Y	Y	Y	Y
Prior-Year-Month FEs	N	N	Y	N
Socio-demographic FEs	Y	Y	Y	Y
Non-interacted variables	Y	Y	Y	Y
Sample	Jun13-May23	Jun13-May23	Jun13-May23	excludeCOVID
Adjusted R-squared	0.36	0.37	0.37	0.37
Observations	90940	90940	90940	83563

RIGIDITY AND UNCERTAINTY: EPU

	(1) For	(2) For	(3) For	(4) For	(5) For
PriorFor	0.296*** (0.040)	0.373*** (0.034)	0.396*** (0.025)		0.568*** (0.123)
$\textit{PriorFor} \ \times \ \textit{PriorUncert} \ (\textit{median})$	-0.197*** (0.032)			-0.189*** (0.036)	-0.210** (0.083)
PriorFor imes PriorUncert (mean)		-0.262*** (0.023)			
PriorFor imes PriorUncert			-0.127*** (0.012)		
$\textit{PriorFor} \ \times \ \textit{NewInfoNoise}(\textit{median})$	0.192*** (0.007)			0.189*** (0.008)	0.080** (0.030)
$\textit{PriorFor} ~\times~ \textit{NewInfoNoise(mean)}$		0.197*** (0.006)			
PriorFor imes NewInfoNoise			0.101*** (0.004)		
Constant	1.205*** (0.415)	0.942** (0.450)	1.213*** (0.085)	2.422*** (0.341)	0.396 (0.419)
Year-Month FEs	Y	Y	Y	Y	Y
Non-interacted variables	Y	Y	Y	Y	Y
PriorxYear-Month FEs	N	N	N	Y	N
Sample	Jun13-May23	Jun13-May23	Jun13-May23	Jun13-May23	Jun13-May23
Adjusted R-squared Observations	0.38 75639	0.40 74095	0.43 66193	0.38 75639	0.66 1021

RIGIDITY AND UNCERTAINTY: EXTRACTED NOISE

	(1)	(2)	(3)	(4)
	For	For	For	For
PriorFor	0.621***	0.621***	0.621***	0.634***
	(0.025)	(0.025)	(0.025)	(0.026)
PriorFor imes PriorUncert	-0.049***	-0.049***	-0.049***	-0.052***
	(0.011)	(0.011)	(0.011)	(0.012)
PriorFor $ imes \Delta ln(EPUnational)$	0.019** (0.010)			
$\textit{PriorFor} \times \Delta \textit{EPUcomposite}/100$		0.027** (0.013)		
$\textit{PriorFor} imes \Delta \textit{EPUnational}/100$			0.016 (0.010)	0.021** (0.009)
Constant	0.921***	0.923***	0.923***	0.882***
	(0.091)	(0.091)	(0.091)	(0.095)
Year-Month FEs Non-interacted variables Sociodemographic controls Sample Adjusted R-squared Observations	Y Y Jun13-May23 0.33 90587	Y Y Jun13-May23 0.33 90757	Y Y Jun13-May23 0.33 90763	Y Y excludeCOVID 0.34 83404

RIGIDITY AND UNCERTAINTY: 1 YEAR

	(1)	(2)	(3)	(4)
	For 1v	For 1v	For 1v	For 1v
Prior 1v	0.537***	0.538***	10/19	0.551***
	(0.025)	(0.016)		(0.025)
	(0.020)	(0.020)		(0.020)
Prior $1y \times PriorUncert$	-0.135***		-0.139***	-0.136***
	(0.013)		(0.013)	(0.014)
Prior $1y \times PostUncert$	0.129***		0.121***	0.125***
	(0.012)		(0.012)	(0.013)
		0.01.4***		
Prior 1y \times Prior Uncert 1y IQR		-0.014-++		
		(0.003)		
Prior 1v × Post Uncert 1v IOP		0.000***		
Filor Iy × Fost Oncert Iy IQK		(0.003)		
		(0.003)		
Constant	0.642***	1.151***	3.144***	0.631***
	(0.085)	(0.068)	(0.081)	(0.090)
Year-Month FEs	Y	Y	Y	Y
Prior-Year-Month FEs	N	N	Y	N
Socio-demographic FEs	Y	Y	Y	Y
Non-interacted variables	Y	Y	Y	Y
Sample	Jun13-May23	Jun13-May23	Jun13-May23	excludeCOVID
Adjusted R-squared	0.44	0.44	0.45	0.46
Observations	90231	90231	90231	82857

RIGIDITY AND UNCERTAINTY: HOUSE PRICES

	(1) For H	(2) For H	(3) For H	(4) For H
Prior H	0.578*** (0.022)	0.577*** (0.014)		0.573*** (0.022)
Prior $H \times PriorUncert$	-0.153*** (0.010)		-0.154*** (0.010)	-0.144*** (0.010)
Prior H $ imes$ PostUncert	0.152*** (0.011)		0.148*** (0.011)	0.149*** (0.012)
Prior H		0.000 (0.000)		
Prior H $ imes$ Prior Uncert H IQR		-0.020*** (0.002)		
Prior H $ imes$ Post Uncert H IQR		0.017*** (0.003)		
Constant	0.502*** (0.116)	1.142*** (0.081)	3.494*** (0.096)	0.535*** (0.109)
Year-Month FEs	Y	Y	Y	Y
Prior-Year-Month FEs	N	N	Y	N
Socio-demographic FEs	Y	Y	Y	Y
Non-interacted variables	Y	Y	Y	Y
Sample	Jun13-May23	Jun13-May23	Jun13-May23	excludeCOVID
Adjusted R-squared	0.44	0.44	0.45	0.45
Observations	83475	83475	83475	/0535

RIGIDITY AND UNCERTAINTY: THE EFFECT OF NUMERACY SKILL

	(1) For 1y	(2) For 1y	(3) For 1y	(4) For 1y
Prior 1y	0.540*** (0.010)	0.519*** (0.014)	0.558*** (0.024)	0.556*** (0.029)
High Numeracy _{it} =1 \times Prior 1y		0.026 (0.016)	0.019 (0.016)	0.027 (0.028)
Prior 1y \times In(Prior Uncert1y)			-0.156*** (0.014)	-0.088*** (0.024)
$\textit{Prior 1y} \times \textit{In(Post Uncert1y)}$			0.131*** (0.013)	0.058*** (0.019)
$\textit{High Numeracy}_{it}{=}1 \times \textit{Prior 1y} \times \textit{In(Prior Uncert1y)}$				-0.121*** (0.024)
$\textit{High Numeracy}_{it}{=}1 \times \textit{Prior 1y} \times \textit{In(Post Uncert1y)}$				0.131*** (0.023)
Constant	2.030*** (0.047)	2.745*** (0.081)	1.633*** (0.110)	1.528*** (0.135)
Year-Month FEs	Y	Y	Y	Y
Socio-demographic FEs	Y	Y	Y	Y
Non-interacted variables	Y	Y	Y	Y
Adjusted R-squared	0.39	0.40	0.43	0.43
Observations	91127	91111	74315	74315

RIGIDITY AND UNCERTAINTY: 1 YEAR

• Evidence consistent with the theory and quantitatively large

Figure: Belief rigidity and uncertainty

RIGIDITY AND UNCERTAINTY: HOUSE PRICES

• Evidence consistent with the theory and quantitatively large

Figure: Belief rigidity and uncertainty

RIGIDITY AND UNCERTAINTY: THE EFFECT OF NUMERACY SKILL

$$\begin{aligned} & \textit{For}_{i,t} = \alpha + \beta_1 \textit{Prior}_{i,t} + \begin{bmatrix} \textit{Prior Uncertainty}_{it} \times \textit{Prior}_{i,t} \\ \textit{Post Uncertainty}_{it} \times \textit{Prior}_{i,t} \end{bmatrix}' \begin{bmatrix} \beta_2 \\ \beta_3 \end{bmatrix} \\ & + \textit{High Numeracy}_{i,t} \times \begin{bmatrix} \textit{Prior Uncertainty}_{it} \times \textit{Prior}_{i,t} \\ \textit{Post Uncertainty}_{it} \times \textit{Prior}_{i,t} \end{bmatrix}' \begin{bmatrix} \beta_4 \\ \beta_5 \end{bmatrix} \\ & + Z'_{i,t} \Gamma + \Theta_{i,t} + \gamma_t + \textit{err}_t^i \end{aligned}$$
(8)

• β_4 and β_5 : effect of numeracy on the relation between uncertainty and rigidity

Effect of numeracy skill: 1y

• The evidence applies to high numeracy HH: more likely to be Bayesian?

Figure: Belief rigidity and uncertainty for different numeracy skill

Table

HETEROGENEITY IN BELIEF RIGIDITY

$$For_{i,t} = \alpha + \beta_1 Prior_{i,t} + \mathbf{X}_{i,t} \mathbf{B}_2 + Prior_{i,t} \times \mathbf{X}_{i,t} \mathbf{B}_3 + \gamma_t + err_t^i$$

Figure: Heterogeneity in belief rigidity

Legend: the figure shows the impact of socioeconomic characteristics on our estimate of belief rigidity, B_3 in (44), i.e. column (7) of Table **??**. Sample period: 2020M3-2023M5.