

Trade Credit in a Developing Country: the Role of Large Suppliers in the Production Network

- Trade credit is a main source of financing, especially for small sized firms with limited access to bank finance (Petersen and Rajan (1997))
- Very recent interest in the role of trade credit for the macroeconomy (Luo (2020), Altinouglu (2021), Bocola and Bornstein (2023), Reischer (2024))
- Existing models and numerical analysis are at the sectoral level
- This paper studies the role of firm-to-firm trade credit for the macroeconomy with the help of Brazilian firm-level data
- Why Brazil is interesting: high dispersion of firm-level interest rates

- Empirical papers on trade credit: Petersen and Rajan (1997), Demirguc-Kunt and Maksimovic (2001), Garcia-Appendini and Montoriol-Garriga (2013), Jacobson and Von Schedvin (2015)
- Production network: Long and Plosser (1983), Jones (2011, 2013), Acemoglu et al. (2012), Baqaee (2018), Liu (2019), Carvalho and Tahbaz-Salehi (2019), Baqaee and Farhi (2019, 2020), Bigio and La'O (2020), Peydro, Jimenez, Kenan, Moral-Benito and Vega-Redondo (2023)
- Trade credit in general equilibrium: Luo (2020), Altinouglu (2021), Bocola and Bornstein (2023), Reischer (2020)

[Introduction](#page-1-0) Micro-evidence [Model](#page-10-0) [Calibration](#page-20-0) [Numerical Exercise](#page-23-0) [Conclusion](#page-28-0) [Appendix](#page-29-0) What we do in the paper

1 Motivating micro evidence on effect of bank rates on trade credit:

- Shock to seller's interest rate reduces trade credit supply
- Shock to buyers' interest rate increases trade credit supply
- ² GE model with endogenous trade credit in the firms' network:
	- Heterogeneous bank interest rates
	- Rates depend on firm's risk and bank-firm frictions
	- Trade credit substitutes for bank credit when interest rates dispersion is driven by frictions
- ³ Calibration with firm-to-firm transactions data, firm-level trade credit data, firm-level bank credit and interest rates data
- ⁴ Numerical exercise: role of trade credit in smoothing/amplifying firm-level and aggregate dispersion financial shocks

- ¹ Balance sheet data for listed non-financial companies (almost 300)
- ² Firm-to-firm transactions data from the CBB payment registry
	- We build the network using 2019 data
	- Transfers between accounts in different banks $+$ boletos
	- Average (median) number of clients of listed firms is 16000 (1031)
	- Average (median) value of transaction is BRL 512 (3.4) thousands
- ³ Bank interest rates and size of loans from CBB credit registry
	- We focus on contracts with 1 year maximum duration

[Summary Statistics](#page-29-1)

Figure: Distribution of interest rates: listed companies VS their clients (2019).

Figure: Quartiles of bank interest rates for short-term loans to firms

[Introduction](#page-1-0) [Micro evidence](#page-5-0) [Model](#page-10-0) [Calibration](#page-20-0) [Numerical Exercise](#page-23-0) [Conclusion](#page-28-0) [Appendix](#page-29-0)

Figure: Net TC of listed firms and rate difference with respect to their clients.

[Introduction](#page-1-0) [Micro evidence](#page-5-0) [Model](#page-10-0) [Calibration](#page-20-0) [Numerical Exercise](#page-23-0) [Conclusion](#page-28-0) [Appendix](#page-29-0)

Motivating analysis at the micro-level

- $AR_{n,t}$ are the accounts receivable over CA of firm *n* in quarter t
- $r_{n,t}$ is the weighted average interest rate of firm n in quarter t
- $\bar{r}_{n,t}^c = \sum_{m \in N_n} s_{n,2019}^m r_{m,t}$ is the average interest rate of firm n's clients
- $s_{n,2019}^m$ is the share of sales of firm n purchased by firm m
- Two linear regressions:

$$
\Delta AR_{n,t} = \phi \Delta r_{n,t} + \rho D_n + \sigma D_t + \varepsilon_{n,t}, \qquad (1)
$$

$$
\Delta AR_{n,t} = \varphi \Delta \bar{r}_{n,t}^c + \rho D_n + \zeta D_t + \varepsilon_{n,t}.
$$
 (2)

• Shift-Share IV to identify exogenous shock to interest rates:

$$
\Delta f_{n,t} = \sum_{b} z_{n,b,2019} \Delta R_{b,t}.\tag{3}
$$

- $R_{b,t}$ is the average interest rate offered by bank b
- $z_{n,b,2019}$ $z_{n,b,2019}$ $z_{n,b,2019}$ $z_{n,b,2019}$ $z_{n,b,2019}$ $z_{n,b,2019}$ $z_{n,b,2019}$ is the share of credit of firm n fro[m b](#page-7-0)[an](#page-9-0)[k](#page-7-0) b [i](#page-9-0)[n](#page-4-0) [2](#page-5-0)019

Table: Effect of bank interest rates on Accounts Receivables

Notes: Quarterly data for 2019-2023. Standard errors are clustered at the firm level.

 $* p < 0.1; ** p < 0.05; ** p < 0.01.$

K ロ > K 個 > K ミ > K ミ > 三 ミ → の Q Q →

- \bullet Static environment with set N of intermediate good firms indexed by n
- Intermediate goods are used as inputs for production of other intermediate and a final consumption good
- A representative final firm aggregates all intermediate inputs:

$$
Q = \prod_{n \in N} (q_n)^{\psi_n}, \quad \text{with} \quad \sum_{n \in N} \psi_n = 1. \tag{4}
$$

イロメ イ押メ イヨメ イヨメー

11 / 34

[Introduction](#page-1-0) [Micro evidence](#page-5-0) [Model](#page-10-0) [Calibration](#page-20-0) [Numerical Exercise](#page-23-0) [Conclusion](#page-28-0) [Appendix](#page-29-0) Intermediate good firms

- \bullet Firms are heterogeneous in productivity, a_n , bank interest rate, r_n . and probability of default, $(1-\pi_n)$
- The production network is exogenous
- A firm n sells to a subset of firms $N_n \in N$ of firms and purchases from a subset of firms $N^n \in N$
- The production function of an intermediate firm is:

$$
y_n = a_n(h_n)^{\alpha_n} \prod_{m \in \mathbb{N}^n} (x_m^n)^{\sigma_m^m}, \quad \text{with} \quad \alpha_n + \sum_{m \in \mathbb{N}^n} \sigma_m^n = 1 \tag{5}
$$

- \bullet h_n is the labor hired by the firm n; labor supply is fixed
- x_m^n is the amount of intermediate goods that firm n purchases from firm m

[Introduction](#page-1-0) [Micro evidence](#page-5-0) [Model](#page-10-0) [Calibration](#page-20-0) [Numerical Exercise](#page-23-0) [Conclusion](#page-28-0) [Appendix](#page-29-0) Working capital constraint and trade credit

Timing friction between payment of inputs and selling of output:

$$
\sum_{m\in N^n}(1-\theta_m^n)p_m^n x_m^n + w_n h_n \leq \sum_{m\in N_n}\kappa_n(1-\theta_n^m)p_n^m x_n^m + \kappa_n p_n^F q_n + D_n. \quad (6)
$$

- The left hand side is the total advanced payment of inputs
- The right hand side is the total advanced payment received from output sales plus bank credit D_n
- θ_n^m is the share of trade credit offered by n to m
- κ_n , with $0 \leq \kappa_n \leq 1$, is a parameter representing the looseness of the working capital constraint
- The supply of trade credit makes the constraint [\(6\)](#page-12-1) tighter
- We also assume a monitoring cost to recover the delayed payment:

$$
c_n(\theta_n^m)^{\gamma}(\theta_n^m p_n^m x_n^m) = c_n(\theta_n^m)^{1+\gamma} p_n^m x_n^m \text{ with } \gamma > 0 \tag{7}
$$

KO KARK KEK KEK EL KORO

- We model banks in a stylized way
- They are risk-neutral and have large pockets
- Their outside option is a risk-free return r
- We add exogenous idiosyncratic frictions ζ_n reducing the actual payment that banks receive from a firm n
- The indifference conditions are:

$$
R_n \equiv \pi_n r_n = r \zeta_n \tag{8}
$$

- Dispersion of interest rates r_n can be associated to
	- **1** dispersion of R_n (due to frictions)
	- 2 dispersion of π_n (keeping R_n constant)

[Introduction](#page-1-0) [Micro evidence](#page-5-0) [Model](#page-10-0) [Calibration](#page-20-0) [Numerical Exercise](#page-23-0) [Conclusion](#page-28-0) [Appendix](#page-29-0) Problem of an intermediate good firm

• The firm *n* maximizes expected profits

$$
\sum_{m \in N_n} [(1 - \theta_n^m) + \pi_m \theta_n^m] \rho_n^m x_n^m + \rho_n^F q_n - w_n h_n - \sum_{m \in N^n} [(1 - \theta_m^n) + \pi_n \theta_m^n] \rho_m^n x_m^n - R_n D_n - c_n \sum_{m \in N_n} (\theta_n^m)^{1 + \gamma} \rho_n^m x_n^m, (9)
$$

subject to working capital contraint [\(6\)](#page-12-1), $D_n \geq 0$, and technology restriction

$$
y_n = \sum_{m \in N_n} x_n^m + q_n. \tag{10}
$$

 $A \cup B$ a[n](#page-10-0)d $A \cup B$ and $A \cup B$ and B

- Given $R_n > 0$, the w.c.c. is always binding if $D_n > 0$
- We focus on equilibria with $D_n > 0$ (in the data, the firms used in our calibration all have $D_n > 0$)
- The firm chooses h_n and D_n as a price-taker
- It chooses q_n as a monopolist, internalizing demand $q_n = \frac{\psi_n Q}{\rho \epsilon}$ p_n^F p_n^F

Firm-to-firm transactions

 x_n^m , p_n^m , and θ_n^m are set through Nash Bargaining between seller n and buyer *m*, given all other inputs:

[Introduction](#page-1-0) [Micro evidence](#page-5-0) [Model](#page-10-0) [Calibration](#page-20-0) [Numerical Exercise](#page-23-0) [Conclusion](#page-28-0) [Appendix](#page-29-0)

$$
\left\{\left[1+R_n\kappa_n(1-\theta_n^m)-(1-\pi_m)\theta_n^m-c_n(\theta_n^m)^{1+\gamma}\right]\rho_n^m x_n^m-(1+R_n\kappa_n)\rho_n^F x_n^m\right\}^{\beta_n}
$$

$$
\left\{\left(1+R_m\kappa_m\right)\rho_m^F\left(y_m-\sum_{k\in N_m}x_m^k\right)-\left[1+R_m(1-\theta_n^m)-(1-\pi_m)\theta_n^m\right]\rho_n^m x_n^m+\mathcal{E}_n^m\right\}^{1-\beta_n}
$$

(11)

- Inside second curly brackets: total profits of buyer
- For the seller, supplying trade credit is costly for 3 reasons:
	- **1** risk of no repayment if buyer defaults
	- 2 w.c.c. more binding \rightarrow needs more bank credit
	- ³ monitoring cost
- For the buyer, receiving trade credit is beneficial for 2 reasons:
	- **1** lower expected repayment
	- ² w.c.c. less binding \rightarrow needs less bank cred[it](#page-14-0)_{ent}ers a service to the

[Introduction](#page-1-0) [Micro evidence](#page-5-0) [Model](#page-10-0) [Calibration](#page-20-0) [Numerical Exercise](#page-23-0) [Conclusion](#page-28-0) [Appendix](#page-29-0) Optimal quantities and prices

The optimal traded quantity x_n^m is such that

$$
\rho_n^F x_n^m = \phi_n^m \sigma_n^m \rho_{m}^F y_m. \tag{12}
$$

with

$$
\phi_n^m = \underbrace{\frac{1 + R_m \kappa_m}{1 + R_m (1 - \theta_n^m) - (1 - \pi_m) \theta_n^m}}_{\text{increases in } \theta_n^m} \underbrace{\frac{1 + R_n \kappa_n (1 - \theta_n^m) - (1 - \pi_m) \theta_n^m - c_n (\theta_n^m)^{1 + \gamma}}{1 + R_n \kappa_n}}_{\text{decreases in } \theta_n^m}
$$
\n(13)

- With no w.c.c., it would be $\phi_n^m = 1$
- The optimal price is:

$$
\rho_n^m = \left\{ \beta_n \left[\frac{y_m - \sum_{k \in \mathbb{N}_m} x_m^k}{\sigma_n^m y_m} + \frac{E_n^m}{(1 + R_m \kappa_m) \sigma_n^m \rho_m^F y_m} \right] + (1 - \beta_n) \right\}
$$

$$
\frac{1 + R_n \kappa_n}{1 + R_n \kappa_n (1 - \theta_n^m) - (1 - \pi_m) \theta_n^m - c_n (\theta_n^m)^{1 + \gamma} \rho_n^F. \tag{14}
$$

$$
\frac{1 + R_n \kappa_n (1 - \theta_n^m) - (1 - \pi_m) \theta_n^m - c_n (\theta_n^m)^{1 + \gamma} \rho_n^F. \tag{15}
$$

[Introduction](#page-1-0) [Micro evidence](#page-5-0) [Model](#page-10-0) [Calibration](#page-20-0) [Numerical Exercise](#page-23-0) [Conclusion](#page-28-0) [Appendix](#page-29-0) Optimal level of trade credit

The optimal θ_n^m solves

$$
c_n\left[\left(1+R_m\right)\left(1+\gamma\right)\left(\theta_n^m\right)^{\gamma}-\left(1+R_m-\pi_m\right)\gamma\left(\theta_n^m\right)^{1+\gamma}\right]=\left(R_m-R_n\kappa_n\right)\pi_m\tag{15}
$$

This θ^m_n maximizes $\phi^m_n \to$ buyer and seller try to minimize distortion

Proposition

If the optimal level of trade credit is $0 < \theta_n^m < 1$, it is

- $\frac{\partial \theta^m_n}{\partial R_m}>0 \rightarrow$ trade credit increases in expected bank rate of buyer
- $\frac{\partial \theta^m_n}{\partial R_n} < 0 \rightarrow$ trade credit decreases in expected bank rate of seller
- $\frac{\partial \theta^m_n}{\partial \pi_m}>0 \rightarrow$ trade credit increases in probability of repayment

The Domar weights (firm's sales as GDP share) are $\lambda_n\equiv \frac{\rho_n^F y_n}{Q}$ Q

Proposition

The aggregate output is given by

$$
\log Q = \sum_{m \in N} \psi_m \log \psi_m + \sum_{\substack{m \in N \\ \text{productivity } \& \text{ labor allocation} \\ \text{import–output distortions}}} \lambda(1)_m \sum_{n \in N^m} \sigma_n^m \log (\sigma_n^m \phi_n^m)
$$
\nwith\n
$$
A_m = a_m \left(\frac{h_m}{\lambda_m}\right)^{\alpha_m}, \tag{17}
$$
\n
$$
\Lambda = \left(\mathbb{I}_{|N|} - \Sigma' \circ \Phi'\right)^{-1} \psi, \tag{18}
$$
\nand\n
$$
\Lambda(1) = \left(\mathbb{I}_{|N|} - \Sigma'\right)^{-1} \psi. \tag{19}
$$

[Introduction](#page-1-0) [Micro evidence](#page-5-0) [Model](#page-10-0) [Calibration](#page-20-0) [Numerical Exercise](#page-23-0) [Conclusion](#page-28-0) [Appendix](#page-29-0) Does trade credit amplify or smooth shocks?

Proposition

Consider an equilibrium with $\theta_n^m < \min \left[\frac{1 - \kappa_m}{1 - (1 - \pi_m)} \right]$ $\frac{1-\kappa_m}{1-(1-\pi_m)\kappa_m}, \left(\frac{\pi_m}{c_n}\right)$ $\Big)^{\frac{1}{\gamma}}\Big]$ (higher interest rates reduce production) and small labor shares $(\alpha_n \to 0)$. The presence of trade credit:

20 / 34

K ロ × K 御 × K 産 × K 産 × 一番

- smoothes shocks to buyer's expected rate R_m ;
- amplifies shocks to seller's expected rate R_n ;
- amplifies shocks to buyer's risk π_m .

[Introduction](#page-1-0) [Micro evidence](#page-5-0) [Model](#page-10-0) [Calibration](#page-20-0) [Numerical Exercise](#page-23-0) [Conclusion](#page-28-0) [Appendix](#page-29-0) Calibration: technology parameters

- We calibrate the model using data from 2019
- We selected the 100 largest listed firms
- Rest of the economy: one representative firm for each of 16 sectors
- The interest rates r_n are taken from CBB registry (short-term loans)
- The σ_n^m are computed using CBB transaction data and I-O matrix
- The ψ_n are computed as the GDP shares of value added

Figure: Network of input-output links among the large listed companies used in our calibration. Information are from the payment re[gis](#page-20-0)t[ry](#page-22-0) [o](#page-20-0)[f t](#page-21-0)[h](#page-22-0)[e](#page-19-0)[C](#page-22-0)[en](#page-23-0)[t](#page-19-0)[r](#page-20-0)[al](#page-22-0) [Ba](#page-0-0)[nk](#page-33-0) of
Brazil 2990 Brazil.

[Introduction](#page-1-0) [Micro evidence](#page-5-0) [Model](#page-10-0) [Calibration](#page-20-0) [Numerical Exercise](#page-23-0) [Conclusion](#page-28-0) [Appendix](#page-29-0) Calibration: risk and credit parameters

• The κ_n , π_n , c_n , β_n , and γ are internally calibrated (465 parameters)

23 / 34

 $A(D) \rightarrow A(\overline{D}) \rightarrow A(\overline{D}) \rightarrow A(\overline{D}) \rightarrow \cdots \rightarrow \overline{D}$

- The target moments are
	- Accounts Receivable as share of total assets (116 moments)
	- Accounts Payable as share of total assets (116 moments)
	- Short-term debt as a fraction of revenues (116 moments)
	- Profits as share of GDP (116 moments)
	- Total aggregate sales over GDP (1 moment)

[Model Fit and Parameters](#page-31-1)

[Introduction](#page-1-0) [Micro evidence](#page-5-0) [Model](#page-10-0) [Calibration](#page-20-0) [Numerical Exercise](#page-23-0) [Conclusion](#page-28-0) [Appendix](#page-29-0) Effect of firm-level interest rate shock: endogenous trade credit VS no trade credit

Figure: Output effect of an increase in bank interest rate for a specific firm

- [Introduction](#page-1-0) [Micro evidence](#page-5-0) [Model](#page-10-0) [Calibration](#page-20-0) [Numerical Exercise](#page-23-0) [Conclusion](#page-28-0) [Appendix](#page-29-0)
	- How about the years after 2019?

- We re-calibrate the κ_n , π_n and ζ_n for 2020, 2021, 2022 and 2023 feeding the model with new r_n and matching new AR, AP and debt
- All other parameters are kept at 2019 levels
- We compare the benchmark to the scenarios with constant or no trade credit

Figure: Evolution of output (2019-2023).

[Introduction](#page-1-0) [Micro evidence](#page-5-0) [Model](#page-10-0) [Calibration](#page-20-0) [Numerical Exercise](#page-23-0) [Conclusion](#page-28-0) [Appendix](#page-29-0)

Role of trade credit and interest rate dispersion

Figure: Relative output (endogenous VS no trade credit) and estimated dispersion of R_n .

Figure: Relative output (endogenous VS no trade credit) if changes in R_n are explained keeping risk or frictions at the 2019 level

- We built a model of endogenous trade credit in a production network
- In line with micro evidence, trade credit increases with the interest rate of buyers, while decreases with interest rate of sellers
- Trade credit can smooth or amplify interest rate shocks, depending on the position of a firm in the production network
- Endogenous trade credit is particularly beneficial when the "frictional" interest rate spread between buyers and sellers gets larger
- The importance of TC has declined in the last 4 years because of the reduction in bank rates' dispersion

Table: Summary statistics

Note: Observations for the first three variables refer to a company in a quarter (from 2020 to 2023). Each observation for the shares of bank-to-firm loans refers to one bank-to-firm link in 2019. The average interest rate of banks is the weighted average interest rate that each bank offered in a quarter from 2020 to 2023.

[Back](#page-4-1)

Proposition

Consider an equilibrium with $\theta_n^m < \min \left[\frac{1 - \kappa_m}{1 - (1 - \pi_m)} \right]$ $\frac{1-\kappa_m}{1-(1-\pi_m)\kappa_m}, \left(\frac{\pi_m}{c_n}\right)$ $\Big)^{\frac{1}{\gamma}}\Big]$ (higher interest rates reduce production) and small labor shares $(\alpha_n \to 0)$. The first-order effects of a change in the expected interest rates R are identical if trade credit levels can endogenously change or not. Considering second-order effects, output is larger in the endogenous change scenario if

$$
\sum_{m\in\mathcal{N}}\lambda(1)_m\sum_{n\in\mathcal{N}^m}\sigma_n^m\frac{\pi_m}{\left[1+R_m-(1+R_m-\pi_m)\theta_n^m\right]^2}\underbrace{\left(-\frac{\partial\theta_n^m}{\partial R_n}\right)}_{\geq 0}R_n\left[(\hat{R}_m)(\hat{R}_n)\right]<0.
$$
 (20)

 $A(D) \rightarrow A(\overline{D}) \rightarrow A(\overline{D}) \rightarrow A(\overline{D}) \rightarrow \cdots \rightarrow \overline{D}$ 31 / 34

 $2Q$ 32 / 34

Parameter Distributions

(a) κ (b) π

Figure: Kernel density of observed r_n and estimated R_n .