(Un-)Common Preferences, Ambiguity, and Coordination

Simone Cerreia-Vioglio^a, Roberto Corrao^b, and Giacomo Lanzani^c

August 2024

^aBocconi, ^bYale, and ^cHarvard

Motivation and goal

- The common prior assumption is pervasive in economic theory and helps us put restrictions on agents' beliefs
- Departures from Subjective Expected Utility (SEU) are both compelling (robustness as rationality) and present in experimental findings
- The goal of this paper is to:
 - Propose notion of common priors for non-SEU preferences
 - Mutual dynamic consistency
 - Characterize this notion in terms of interim preferences
 - Common limit of higher-order (nonlinear) expectations
 - Study implications for coordination games on networks
 - Potential wedge between common ex-ante preference and (limit) coordination equilibrium

-

- Finite set of agents $I = \{1, ..., n\}$ and *finite* set of states Ω
- Each $i \in I$, endowed with a state partition (or information structure) Π_i
- If ω realizes, agent *i* knows that the state belongs to the cell $\Pi_i(\omega) \subseteq \Omega$
- Let Π_{meet} denote the meet (the public information) of the $\{\Pi_i\}_{i \in I}$
- Acts $f \in \mathbb{R}^{\Omega}$ represent state-contingent monetary consequences
- All agents have same risk preferences which we normalize wlog to u = id

The SEU case

0

• The interim belief (type) of every *i* is given by $P_i: \Omega \times 2^{\Omega} \rightarrow [0,1]$ such that

For all
$$\omega \in \Omega$$
, $P_i(\omega, \cdot) \in \Delta(\Pi_i(\omega))$

- **2** For all $E \subseteq \Omega$, the map $P_i(\cdot, E) : \Omega \to [0, 1]$ is Π_i measurable
- $\bar{P} \in \Delta(\Omega)$ is a *prior* for *i* if

$$\bar{P}(E) = \sum_{\omega \in \Omega} P_i(\omega, E) \bar{P}(\omega) \qquad \forall E \in 2^{\Omega}$$
(1)

• $\bar{P} \in \Delta(\Omega)$ is a *common prior* if (1) holds for all $i \in I$

3

Ex-ante expectations

- A map $\overline{V} : \mathbb{R}^{\Omega} \to \mathbb{R}$ is an **ex-ante expectation** if it is normalized (i.e., $\overline{V}(1_{\Omega}k) = k$) and monotone.
- Max-min preferences (Gilboa and Schmeidler, 1989): $\bar{V}(f) = \min_{p \in \bar{C}} \mathbb{E}_p[f]$ for some compact and convex set $\bar{C} \subseteq \Delta(\Omega)$
- α -max-min preferences (Ghirardato Maccheroni Marinacci, 2004): $\bar{V}(f) = \alpha \min_{p \in \bar{C}} \mathbb{E}_p[f] + (1 - \alpha) \max_{p \in \bar{C}} \mathbb{E}_p[f]$
- Variational preferences (Maccheroni Marinacci Rustichini, 2006):

$$\bar{V}(f) = \min_{p \in \Delta(\Omega)} \left\{ \mathbb{E}_{p} \left[f \right] + c(p) \right\}$$

for some convex, lsc, grounded cost function $c:\Delta(\Omega) o [0,\infty]$

• Hansen and Sargent (2001) multiplier preferences: $c(p) = \lambda R(p||\bar{p})$

Interim expectations

- A map $V_i: \Omega \times \mathbb{R}^\Omega \to \mathbb{R}$ is an interim expectation for *i* if
 - For all $\omega \in \Omega$, the function $V_i(\omega, \cdot) : \mathbb{R}^{\Omega} \to \mathbb{R}$ is normalized, monotone, *continuous*, and satisfies

$$V_i\left(\omega, f \mathbf{1}_{\Pi(\omega)} + h \mathbf{1}_{\Pi(\omega)^c}\right) = V_i(\omega, f) \qquad \forall f, h \in \mathbb{R}^{\Omega}.$$

2 For all $f \in \mathbb{R}^{\Omega}$ the function $V_i(\cdot, f) : \Omega \to \mathbb{R}$ is \prod_i -measurable

• Say that (*V*, *V_i*, Π) is a **generalized conditional expectation** for *i* if they are *dynamically consistent*:

$$\bar{V}(f) = \bar{V}(V_i(\cdot, f)) \qquad \forall f \in \mathbb{R}^{\Omega}$$
(2)

- \overline{V} is a common ex-ante expectation if (2) holds for all $i \in I$
- This definition captures both consistency among players and, for each player, consistency between periods

Cerreia-Vioglio, Corrao, Lanzani (August 2024)

Examples of DC non-SEU preferences

- $V_{i}(\omega, \cdot)$ maxmin wrt $C_{i}(\omega) \subseteq \Delta(\Pi_{i}(\omega))$ for all $i \in I$
- Then V
 is a common ex-ante expectation if and only if it is maxmin wrt a set C ⊆ Δ (Ω) such that each C_i (ω) is obtained from C by Bayesian updating and C is rectangular
- $V_i(\omega, \cdot)$ multiplier wrt $p_{i,\omega} \in \Delta(\Pi_i(\omega))$ and $\lambda_i > 0$ for all $i \in I$
- Then V
 is a common ex-ante expectation if and only if it is multiplier wrt
 p ∈ Δ (Ω) and λ > 0 such that each p_{i,ω} is obtained from p
 by Bayesian
 updating and λ_i = λ for all i ∈ I

Generalized iterated expectations

- For every $i \in I$, the interim expectation of $f \in \mathcal{F}$ is a Π_i -measurable act $V_i(\cdot, f) \in \mathbb{R}^{\Omega}$. Therefore, $V_i : \mathbb{R}^{\Omega} \to \mathbb{R}^{\Omega}$
- For every sequence $(i_k)_{k\in\mathbb{N}}$ of players in *I*, let $V_{1:k}: \mathbb{R}^{\Omega} \to \mathbb{R}^{\Omega}$ denote the operator

$$V_{1:k}(f) = V_{i_{k}} \circ V_{i_{k-1}} \circ \dots \circ V_{i_{1}}(f)$$

• Under SEU, this is equivalent to

$$\mathbb{E}_{P_{i_{3}}}\left[\mathbb{E}_{P_{i_{2}}}\left[\mathbb{E}_{P_{i_{1}}}\left[f|\Pi_{i_{1}}\left(\omega\right)\right]|\Pi_{i_{2}}\left(\omega\right)\right]|\Pi_{i_{3}}\left(\omega\right)\right]$$

< ロ > < 同 > < 回 > < 回 >

Existence of common ex-ante expectation

• We say that $(i_m)_{m\in\mathbb{N}}\in\mathcal{I}\subseteq I^{\mathbb{N}}$ is an *I*-sequence if each agent appears infinitely often

Theorem

Let $\{(V_i, \Pi_i)\}_{i \in I}$ be a collection of full support interim expectations such that $\Pi_{meet} = \{\Omega\}$. The following statements are equivalent:

- (i) There exists a common ex-ante preference \bar{V} for $\{(V_i, \Pi_i)\}_{i \in I}$;
- (ii) For each $f \in \mathbb{R}^{\Omega}$ there exists $k_f \in \mathbb{R}$ such that for each I-sequence $(i_t)_{t \in \mathbb{N}}$

$$\lim_{t\to\infty}V_{i_t}\circ V_{i_{t-1}}\circ\ldots\circ V_{i_2}\circ V_{i_1}(f)=k_f\mathbf{1}_{\Omega}.$$

In this case, for each $f \in \mathbb{R}^{\Omega}$, we have $\overline{V}(f) = k_f$.

• The common prior, even beyond SEU (Samet, 1998), can be characterized through a condition that only involves the **interim preferences** of the agents

< ロ > < 同 > < 回 > < 回 >

Asset pricing beauty contest Golub and Morris (2017)

- Assume that each i ∈ I represents a continuum of agents with common information Π_i and variational full support interim preferences
- Single asset f̂ ∈ ℝ^Ω, sequentially traded in discrete time t ∈ ℕ with random matching described by a strongly connected W = (w_{ij})_{i,i∈N}

If an agent *i* holds the asset, with probability β ∈ (0, 1) they will *privately* sell the asset to an agent from a randomly selected class *j* ∈ *I* (no learning)

• With probability $(1 - \beta)$ they will have to liquidate the asset and obtain its fundamental (uncertain) value \hat{f}

• Bertrand competition among agents in class j matched with the asset holder i: the price for the trade is equal to the willingness to pay of agents in class j

• We focus on **Markov perfect equilibria** of this sequential game: the strategy $\sigma_i \in \mathbb{R}^{\Omega}$ of each *i* only depends on their own information set and specifies their bid price

Markov perfect equilibrium

• Given the assumptions, the unique Markov perfect equilibrium $\hat{\sigma}$ is the one satisfying the previous best-response map

$$\hat{\sigma}_{i}(\omega) = V_{i}\left(\omega, (1-\beta)\,\hat{f} + \beta \sum_{j \in I} w_{ij}\hat{\sigma}_{j}\right) \quad \forall \omega \in \Omega, \forall i \in I$$

• The RHS is the maximum willingness to pay of i given ω for the asset

ullet Taking the limit $\beta \to 1$ corresponds to the pure beauty contest limit

Multiple interaction structures

• Following Golub and Morris (2017), define

$$Q = \left\{ q \in \Delta\left(\Omega\right)^{I \times \Omega} : \forall \left(i, \omega\right) \in I \times \Omega, c_{i,\omega}\left(q_{i,\omega}\right) = 0 \right\}$$

 Each q ∈ Q combined with network W gives interaction structure W^q ∈ ℝ^{(I×Ω)×(I×Ω)}₊ that is strongly connected:

$$w_{(i,\omega)(j,\omega')}^{q} = w_{ij}q_{i,\omega}(\omega') \qquad \forall i,j \in I, \forall \omega, \omega' \in \Omega$$

• Denote left PF eigenvector $\gamma^q \in \Delta \left(I \times \Omega \right)$ for each q

3

Limit characterization

Theorem

For all $i \in I$ and $\omega \in \Omega$,

$$\lim_{\beta \to 1} \sigma_{i}^{\beta}\left(\omega\right) = \min_{q \in Q} \sum_{(j,\omega') \in I \times \Omega} \gamma_{j,\omega'}^{q} \mathbb{E}_{q_{j,\omega'}}\left[\hat{f}\right]$$

Moreover, if there exists a common ex-ante preference \bar{V} for $\{(V_i, \Pi_i)\}_{i \in I}$, then, for all $i \in I$ and $\omega \in \Omega$,

$$\lim_{3\to 1}\sigma_{i}^{\beta}\left(\omega\right)\geq\bar{V}\left(\hat{f}\right)$$

э

Remarks on the limit equilibrium

- Limit equilibrium price independent of state and agent: selects equilibrium of pure coordination game at $\beta = 1$
- Strong coordination motives in the market attenuate the ambiguity concern exhibited by the equilibrium evaluation

$$\lim_{\beta \to 1} \sigma_{i}^{\beta}(\omega) \geq V_{i}(\omega, \hat{f}) \qquad \forall i \in I, \forall \omega \in \Omega,$$

• Limit equilibrium price is higher than the *shared* ex-ante evaluation $\bar{V}(\hat{f})$ when exists: sharp difference with respect to the SEU case

Example: Irrelevance of misspecification concern

• Common prior $\mu^* \in \Delta(\Omega)$, but heterogeneous aversion to misspecification: each $i \in I$ evaluates any $f \in \mathbb{R}^{\Omega}$

$$\min_{\boldsymbol{p}\in\Delta}\left\{\mathbb{E}_{\boldsymbol{p}}\left[\hat{f}\right]+\lambda_{i}R\left(\boldsymbol{p}||\boldsymbol{\mu}^{*}\right)\right\}$$

- Let $p_{\mu^{*},i}(\omega, \cdot) = \mu^{*}(\cdot|\Pi_{i}(\omega))$. The interim evaluation of i at ω of any $f \in \mathbb{R}^{\Omega}$ $V_{i}(\omega, f) = \min_{p \in \Delta} \left\{ \mathbb{E}_{p}[f] + \lambda_{i}R\left(p||p_{\mu^{*},i}(\omega, \cdot)\right) \right\}$
- Our theorem implies that

$$\lim_{\beta \to 1} \sigma_{i}^{\beta}(\omega) = \mathbb{E}_{\mu^{*}}\left[\hat{f}\right] \qquad \forall i \in I, \forall \omega \in \Omega$$

• When a common ex-ante preference \bar{V} exists (i.e., $\lambda_i = \lambda$), we have $\lim_{\beta \to 1} \sigma_i^{\beta}(\omega) > \bar{V} \left[\hat{f} \right]$

Conclusion

- We have characterized the notion of common prior for a large class of preferences
- As in the SEU case, this characterization is expressed in terms of the agreement among infinite orders of iterated expectations
- These results allowed us to capture the effect of ambiguity attitudes in models of oligopolistic competition and strategic beauty contests
- In the paper, we provide sufficient and necessary conditions, both in terms of no trade, for the existence of a common rational preference

Weaker ex-ante expectations

- Often DC restrictive assumption for more general preferences than SEU with multiple info structures (Gumen and Savochkin, 2013, Ellis, 2018)
- Often weaker forms of ex-ante expectations are considered:

() We say that V_{\circ} is a lower common ex-ante expectation for $(V_i, \Pi_i)_{i \in I}$ if

 $V_{\circ}(f) \leq V_{\circ}(V_{i}(f)) \qquad \forall f \in \mathcal{F}, \forall i \in I$

2 We say that V° is a **upper common ex-ante expectation** for $(V_i, \Pi_i)_{i \in I}$ if

 $V^{\circ}(f) \geq V^{\circ}(V_{i}(f)) \qquad \forall f \in \mathcal{F}, \forall i \in I$

• Capture preference for gradual and one-shot resolution of uncertainty respectively

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のの()

Extreme higher-order expectations

• Define $V_*, V^*: \mathbb{R}^\Omega o \mathbb{R}$ by

$$V_{*}(f) = \inf_{\iota \in \mathcal{I}} \left\{ \lim_{m \to \infty} V_{i_{m}} \circ V_{i_{m-1}} \circ \dots \circ V_{i_{1}}(f) \right\} = \inf_{\iota \in \mathcal{I}} \bar{V}_{\iota}(f)$$

and

$$V^{*}(f) = \sup_{\iota \in \mathcal{I}} \left\{ \lim_{m \to \infty} V_{i_{m}} \circ V_{i_{m-1}} \circ \dots \circ V_{i_{1}}(f) \right\} = \sup_{\iota \in \mathcal{I}} \bar{V}_{\iota}(f)$$

• V_* , V^* are the lowest and the highest higher-order evaluations of act/bets

э

Extreme higher-order expectations

Theorem

Let $(V_i, \Pi_i)_{i \in I}$ have full support and $\Pi_{meet} = \{\Omega\}$. The expectations V_* and V^* are respectively a lower and an upper common ex-ante expectation for $(V_i, \Pi_i)_{i \in I}$. Moreover, if V_\circ and V° are a lower and an upper common ex-ante expectation for $(V_i, \Pi_i)_{i \in I}$, then

$$V_{*}\left(f
ight)\geq V_{\circ}\left(f
ight)$$
 and $V^{*}\left(f
ight)\leq V^{\circ}$ $orall f\in\mathcal{F}$

• The extreme preferences constructed via higher-order expectations constitute tight bounds for the ex-ante preferences of the agents

< ロ > < 同 > < 回 > < 回 >

Assumption on the preferences

• We say that a preference is **rational** if the function \bar{V}_i is

- **1** Normalized, that is, $\bar{V}_i(1_{\Omega}k) = k$ for all $k \in X$
- **2** Monotone, that is, $f \ge g \implies \bar{V}_i(f) \ge \bar{V}_i(g)$
- These properties are equivalent to the following axioms:
 - **Weak order**: the preference \succeq_i is complete and transitive
 - **2** Monotonicity: $f \ge g \implies f \succeq_i g$ and $x > y \implies x \mathbf{1}_{\Omega} \succ_i y \mathbf{1}_{\Omega}$
 - **Oreceived** Sector **Equivalent**: For each $f \in \mathcal{F}$ there exists $k \in X$ such that $f \sim_i k \mathbb{1}_{\Omega}$

"Full-support" assumption

- Let e_ω denote the ω -element of the basis of \mathbb{R}^Ω
- We say that the interim expectations (V_i, Π_i)_{i∈I} have full support if there exists ε > 0 such that

$$V_{i}(\omega, f + \delta e_{\omega'}) - V_{i}(\omega, f) \geq \delta e_{\omega'}$$

for all $i \in I$, $\omega \in \Omega$, $\omega' \in \Pi_i(\omega)$, $f \in \mathbb{R}^{\Omega}$, $\delta > 0$ with $f + \delta e_{\omega'} \in \mathbb{R}^{\Omega}$

- Interpretation: $V_i(\omega, \cdot)$ is responsive ("derivative" bdd away from 0) to changes in consequences at all states $\omega' \in \Pi_i(\omega)$
- If $V_i(\omega, \cdot)$ is SEU or multiplier, then it has full support^{*} if $p_{i,\omega}(\omega') > 0$ for all $\omega' \in \Pi_i(\omega)$

• If $V_i(\omega, \cdot)$ is maxmin, then it has full support if $p(\omega') > 0$ for all $\omega' \in \Pi_i(\omega)$ and $p \in C_i(\omega)$

- 3

Appendix

Sketch of the proof

• Fix $j \in I$, $\omega \in \Omega$ and define the "unambiguous" preference relation $\succeq_{j,\omega}^*$ of agent j at state ω on \mathcal{F} by

$$f \succeq_{j,\omega}^{*} g \iff V_{j}(\omega, \lambda f + (1 - \lambda) h) \ge V_{j}(\omega, \lambda g + (1 - \lambda) h) \quad \forall \lambda \in (0, 1]$$

• $V_{j}(\omega, \cdot)$ is normalized, monotone, and continuous \Longrightarrow there exists a compact and convex $C_{j}(\omega) \subseteq \Delta(\Omega)$ such that

$$f \succeq_{j.\omega}^{*} g \iff \mathbb{E}_{p}[f] \ge \mathbb{E}_{p}[g] \qquad \forall p \in C_{j}(\omega)$$

and

$$V_{j}(\omega, f) = \alpha_{j}(f) \min_{\boldsymbol{p} \in C_{j}(\omega)} \mathbb{E}_{\boldsymbol{p}}[f] + (1 - \alpha_{j}(f)) \max_{\boldsymbol{p} \in C_{j}(\omega)} \mathbb{E}_{\boldsymbol{p}}[f] \quad \forall f \in \mathcal{F}$$

where $\alpha_j: \mathcal{F} \to [0, 1]$

• Full support implies that $p(\omega') > 0$ for all $\omega' \in \Delta(\Pi_j(\omega))$ and $p \in C_j(\omega)$

17/17

Appendix

• Therefore, for each $j \in I$ and $f \in \mathcal{F}$ we can build a Markov transition (stochastic matrix) M_j such that each row $M_j(\omega) \in C_j(\omega) \subseteq \Delta(\Pi_j(\omega))$ and

$$V_{j}(\omega, f) = M_{j}(\omega) f.$$

• Since $\Pi_{meet} = {\Omega}$, for every finite sequence ${i_1, ..., i_m}$ such that each $i \in I$ appears at least once, the matrix

$$M_{i_m} \cdot \ldots \cdot M_{i_1}$$

has all strictly positive entries, so it is irreducible

• Finally, adapt techniques for irreducible Markov chains to get that

$$\lim_{m\to\infty}V_{i_m}\circ V_{i_{m-1}}\circ...\circ V_{i_1}(f)=k\mathbf{1}_{\Omega}$$