Introduction	Micro evidence	Model 0000000000	Calibration 000	Numerical Exercise	Conclusion ○	Appendix 00000

Trade Credit in a Developing Country: the Role of Large Suppliers in the Production Network

Mauro Cazzaniga	Pierluca Pannella	Leonardo S. Alencar
MIT Sloan	FGV-EESP	Central Bank of Brazil
	August 2024	

- Trade credit is a main source of financing, especially for small sized firms with limited access to bank finance (Petersen and Rajan (1997))
- Very recent interest in the role of trade credit for the macroeconomy (Luo (2020), Altinouglu (2021), Bocola and Bornstein (2023), Reischer (2024))
- Existing models and numerical analysis are at the sectoral level
- This paper studies the role of firm-to-firm trade credit for the macroeconomy with the help of Brazilian firm-level data
- Why Brazil is interesting: high dispersion of firm-level interest rates

- Empirical papers on trade credit: Petersen and Rajan (1997), Demirguc-Kunt and Maksimovic (2001), Garcia-Appendini and Montoriol-Garriga (2013), Jacobson and Von Schedvin (2015)
- Production network: Long and Plosser (1983), Jones (2011, 2013), Acemoglu et al. (2012), Baqaee (2018), Liu (2019), Carvalho and Tahbaz-Salehi (2019), Baqaee and Farhi (2019, 2020), Bigio and La'O (2020), Peydro, Jimenez, Kenan, Moral-Benito and Vega-Redondo (2023)
- Trade credit in general equilibrium: Luo (2020), Altinouglu (2021), Bocola and Bornstein (2023), Reischer (2020)

IntroductionMicro evidenceModel
occocoCalibrationNumerical ExerciseConclusionAppendix
occocoWhat we do in the paper

Ontivating micro evidence on effect of bank rates on trade credit:

- Shock to seller's interest rate reduces trade credit supply
- Shock to buyers' interest rate increases trade credit supply
- **②** GE model with endogenous trade credit in the firms' network:
 - Heterogeneous bank interest rates
 - Rates depend on firm's risk and bank-firm frictions
 - Trade credit substitutes for bank credit when interest rates dispersion is driven by frictions
- Calibration with firm-to-firm transactions data, firm-level trade credit data, firm-level bank credit and interest rates data
- Oumerical exercise: role of trade credit in smoothing/amplifying firm-level and aggregate dispersion financial shocks

- Balance sheet data for listed non-financial companies (almost 300)
- Irim-to-firm transactions data from the CBB payment registry
 - We build the network using 2019 data
 - Transfers between accounts in different banks + boletos
 - Average (median) number of clients of listed firms is 16000 (1031)
 - $\bullet\,$ Average (median) value of transaction is BRL 512 (3.4) thousands
- Sank interest rates and size of loans from CBB credit registry
 - We focus on contracts with 1 year maximum duration

Summary Statistics

Figure: Distribution of interest rates: listed companies VS their clients (2019).

Figure: Quartiles of bank interest rates for short-term loans to firms

э

イロト イヨト イヨト イヨト

Net TC supply changes with interest rate gap w.r.t. clients

Calibration

Numerical Exercise

Conclusion

Appendix

Micro evidence

00000

Model

Introduction

Figure: Net TC of listed firms and rate difference with respect to their clients.

Motivating analysis at the micro-level

Model

- $AR_{n,t}$ are the accounts receivable over CA of firm n in quarter t
- $r_{n,t}$ is the weighted average interest rate of firm n in quarter t
- $\bar{r}_{n,t}^c = \sum_{m \in N_n} s_{n,2019}^m r_{m,t}$ is the average interest rate of firm *n*'s clients

Calibration

- $s_{n,2019}^m$ is the share of sales of firm *n* purchased by firm *m*
- Two linear regressions:

Micro evidence

Introduction

$$\Delta AR_{n,t} = \phi \Delta r_{n,t} + \rho D_n + \sigma D_t + \varepsilon_{n,t}, \qquad (1)$$

Numerical Exercise

Conclusion

Appendix

$$\Delta AR_{n,t} = \varphi \Delta \bar{r}_{n,t}^{c} + \rho D_n + \zeta D_t + \varepsilon_{n,t}.$$
 (2)

• Shift-Share IV to identify exogenous shock to interest rates:

$$\Delta f_{n,t} = \sum_{b} z_{n,b,2019} \Delta R_{b,t}.$$
(3)

- $R_{b,t}$ is the average interest rate offered by bank b
- $z_{n,b,2019}$ is the share of credit of firm *n* from bank b in 2019

Introduction	Micro evidence	Model	Calibration	Numerical Exercise	Conclusion	Appendix
0000	0000●	0000000000	000		0	00000
Results						

Table: Effect of bank interest rates on Accounts Receivables

	Δ Accounts Receivables					
	OLS	1st Stage	2nd Stage	OLS	1st Stage	2nd Stage
$\Delta f_{n,t}^c$		0.055*** (0.016)				
$\Delta r_{n,t}$	0.009** (0.005)		-0.166** (0.078)			
$\Delta \bar{f}^{c}_{n,t}$					0.529*** (0.095)	
$\Delta \bar{r}^{c}_{n,t}$				0.000 (0.001)		0.002** (0.001)
firm FE	Υ	Υ	Y	Υ	Υ	Y
year FE	Y	Y	Y	Υ	Y	Y
Observations	2545	2545	2545	3333	3333	3333

Notes: Quarterly data for 2019-2023. Standard errors are clustered at the firm level.

* p < 0.1; ** p < 0.05; *** p < 0.01.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

- Static environment with set N of intermediate good firms indexed by n
- Intermediate goods are used as inputs for production of other intermediate and a final consumption good
- A representative final firm aggregates all intermediate inputs:

$$Q = \prod_{n \in N} (q_n)^{\psi_n}, \quad \text{with} \quad \sum_{n \in N} \psi_n = 1.$$
 (4)

Intermediate good firms

- Firms are heterogeneous in productivity, a_n , bank interest rate, r_n , and probability of default, $(1 \pi_n)$
- The production network is exogenous
- A firm *n* sells to a subset of firms $N_n \in N$ of firms and purchases from a subset of firms $N^n \in N$
- The production function of an intermediate firm is:

$$y_n = a_n (h_n)^{\alpha_n} \prod_{m \in \mathbb{N}^n} (x_m^n)^{\sigma_m^n}, \quad \text{with} \quad \alpha_n + \sum_{m \in \mathbb{N}^n} \sigma_m^n = 1$$
 (5)

- h_n is the labor hired by the firm n; labor supply is fixed
- x_m^n is the amount of intermediate goods that firm n purchases from firm m

Appendix

Working capital constraint and trade credit

Model

Micro evidence

Introduction

n

• Timing friction between payment of inputs and selling of output:

Calibration

Numerical Exercise

Conclusion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

Appendix

$$\sum_{n \in \mathbb{N}^n} (1 - \theta_m^n) p_m^n x_m^n + w_n h_n \le \sum_{m \in \mathbb{N}_n} \kappa_n (1 - \theta_n^m) p_n^m x_n^m + \kappa_n p_n^F q_n + D_n.$$
(6)

- The left hand side is the total advanced payment of inputs
- The right hand side is the total advanced payment received from output sales plus bank credit *D_n*
- θ_n^m is the share of trade credit offered by *n* to *m*
- κ_n , with $0 \le \kappa_n \le 1$, is a parameter representing the looseness of the working capital constraint
- The supply of trade credit makes the constraint (6) tighter
- We also assume a monitoring cost to recover the delayed payment:

$$c_n(\theta_n^m)^{\gamma}(\theta_n^m p_n^m x_n^m) = c_n(\theta_n^m)^{1+\gamma} p_n^m x_n^m \text{ with } \gamma > 0$$
(7)

- We model banks in a stylized way
- They are risk-neutral and have large pockets
- Their outside option is a risk-free return r
- We add exogenous idiosyncratic frictions ζ_n reducing the actual payment that banks receive from a firm n
- The indifference conditions are:

$$R_n \equiv \pi_n r_n = r \zeta_n \tag{8}$$

イロン イボン イヨン イヨン 三日

- Dispersion of interest rates r_n can be associated to
 - **1** dispersion of R_n (due to frictions)
 - 2 dispersion of π_n (keeping R_n constant)

Problem of an intermediate good firm

Model

• The firm *n* maximizes expected profits

Micro evidence

Introduction

$$\sum_{m \in N_n} \left[(1 - \theta_n^m) + \pi_m \theta_n^m \right] \rho_n^m x_n^m + \rho_n^F q_n - w_n h_n - \sum_{m \in N^n} \left[(1 - \theta_m^n) + \pi_n \theta_m^n \right] \rho_m^n x_m^n - R_n D_n - c_n \sum_{m \in N_n} (\theta_n^m)^{1 + \gamma} \rho_n^m x_n^m, \quad (9)$$

subject to working capital contraint (6), $D_n \ge 0$, and technology restriction

Calibration

$$y_n = \sum_{m \in N_n} x_n^m + q_n.$$
⁽¹⁰⁾

Numerical Exercise

Conclusion

Appendix

- Given $R_n > 0$, the w.c.c. is always binding if $D_n > 0$
- We focus on equilibria with $D_n > 0$ (in the data, the firms used in our calibration all have $D_n > 0$)
- The firm chooses h_n and D_n as a price-taker
- It chooses q_n as a monopolist, internalizing demand $q_n = \frac{\psi_n Q}{p^F}$

Firm-to-firm transactions

Micro evidence

Introduction

• x_n^m , p_n^m , and θ_n^m are set through Nash Bargaining between seller n and buyer m, given all other inputs:

Calibration

Numerical Exercise

Conclusion

Appendix

$$\begin{cases} \left[1 + R_{n}\kappa_{n}(1 - \theta_{n}^{m}) - (1 - \pi_{m})\theta_{n}^{m} - c_{n}(\theta_{n}^{m})^{1 + \gamma}\right] p_{n}^{m}x_{n}^{m} - (1 + R_{n}\kappa_{n})p_{n}^{F}x_{n}^{m} \end{cases} \\ \\ \left\{(1 + R_{m}\kappa_{m})p_{m}^{F}\left(y_{m} - \sum_{k \in N_{m}} x_{m}^{k}\right) - [1 + R_{m}(1 - \theta_{n}^{m}) - (1 - \pi_{m})\theta_{n}^{m}]p_{n}^{m}x_{n}^{m} + E_{n}^{m} \end{cases} \right\}^{1 - \beta_{n}}$$

$$(1)$$

- Inside second curly brackets: total profits of buyer
- For the seller, supplying trade credit is costly for 3 reasons:
 - risk of no repayment if buyer defaults

Model

- 2 w.c.c. more binding \rightarrow needs more bank credit
- Imposite monitoring cost
- For the buyer, receiving trade credit is beneficial for 2 reasons:
 - lower expected repayment
 - 2 w.c.c. less binding \rightarrow needs less bank credit

Optimal quantities and prices

Micro evidence

• The optimal traded quantity x_n^m is such that

Model

0000000000

$$p_n^F x_n^m = \phi_n^m \sigma_n^m p_m^F y_m. \tag{12}$$

Numerical Exercise

Conclusion

Appendix

4 . .

with

Introduction

$$\phi_n^m = \underbrace{\frac{1 + R_m \kappa_m}{1 + R_m (1 - \theta_n^m) - (1 - \pi_m) \theta_n^m}}_{\text{increases in } \theta_n^m} \underbrace{\frac{1 + R_n \kappa_n (1 - \theta_n^m) - (1 - \pi_m) \theta_n^m - c_n (\theta_n^m)^{1 + \gamma}}_{\text{decreases in } \theta_n^m}} \underbrace{\frac{1 + R_n \kappa_n (1 - \theta_n^m) - (1 - \pi_m) \theta_n^m - c_n (\theta_n^m)^{1 + \gamma}}_{\text{decreases in } \theta_n^m}}$$
(13)

Calibration

- With no w.c.c., it would be $\phi_n^m = 1$
- The optimal price is:

$$p_n^m = \left\{ \beta_n \left[\frac{y_m - \sum_{k \in N_m} x_m^k}{\sigma_n^m y_m} + \frac{E_n^m}{(1 + R_m \kappa_m) \sigma_n^m p_m^F y_m} \right] + (1 - \beta_n) \right\}$$

$$\frac{1 + R_n \kappa_n}{1 + R_n \kappa_n (1 - \theta_n^m) - (1 - \pi_m) \theta_n^m - c_n (\theta_n^m)^{1 + \gamma}} p_n^F. \quad (14)$$

Introduction Micro evidence Model 00000 Calibration Numerical Exercise Conclusion Appendix 00000 Optimal level of trade credit

• The optimal θ_n^m solves

$$c_n\left[(1+R_m)(1+\gamma)(\theta_n^m)^{\gamma}-(1+R_m-\pi_m)\gamma(\theta_n^m)^{1+\gamma}\right]=(R_m-R_n\kappa_n)\pi_m$$
(15)

• This $heta_n^m$ maximizes $\phi_n^m o$ buyer and seller try to minimize distortion

Proposition

If the optimal level of trade credit is $0 < \theta_n^m < 1$, it is

- $\frac{\partial \theta_n^m}{\partial R_m} > 0 \rightarrow$ trade credit increases in expected bank rate of buyer • $\frac{\partial \theta_n^m}{\partial R_n} < 0 \rightarrow$ trade credit decreases in expected bank rate of seller
- $\frac{\partial \Theta_n^m}{\partial \pi_m} > 0 \rightarrow$ trade credit increases in probability of repayment

 $A_m = a_m \left(\frac{h_m}{\lambda_m}\right)^{\alpha_m},\tag{17}$

$$\Lambda = \left(\mathbb{I}_{|N|} - \Sigma' \circ \Phi'\right)^{-1} \psi, \tag{18}$$

and

$$\Lambda(1) = \left(\mathbb{I}_{|N|} - \Sigma'\right)^{-1} \psi. \tag{19}$$

Proposition

Consider an equilibrium with $\theta_n^m < \min\left[\frac{1-\kappa_m}{1-(1-\pi_m)\kappa_m}, \left(\frac{\pi_m}{c_n}\right)^{\frac{1}{\gamma}}\right]$ (higher interest rates reduce production) and small labor shares ($\alpha_n \rightarrow 0$). The presence of trade credit:

- smoothes shocks to buyer's expected rate R_m;
- amplifies shocks to seller's expected rate R_n;
- amplifies shocks to buyer's risk π_m .

Introduction Micro evidence Model Calibration Numerical Exercise Conclusion Appendix Calibration: technology parameters Conclusion Conclu

- We calibrate the model using data from 2019
- We selected the 100 largest listed firms
- Rest of the economy: one representative firm for each of 16 sectors
- The interest rates r_n are taken from CBB registry (short-term loans)
- The σ_n^m are computed using CBB transaction data and I-O matrix
- The ψ_n are computed as the GDP shares of value added

Introduction

o evidence

Model

Calibration

Numerical Exercise

se Conclusion o Appendix 00000

Network structure

Figure: Network of input-output links among the large listed companies used in our calibration. Information are from the payment registry of the Central Bank of Brazil.

Introduction Micro evidence Model Calibration Numerical Exercise Conclusion Appendix Calibration: risk and credit parameters Appendix A

- The κ_n , π_n , c_n , β_n , and γ are internally calibrated (465 parameters)
- The target moments are
 - Accounts Receivable as share of total assets (116 moments)
 - Accounts Payable as share of total assets (116 moments)
 - Short-term debt as a fraction of revenues (116 moments)
 - Profits as share of GDP (116 moments)
 - Total aggregate sales over GDP (1 moment)

Model Fit and Parameters

Figure: Output effect of an increase in bank interest rate for a specific firm

- We re-calibrate the κ_n , π_n and ζ_n for 2020, 2021, 2022 and 2023 feeding the model with new r_n and matching new AR, AP and debt
- All other parameters are kept at 2019 levels
- We compare the benchmark to the scenarios with constant or no trade credit

Figure: Evolution of output (2019-2023).

 Introduction
 Micro evidence
 Model
 Calibration
 Numerical Exercise
 Conclusion
 Appendix

 Role of trade credit and interest rate dispersion

Figure: Relative output (endogenous VS no trade credit) and estimated dispersion of R_n .

Figure: Relative output (endogenous VS no trade credit) if changes in R_n are explained keeping risk or frictions at the 2019 level

- We built a model of endogenous trade credit in a production network
- In line with micro evidence, trade credit increases with the interest rate of buyers, while decreases with interest rate of sellers
- Trade credit can smooth or amplify interest rate shocks, depending on the position of a firm in the production network
- Endogenous trade credit is particularly beneficial when the "frictional" interest rate spread between buyers and sellers gets larger
- The importance of TC has declined in the last 4 years because of the reduction in bank rates' dispersion

Introduction Micro evidence Model Calibration Numerical Exercise Conclusion Appendix Summary statistics

Table: Summary statistics

	Mean	Standard Deviation	Observations
Accounts Receivable over CA	0.29	0.15	2,545
Average interest rate	5.03	7.4	2,545
Average interest rate of clients	12.73	5.05	2,545
Shares of bank-to-firm loans	0.52	0.43	3,341,646
Average interest rate of banks	18.97	39.08	14,121

Note: Observations for the first three variables refer to a company in a quarter (from 2020 to 2023). Each observation for the shares of bank-to-firm loans refers to one bank-to-firm link in 2019. The average interest rate of banks is the weighted average interest rate that each bank offered in a quarter from 2020 to 2023.

Back

Comparing endogenous to exogenous trade credit

Proposition

Consider an equilibrium with $\theta_n^m < \min\left[\frac{1-\kappa_m}{1-(1-\pi_m)\kappa_m}, \left(\frac{\pi_m}{c_n}\right)^{\frac{1}{\gamma}}\right]$ (higher interest rates reduce production) and small labor shares $(\alpha_n \to 0)$. The first-order effects of a change in the expected interest rates R are identical if trade credit levels can endogenously change or not. Considering second-order effects, output is larger in the endogenous change scenario if

$$\sum_{m\in\mathbb{N}}\lambda(1)_{m}\sum_{n\in\mathbb{N}^{m}}\sigma_{n}^{m}\frac{\pi_{m}}{\left[1+R_{m}-(1+R_{m}-\pi_{m})\theta_{n}^{m}\right]^{2}}\underbrace{\left(-\frac{\partial\theta_{n}^{m}}{\partial R_{n}}\right)}_{\geq0}R_{n}\left[(\hat{R}_{m})(\hat{R}_{n})\right]<0.$$
 (20)

31 / 34

イロン イボン イヨン イヨン 三日

Conclusion Appendix 000●0

Parameter Distributions

40

35 30

25

20

15

10

(a) ĸ

(b) π

(c) c

33 / 34

Introduction 0000	Micro evidence	Model 0000000000	Calibration 000	Numerical Exercise	Conclusion 0	Appendix 0000●
Estimat	ed R_n					

Figure: Kernel density of observed r_n and estimated R_n .